2051 lines
61 KiB
C++
2051 lines
61 KiB
C++
|
#include "WProgram.h"
|
||
|
/*
|
||
|
Reprap firmware based on Sprinter and grbl.
|
||
|
Copyright (C) 2011
|
||
|
|
||
|
This program is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
This firmware is a mashup of Sprinter and grbl.
|
||
|
(https://github.com/kliment/Sprinter)
|
||
|
(https://github.com/simen/grbl/tree)
|
||
|
The acceleration algorithm is derived from http://hwml.com/LeibRamp.pdf
|
||
|
This firmware is optimized for gen6 electronics.
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "fastio.h"
|
||
|
#include "Configuration.h"
|
||
|
#include "pins.h"
|
||
|
#include "Marlin.h"
|
||
|
#include "speed_lookuptable.h"
|
||
|
|
||
|
#ifdef SDSUPPORT
|
||
|
#include "SdFat.h"
|
||
|
#endif
|
||
|
|
||
|
#ifndef CRITICAL_SECTION_START
|
||
|
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
|
||
|
#define CRITICAL_SECTION_END SREG = _sreg
|
||
|
#endif
|
||
|
|
||
|
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
|
||
|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
||
|
|
||
|
//Implemented Codes
|
||
|
//-------------------
|
||
|
// G0 -> G1
|
||
|
// G1 - Coordinated Movement X Y Z E
|
||
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
||
|
// G28 - Home all Axis
|
||
|
// G90 - Use Absolute Coordinates
|
||
|
// G91 - Use Relative Coordinates
|
||
|
// G92 - Set current position to cordinates given
|
||
|
|
||
|
//RepRap M Codes
|
||
|
// M104 - Set extruder target temp
|
||
|
// M105 - Read current temp
|
||
|
// M106 - Fan on
|
||
|
// M107 - Fan off
|
||
|
// M109 - Wait for extruder current temp to reach target temp.
|
||
|
// M114 - Display current position
|
||
|
|
||
|
//Custom M Codes
|
||
|
// M80 - Turn on Power Supply
|
||
|
// M20 - List SD card
|
||
|
// M21 - Init SD card
|
||
|
// M22 - Release SD card
|
||
|
// M23 - Select SD file (M23 filename.g)
|
||
|
// M24 - Start/resume SD print
|
||
|
// M25 - Pause SD print
|
||
|
// M26 - Set SD position in bytes (M26 S12345)
|
||
|
// M27 - Report SD print status
|
||
|
// M28 - Start SD write (M28 filename.g)
|
||
|
// M29 - Stop SD write
|
||
|
// M81 - Turn off Power Supply
|
||
|
// M82 - Set E codes absolute (default)
|
||
|
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
||
|
// M84 - Disable steppers until next move,
|
||
|
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
||
|
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||
|
// M92 - Set axis_steps_per_unit - same syntax as G92
|
||
|
// M115 - Capabilities string
|
||
|
// M140 - Set bed target temp
|
||
|
// M190 - Wait for bed current temp to reach target temp.
|
||
|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||
|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
|
||
|
// M301 - Set PID parameters P I and D
|
||
|
|
||
|
|
||
|
//Stepper Movement Variables
|
||
|
|
||
|
char axis_codes[NUM_AXIS] = {
|
||
|
'X', 'Y', 'Z', 'E'};
|
||
|
float destination[NUM_AXIS] = {
|
||
|
0.0, 0.0, 0.0, 0.0};
|
||
|
float current_position[NUM_AXIS] = {
|
||
|
0.0, 0.0, 0.0, 0.0};
|
||
|
bool home_all_axis = true;
|
||
|
long feedrate = 1500, next_feedrate, saved_feedrate;
|
||
|
long gcode_N, gcode_LastN;
|
||
|
bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
||
|
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
|
||
|
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||
|
|
||
|
// comm variables
|
||
|
#define MAX_CMD_SIZE 96
|
||
|
#define BUFSIZE 8
|
||
|
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
||
|
bool fromsd[BUFSIZE];
|
||
|
int bufindr = 0;
|
||
|
int bufindw = 0;
|
||
|
int buflen = 0;
|
||
|
int i = 0;
|
||
|
char serial_char;
|
||
|
int serial_count = 0;
|
||
|
boolean comment_mode = false;
|
||
|
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
|
||
|
|
||
|
// Manage heater variables.
|
||
|
|
||
|
int target_raw = 0;
|
||
|
int current_raw = 0;
|
||
|
unsigned char temp_meas_ready = false;
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
double temp_iState = 0;
|
||
|
double temp_dState = 0;
|
||
|
double pTerm;
|
||
|
double iTerm;
|
||
|
double dTerm;
|
||
|
//int output;
|
||
|
double pid_error;
|
||
|
double temp_iState_min;
|
||
|
double temp_iState_max;
|
||
|
double pid_setpoint = 0.0;
|
||
|
double pid_input;
|
||
|
double pid_output;
|
||
|
bool pid_reset;
|
||
|
#endif
|
||
|
|
||
|
#ifdef WATCHPERIOD
|
||
|
int watch_raw = -1000;
|
||
|
unsigned long watchmillis = 0;
|
||
|
#endif
|
||
|
#ifdef MINTEMP
|
||
|
int minttemp = temp2analogh(MINTEMP);
|
||
|
#endif
|
||
|
#ifdef MAXTEMP
|
||
|
int maxttemp = temp2analogh(MAXTEMP);
|
||
|
#endif
|
||
|
|
||
|
//Inactivity shutdown variables
|
||
|
unsigned long previous_millis_cmd = 0;
|
||
|
unsigned long max_inactive_time = 0;
|
||
|
unsigned long stepper_inactive_time = 0;
|
||
|
|
||
|
#ifdef SDSUPPORT
|
||
|
Sd2Card card;
|
||
|
SdVolume volume;
|
||
|
SdFile root;
|
||
|
SdFile file;
|
||
|
uint32_t filesize = 0;
|
||
|
uint32_t sdpos = 0;
|
||
|
bool sdmode = false;
|
||
|
bool sdactive = false;
|
||
|
bool savetosd = false;
|
||
|
int16_t n;
|
||
|
|
||
|
void initsd(){
|
||
|
sdactive = false;
|
||
|
#if SDSS >- 1
|
||
|
if(root.isOpen())
|
||
|
root.close();
|
||
|
if (!card.init(SPI_FULL_SPEED,SDSS)){
|
||
|
//if (!card.init(SPI_HALF_SPEED,SDSS))
|
||
|
Serial.println("SD init fail");
|
||
|
}
|
||
|
else if (!volume.init(&card))
|
||
|
Serial.println("volume.init failed");
|
||
|
else if (!root.openRoot(&volume))
|
||
|
Serial.println("openRoot failed");
|
||
|
else
|
||
|
sdactive = true;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
inline void write_command(char *buf){
|
||
|
char* begin = buf;
|
||
|
char* npos = 0;
|
||
|
char* end = buf + strlen(buf) - 1;
|
||
|
|
||
|
file.writeError = false;
|
||
|
if((npos = strchr(buf, 'N')) != NULL){
|
||
|
begin = strchr(npos, ' ') + 1;
|
||
|
end = strchr(npos, '*') - 1;
|
||
|
}
|
||
|
end[1] = '\r';
|
||
|
end[2] = '\n';
|
||
|
end[3] = '\0';
|
||
|
//Serial.println(begin);
|
||
|
file.write(begin);
|
||
|
if (file.writeError){
|
||
|
Serial.println("error writing to file");
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void setup()
|
||
|
{
|
||
|
Serial.begin(BAUDRATE);
|
||
|
Serial.println("start");
|
||
|
|
||
|
for(int i = 0; i < BUFSIZE; i++){
|
||
|
fromsd[i] = false;
|
||
|
}
|
||
|
|
||
|
//Initialize Dir Pins
|
||
|
#if X_DIR_PIN > -1
|
||
|
SET_OUTPUT(X_DIR_PIN);
|
||
|
#endif
|
||
|
#if Y_DIR_PIN > -1
|
||
|
SET_OUTPUT(Y_DIR_PIN);
|
||
|
#endif
|
||
|
#if Z_DIR_PIN > -1
|
||
|
SET_OUTPUT(Z_DIR_PIN);
|
||
|
#endif
|
||
|
#if E_DIR_PIN > -1
|
||
|
SET_OUTPUT(E_DIR_PIN);
|
||
|
#endif
|
||
|
|
||
|
//Initialize Enable Pins - steppers default to disabled.
|
||
|
|
||
|
#if (X_ENABLE_PIN > -1)
|
||
|
SET_OUTPUT(X_ENABLE_PIN);
|
||
|
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
||
|
#endif
|
||
|
#if (Y_ENABLE_PIN > -1)
|
||
|
SET_OUTPUT(Y_ENABLE_PIN);
|
||
|
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
||
|
#endif
|
||
|
#if (Z_ENABLE_PIN > -1)
|
||
|
SET_OUTPUT(Z_ENABLE_PIN);
|
||
|
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
|
||
|
#endif
|
||
|
#if (E_ENABLE_PIN > -1)
|
||
|
SET_OUTPUT(E_ENABLE_PIN);
|
||
|
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
|
||
|
#endif
|
||
|
|
||
|
//endstops and pullups
|
||
|
#ifdef ENDSTOPPULLUPS
|
||
|
#if X_MIN_PIN > -1
|
||
|
SET_INPUT(X_MIN_PIN);
|
||
|
WRITE(X_MIN_PIN,HIGH);
|
||
|
#endif
|
||
|
#if X_MAX_PIN > -1
|
||
|
SET_INPUT(X_MAX_PIN);
|
||
|
WRITE(X_MAX_PIN,HIGH);
|
||
|
#endif
|
||
|
#if Y_MIN_PIN > -1
|
||
|
SET_INPUT(Y_MIN_PIN);
|
||
|
WRITE(Y_MIN_PIN,HIGH);
|
||
|
#endif
|
||
|
#if Y_MAX_PIN > -1
|
||
|
SET_INPUT(Y_MAX_PIN);
|
||
|
WRITE(Y_MAX_PIN,HIGH);
|
||
|
#endif
|
||
|
#if Z_MIN_PIN > -1
|
||
|
SET_INPUT(Z_MIN_PIN);
|
||
|
WRITE(Z_MIN_PIN,HIGH);
|
||
|
#endif
|
||
|
#if Z_MAX_PIN > -1
|
||
|
SET_INPUT(Z_MAX_PIN);
|
||
|
WRITE(Z_MAX_PIN,HIGH);
|
||
|
#endif
|
||
|
#else
|
||
|
#if X_MIN_PIN > -1
|
||
|
SET_INPUT(X_MIN_PIN);
|
||
|
#endif
|
||
|
#if X_MAX_PIN > -1
|
||
|
SET_INPUT(X_MAX_PIN);
|
||
|
#endif
|
||
|
#if Y_MIN_PIN > -1
|
||
|
SET_INPUT(Y_MIN_PIN);
|
||
|
#endif
|
||
|
#if Y_MAX_PIN > -1
|
||
|
SET_INPUT(Y_MAX_PIN);
|
||
|
#endif
|
||
|
#if Z_MIN_PIN > -1
|
||
|
SET_INPUT(Z_MIN_PIN);
|
||
|
#endif
|
||
|
#if Z_MAX_PIN > -1
|
||
|
SET_INPUT(Z_MAX_PIN);
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
#if (HEATER_0_PIN > -1)
|
||
|
SET_OUTPUT(HEATER_0_PIN);
|
||
|
#endif
|
||
|
#if (HEATER_1_PIN > -1)
|
||
|
SET_OUTPUT(HEATER_1_PIN);
|
||
|
#endif
|
||
|
|
||
|
//Initialize Step Pins
|
||
|
#if (X_STEP_PIN > -1)
|
||
|
SET_OUTPUT(X_STEP_PIN);
|
||
|
#endif
|
||
|
#if (Y_STEP_PIN > -1)
|
||
|
SET_OUTPUT(Y_STEP_PIN);
|
||
|
#endif
|
||
|
#if (Z_STEP_PIN > -1)
|
||
|
SET_OUTPUT(Z_STEP_PIN);
|
||
|
#endif
|
||
|
#if (E_STEP_PIN > -1)
|
||
|
SET_OUTPUT(E_STEP_PIN);
|
||
|
#endif
|
||
|
for(int i=0; i < NUM_AXIS; i++){
|
||
|
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
||
|
}
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
temp_iState_min = 0.0;
|
||
|
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||
|
#endif //PIDTEMP
|
||
|
|
||
|
#ifdef SDSUPPORT
|
||
|
//power to SD reader
|
||
|
#if SDPOWER > -1
|
||
|
SET_OUTPUT(SDPOWER);
|
||
|
WRITE(SDPOWER,HIGH);
|
||
|
#endif
|
||
|
initsd();
|
||
|
|
||
|
#endif
|
||
|
plan_init(); // Initialize planner;
|
||
|
st_init(); // Initialize stepper;
|
||
|
tp_init(); // Initialize temperature loop
|
||
|
}
|
||
|
|
||
|
|
||
|
void loop()
|
||
|
{
|
||
|
if(buflen<3)
|
||
|
get_command();
|
||
|
|
||
|
if(buflen){
|
||
|
#ifdef SDSUPPORT
|
||
|
if(savetosd){
|
||
|
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
|
||
|
write_command(cmdbuffer[bufindr]);
|
||
|
Serial.println("ok");
|
||
|
}
|
||
|
else{
|
||
|
file.sync();
|
||
|
file.close();
|
||
|
savetosd = false;
|
||
|
Serial.println("Done saving file.");
|
||
|
}
|
||
|
}
|
||
|
else{
|
||
|
process_commands();
|
||
|
}
|
||
|
#else
|
||
|
process_commands();
|
||
|
#endif
|
||
|
buflen = (buflen-1);
|
||
|
bufindr = (bufindr + 1)%BUFSIZE;
|
||
|
}
|
||
|
//check heater every n milliseconds
|
||
|
manage_heater();
|
||
|
manage_inactivity(1);
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void get_command()
|
||
|
{
|
||
|
while( Serial.available() > 0 && buflen < BUFSIZE) {
|
||
|
serial_char = Serial.read();
|
||
|
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
|
||
|
{
|
||
|
if(!serial_count) return; //if empty line
|
||
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
||
|
if(!comment_mode){
|
||
|
fromsd[bufindw] = false;
|
||
|
if(strstr(cmdbuffer[bufindw], "N") != NULL)
|
||
|
{
|
||
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
||
|
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
|
||
|
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
|
||
|
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
|
||
|
Serial.println(gcode_LastN);
|
||
|
//Serial.println(gcode_N);
|
||
|
FlushSerialRequestResend();
|
||
|
serial_count = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if(strstr(cmdbuffer[bufindw], "*") != NULL)
|
||
|
{
|
||
|
byte checksum = 0;
|
||
|
byte count = 0;
|
||
|
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
||
|
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
||
|
|
||
|
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
|
||
|
Serial.print("Error: checksum mismatch, Last Line:");
|
||
|
Serial.println(gcode_LastN);
|
||
|
FlushSerialRequestResend();
|
||
|
serial_count = 0;
|
||
|
return;
|
||
|
}
|
||
|
//if no errors, continue parsing
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
Serial.print("Error: No Checksum with line number, Last Line:");
|
||
|
Serial.println(gcode_LastN);
|
||
|
FlushSerialRequestResend();
|
||
|
serial_count = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
gcode_LastN = gcode_N;
|
||
|
//if no errors, continue parsing
|
||
|
}
|
||
|
else // if we don't receive 'N' but still see '*'
|
||
|
{
|
||
|
if((strstr(cmdbuffer[bufindw], "*") != NULL))
|
||
|
{
|
||
|
Serial.print("Error: No Line Number with checksum, Last Line:");
|
||
|
Serial.println(gcode_LastN);
|
||
|
serial_count = 0;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
|
||
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
||
|
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
|
||
|
case 0:
|
||
|
case 1:
|
||
|
#ifdef SDSUPPORT
|
||
|
if(savetosd)
|
||
|
break;
|
||
|
#endif
|
||
|
Serial.println("ok");
|
||
|
break;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
bufindw = (bufindw + 1)%BUFSIZE;
|
||
|
buflen += 1;
|
||
|
|
||
|
}
|
||
|
comment_mode = false; //for new command
|
||
|
serial_count = 0; //clear buffer
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(serial_char == ';') comment_mode = true;
|
||
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
||
|
}
|
||
|
}
|
||
|
#ifdef SDSUPPORT
|
||
|
if(!sdmode || serial_count!=0){
|
||
|
return;
|
||
|
}
|
||
|
while( filesize > sdpos && buflen < BUFSIZE) {
|
||
|
n = file.read();
|
||
|
serial_char = (char)n;
|
||
|
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
|
||
|
{
|
||
|
sdpos = file.curPosition();
|
||
|
if(sdpos >= filesize){
|
||
|
sdmode = false;
|
||
|
Serial.println("Done printing file");
|
||
|
}
|
||
|
if(!serial_count) return; //if empty line
|
||
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
||
|
if(!comment_mode){
|
||
|
fromsd[bufindw] = true;
|
||
|
buflen += 1;
|
||
|
bufindw = (bufindw + 1)%BUFSIZE;
|
||
|
}
|
||
|
comment_mode = false; //for new command
|
||
|
serial_count = 0; //clear buffer
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(serial_char == ';') comment_mode = true;
|
||
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
inline float code_value() {
|
||
|
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
|
||
|
}
|
||
|
inline long code_value_long() {
|
||
|
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
|
||
|
}
|
||
|
inline bool code_seen(char code_string[]) {
|
||
|
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
|
||
|
} //Return True if the string was found
|
||
|
|
||
|
inline bool code_seen(char code)
|
||
|
{
|
||
|
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
||
|
return (strchr_pointer != NULL); //Return True if a character was found
|
||
|
}
|
||
|
|
||
|
inline void process_commands()
|
||
|
{
|
||
|
unsigned long codenum; //throw away variable
|
||
|
char *starpos = NULL;
|
||
|
|
||
|
if(code_seen('G'))
|
||
|
{
|
||
|
switch((int)code_value())
|
||
|
{
|
||
|
case 0: // G0 -> G1
|
||
|
case 1: // G1
|
||
|
get_coordinates(); // For X Y Z E F
|
||
|
prepare_move();
|
||
|
previous_millis_cmd = millis();
|
||
|
//ClearToSend();
|
||
|
return;
|
||
|
//break;
|
||
|
case 4: // G4 dwell
|
||
|
codenum = 0;
|
||
|
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
||
|
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
||
|
codenum += millis(); // keep track of when we started waiting
|
||
|
while(millis() < codenum ){
|
||
|
manage_heater();
|
||
|
}
|
||
|
break;
|
||
|
case 28: //G28 Home all Axis one at a time
|
||
|
saved_feedrate = feedrate;
|
||
|
for(int i=0; i < NUM_AXIS; i++) {
|
||
|
destination[i] = current_position[i];
|
||
|
}
|
||
|
feedrate = 0;
|
||
|
|
||
|
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
||
|
|
||
|
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
||
|
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
|
||
|
st_synchronize();
|
||
|
current_position[X_AXIS] = 0;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
|
||
|
feedrate = homing_feedrate[X_AXIS];
|
||
|
prepare_move();
|
||
|
|
||
|
st_synchronize();
|
||
|
current_position[X_AXIS] = 0;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[X_AXIS] = -5 * X_HOME_DIR;
|
||
|
prepare_move();
|
||
|
|
||
|
st_synchronize();
|
||
|
destination[X_AXIS] = 10 * X_HOME_DIR;
|
||
|
feedrate = homing_feedrate[X_AXIS]/2 ;
|
||
|
prepare_move();
|
||
|
st_synchronize();
|
||
|
|
||
|
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[X_AXIS] = current_position[X_AXIS];
|
||
|
feedrate = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
|
||
|
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
|
||
|
current_position[Y_AXIS] = 0;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
||
|
feedrate = homing_feedrate[Y_AXIS];
|
||
|
prepare_move();
|
||
|
st_synchronize();
|
||
|
|
||
|
current_position[Y_AXIS] = 0;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[Y_AXIS] = -5 * Y_HOME_DIR;
|
||
|
prepare_move();
|
||
|
st_synchronize();
|
||
|
|
||
|
destination[Y_AXIS] = 10 * Y_HOME_DIR;
|
||
|
feedrate = homing_feedrate[Y_AXIS]/2;
|
||
|
prepare_move();
|
||
|
st_synchronize();
|
||
|
|
||
|
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
||
|
feedrate = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||
|
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
|
||
|
current_position[Z_AXIS] = 0;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
|
||
|
feedrate = homing_feedrate[Z_AXIS];
|
||
|
prepare_move();
|
||
|
st_synchronize();
|
||
|
|
||
|
current_position[Z_AXIS] = 0;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[Z_AXIS] = -2 * Z_HOME_DIR;
|
||
|
prepare_move();
|
||
|
st_synchronize();
|
||
|
|
||
|
destination[Z_AXIS] = 3 * Z_HOME_DIR;
|
||
|
feedrate = homing_feedrate[Z_AXIS]/2;
|
||
|
prepare_move();
|
||
|
st_synchronize();
|
||
|
|
||
|
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
destination[Z_AXIS] = current_position[Z_AXIS];
|
||
|
feedrate = 0;
|
||
|
}
|
||
|
}
|
||
|
feedrate = saved_feedrate;
|
||
|
previous_millis_cmd = millis();
|
||
|
break;
|
||
|
case 90: // G90
|
||
|
relative_mode = false;
|
||
|
break;
|
||
|
case 91: // G91
|
||
|
relative_mode = true;
|
||
|
break;
|
||
|
case 92: // G92
|
||
|
if(!code_seen(axis_codes[E_AXIS]))
|
||
|
st_synchronize();
|
||
|
for(int i=0; i < NUM_AXIS; i++) {
|
||
|
if(code_seen(axis_codes[i])) current_position[i] = code_value();
|
||
|
}
|
||
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||
|
break;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
else if(code_seen('M'))
|
||
|
{
|
||
|
|
||
|
switch( (int)code_value() )
|
||
|
{
|
||
|
#ifdef SDSUPPORT
|
||
|
|
||
|
case 20: // M20 - list SD card
|
||
|
Serial.println("Begin file list");
|
||
|
root.ls();
|
||
|
Serial.println("End file list");
|
||
|
break;
|
||
|
case 21: // M21 - init SD card
|
||
|
sdmode = false;
|
||
|
initsd();
|
||
|
break;
|
||
|
case 22: //M22 - release SD card
|
||
|
sdmode = false;
|
||
|
sdactive = false;
|
||
|
break;
|
||
|
case 23: //M23 - Select file
|
||
|
if(sdactive){
|
||
|
sdmode = false;
|
||
|
file.close();
|
||
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
||
|
if(starpos!=NULL)
|
||
|
*(starpos-1)='\0';
|
||
|
if (file.open(&root, strchr_pointer + 4, O_READ)) {
|
||
|
Serial.print("File opened:");
|
||
|
Serial.print(strchr_pointer + 4);
|
||
|
Serial.print(" Size:");
|
||
|
Serial.println(file.fileSize());
|
||
|
sdpos = 0;
|
||
|
filesize = file.fileSize();
|
||
|
Serial.println("File selected");
|
||
|
}
|
||
|
else{
|
||
|
Serial.println("file.open failed");
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 24: //M24 - Start SD print
|
||
|
if(sdactive){
|
||
|
sdmode = true;
|
||
|
}
|
||
|
break;
|
||
|
case 25: //M25 - Pause SD print
|
||
|
if(sdmode){
|
||
|
sdmode = false;
|
||
|
}
|
||
|
break;
|
||
|
case 26: //M26 - Set SD index
|
||
|
if(sdactive && code_seen('S')){
|
||
|
sdpos = code_value_long();
|
||
|
file.seekSet(sdpos);
|
||
|
}
|
||
|
break;
|
||
|
case 27: //M27 - Get SD status
|
||
|
if(sdactive){
|
||
|
Serial.print("SD printing byte ");
|
||
|
Serial.print(sdpos);
|
||
|
Serial.print("/");
|
||
|
Serial.println(filesize);
|
||
|
}
|
||
|
else{
|
||
|
Serial.println("Not SD printing");
|
||
|
}
|
||
|
break;
|
||
|
case 28: //M28 - Start SD write
|
||
|
if(sdactive){
|
||
|
char* npos = 0;
|
||
|
file.close();
|
||
|
sdmode = false;
|
||
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
||
|
if(starpos != NULL){
|
||
|
npos = strchr(cmdbuffer[bufindr], 'N');
|
||
|
strchr_pointer = strchr(npos,' ') + 1;
|
||
|
*(starpos-1) = '\0';
|
||
|
}
|
||
|
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
|
||
|
{
|
||
|
Serial.print("open failed, File: ");
|
||
|
Serial.print(strchr_pointer + 4);
|
||
|
Serial.print(".");
|
||
|
}
|
||
|
else{
|
||
|
savetosd = true;
|
||
|
Serial.print("Writing to file: ");
|
||
|
Serial.println(strchr_pointer + 4);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
case 29: //M29 - Stop SD write
|
||
|
//processed in write to file routine above
|
||
|
//savetosd = false;
|
||
|
break;
|
||
|
#endif
|
||
|
case 104: // M104
|
||
|
#ifdef PID_OPENLOOP
|
||
|
if (code_seen('S')) PidTemp_Output = code_value() * (PID_MAX/100.0);
|
||
|
if(pid_output > PID_MAX) pid_output = PID_MAX;
|
||
|
if(pid_output < 0) pid_output = 0;
|
||
|
#else //PID_OPENLOOP
|
||
|
if (code_seen('S')) {
|
||
|
target_raw = temp2analogh(code_value());
|
||
|
#ifdef PIDTEMP
|
||
|
pid_setpoint = code_value();
|
||
|
#endif //PIDTEMP
|
||
|
}
|
||
|
#ifdef WATCHPERIOD
|
||
|
if(target_raw > current_raw){
|
||
|
watchmillis = max(1,millis());
|
||
|
watch_raw = current_raw;
|
||
|
}
|
||
|
else{
|
||
|
watchmillis = 0;
|
||
|
}
|
||
|
#endif //WATCHPERIOD
|
||
|
#endif //PID_OPENLOOP
|
||
|
break;
|
||
|
case 105: // M105
|
||
|
Serial.print("ok T:");
|
||
|
Serial.println(analog2temp(current_raw));
|
||
|
return;
|
||
|
//break;
|
||
|
case 109: // M109 - Wait for extruder heater to reach target.
|
||
|
if (code_seen('S')) target_raw = temp2analogh(code_value());
|
||
|
#ifdef WATCHPERIOD
|
||
|
if(target_raw>current_raw){
|
||
|
watchmillis = max(1,millis());
|
||
|
watch_raw = current_raw;
|
||
|
}
|
||
|
else{
|
||
|
watchmillis = 0;
|
||
|
}
|
||
|
#endif
|
||
|
codenum = millis();
|
||
|
while(current_raw < target_raw) {
|
||
|
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
||
|
{
|
||
|
Serial.print("T:");
|
||
|
Serial.println( analog2temp(current_raw));
|
||
|
codenum = millis();
|
||
|
}
|
||
|
manage_heater();
|
||
|
}
|
||
|
break;
|
||
|
case 190:
|
||
|
break;
|
||
|
case 82:
|
||
|
axis_relative_modes[3] = false;
|
||
|
break;
|
||
|
case 83:
|
||
|
axis_relative_modes[3] = true;
|
||
|
break;
|
||
|
case 84:
|
||
|
if(code_seen('S')){
|
||
|
stepper_inactive_time = code_value() * 1000;
|
||
|
}
|
||
|
else{
|
||
|
st_synchronize();
|
||
|
disable_x();
|
||
|
disable_y();
|
||
|
disable_z();
|
||
|
disable_e();
|
||
|
}
|
||
|
break;
|
||
|
case 85: // M85
|
||
|
code_seen('S');
|
||
|
max_inactive_time = code_value() * 1000;
|
||
|
break;
|
||
|
case 92: // M92
|
||
|
for(int i=0; i < NUM_AXIS; i++) {
|
||
|
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
|
||
|
}
|
||
|
|
||
|
break;
|
||
|
case 115: // M115
|
||
|
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
|
||
|
break;
|
||
|
case 114: // M114
|
||
|
Serial.print("X:");
|
||
|
Serial.print(current_position[X_AXIS]);
|
||
|
Serial.print("Y:");
|
||
|
Serial.print(current_position[Y_AXIS]);
|
||
|
Serial.print("Z:");
|
||
|
Serial.print(current_position[Z_AXIS]);
|
||
|
Serial.print("E:");
|
||
|
Serial.println(current_position[E_AXIS]);
|
||
|
break;
|
||
|
case 119: // M119
|
||
|
#if (X_MIN_PIN > -1)
|
||
|
Serial.print("x_min:");
|
||
|
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||
|
#endif
|
||
|
#if (X_MAX_PIN > -1)
|
||
|
Serial.print("x_max:");
|
||
|
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||
|
#endif
|
||
|
#if (Y_MIN_PIN > -1)
|
||
|
Serial.print("y_min:");
|
||
|
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||
|
#endif
|
||
|
#if (Y_MAX_PIN > -1)
|
||
|
Serial.print("y_max:");
|
||
|
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||
|
#endif
|
||
|
#if (Z_MIN_PIN > -1)
|
||
|
Serial.print("z_min:");
|
||
|
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||
|
#endif
|
||
|
#if (Z_MAX_PIN > -1)
|
||
|
Serial.print("z_max:");
|
||
|
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||
|
#endif
|
||
|
Serial.println("");
|
||
|
break;
|
||
|
//TODO: update for all axis, use for loop
|
||
|
case 201: // M201
|
||
|
for(int i=0; i < NUM_AXIS; i++) {
|
||
|
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
||
|
}
|
||
|
break;
|
||
|
#if 0 // Not used for Sprinter/grbl gen6
|
||
|
case 202: // M202
|
||
|
for(int i=0; i < NUM_AXIS; i++) {
|
||
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
||
|
}
|
||
|
break;
|
||
|
#endif
|
||
|
#ifdef PIDTEMP
|
||
|
case 301: // M301
|
||
|
if(code_seen('P')) Kp = code_value();
|
||
|
if(code_seen('I')) Ki = code_value()*PID_dT;
|
||
|
if(code_seen('D')) Kd = code_value()/PID_dT;
|
||
|
Serial.print("Kp ");Serial.println(Kp);
|
||
|
Serial.print("Ki ");Serial.println(Ki/PID_dT);
|
||
|
Serial.print("Kd ");Serial.println(Kd*PID_dT);
|
||
|
temp_iState_min = 0.0;
|
||
|
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||
|
break;
|
||
|
#endif //PIDTEMP
|
||
|
}
|
||
|
}
|
||
|
else{
|
||
|
Serial.println("Unknown command:");
|
||
|
Serial.println(cmdbuffer[bufindr]);
|
||
|
}
|
||
|
|
||
|
ClearToSend();
|
||
|
}
|
||
|
|
||
|
void FlushSerialRequestResend()
|
||
|
{
|
||
|
//char cmdbuffer[bufindr][100]="Resend:";
|
||
|
Serial.flush();
|
||
|
Serial.print("Resend:");
|
||
|
Serial.println(gcode_LastN + 1);
|
||
|
ClearToSend();
|
||
|
}
|
||
|
|
||
|
void ClearToSend()
|
||
|
{
|
||
|
previous_millis_cmd = millis();
|
||
|
#ifdef SDSUPPORT
|
||
|
if(fromsd[bufindr])
|
||
|
return;
|
||
|
#endif
|
||
|
Serial.println("ok");
|
||
|
}
|
||
|
|
||
|
inline void get_coordinates()
|
||
|
{
|
||
|
for(int i=0; i < NUM_AXIS; i++) {
|
||
|
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
||
|
else destination[i] = current_position[i]; //Are these else lines really needed?
|
||
|
}
|
||
|
if(code_seen('F')) {
|
||
|
next_feedrate = code_value();
|
||
|
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void prepare_move()
|
||
|
{
|
||
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60);
|
||
|
for(int i=0; i < NUM_AXIS; i++) {
|
||
|
current_position[i] = destination[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void manage_heater()
|
||
|
{
|
||
|
float pid_input;
|
||
|
float pid_output;
|
||
|
if(temp_meas_ready != true)
|
||
|
return;
|
||
|
|
||
|
CRITICAL_SECTION_START;
|
||
|
temp_meas_ready = false;
|
||
|
CRITICAL_SECTION_END;
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
pid_input = analog2temp(current_raw);//ACT
|
||
|
|
||
|
#ifndef PID_OPENLOOP
|
||
|
pid_error = pid_setpoint - pid_input;
|
||
|
if(pid_error > 10){
|
||
|
pid_output = PID_MAX;
|
||
|
pid_reset = true;
|
||
|
}
|
||
|
else if(pid_error < -10) {
|
||
|
pid_output = 0;
|
||
|
pid_reset = true;
|
||
|
}
|
||
|
else {
|
||
|
if(pid_reset == true) {
|
||
|
temp_iState = 0.0;
|
||
|
pid_reset = false;
|
||
|
}
|
||
|
pTerm = Kp * pid_error;
|
||
|
temp_iState += pid_error;
|
||
|
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
||
|
iTerm = Ki * temp_iState;
|
||
|
#define K1 0.8
|
||
|
#define K2 (1.0-K1)
|
||
|
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
||
|
temp_dState = pid_input;
|
||
|
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
||
|
}
|
||
|
#endif //PID_OPENLOOP
|
||
|
#ifdef PID_DEBUG
|
||
|
Serial.print(" Input ");
|
||
|
Serial.print(pid_input);
|
||
|
Serial.print(" Output ");
|
||
|
Serial.print(pid_output);
|
||
|
Serial.print(" pTerm ");
|
||
|
Serial.print(pTerm);
|
||
|
Serial.print(" iTerm ");
|
||
|
Serial.print(iTerm);
|
||
|
Serial.print(" dTerm ");
|
||
|
Serial.print(dTerm);
|
||
|
Serial.println();
|
||
|
#endif //PID_DEBUG
|
||
|
OCR2B = pid_output;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
|
||
|
int temp2analogu(int celsius, const short table[][2], int numtemps) {
|
||
|
int raw = 0;
|
||
|
byte i;
|
||
|
|
||
|
for (i=1; i<numtemps; i++) {
|
||
|
if (table[i][1] < celsius) {
|
||
|
raw = table[i-1][0] +
|
||
|
(celsius - table[i-1][1]) *
|
||
|
(table[i][0] - table[i-1][0]) /
|
||
|
(table[i][1] - table[i-1][1]);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Overflow: Set to last value in the table
|
||
|
if (i == numtemps) raw = table[i-1][0];
|
||
|
|
||
|
return 16383 - raw;
|
||
|
}
|
||
|
|
||
|
float analog2tempu(int raw,const short table[][2], int numtemps) {
|
||
|
float celsius = 0.0;
|
||
|
byte i;
|
||
|
|
||
|
raw = 16383 - raw;
|
||
|
for (i=1; i<numtemps; i++) {
|
||
|
if (table[i][0] > raw) {
|
||
|
celsius = (float)table[i-1][1] +
|
||
|
(float)(raw - table[i-1][0]) *
|
||
|
(float)(table[i][1] - table[i-1][1]) /
|
||
|
(float)(table[i][0] - table[i-1][0]);
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
// Overflow: Set to last value in the table
|
||
|
if (i == numtemps) celsius = table[i-1][1];
|
||
|
|
||
|
return celsius;
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void kill()
|
||
|
{
|
||
|
target_raw=0;
|
||
|
#ifdef PIDTEMP
|
||
|
pid_setpoint = 0.0;
|
||
|
#endif PIDTEMP
|
||
|
OCR2B = 0;
|
||
|
WRITE(HEATER_0_PIN,LOW);
|
||
|
|
||
|
disable_x();
|
||
|
disable_y();
|
||
|
disable_z();
|
||
|
disable_e();
|
||
|
|
||
|
}
|
||
|
|
||
|
inline void manage_inactivity(byte debug) {
|
||
|
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
|
||
|
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
|
||
|
disable_x();
|
||
|
disable_y();
|
||
|
disable_z();
|
||
|
disable_e();
|
||
|
}
|
||
|
check_axes_activity();
|
||
|
}
|
||
|
|
||
|
// Planner
|
||
|
|
||
|
/*
|
||
|
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
|
||
|
|
||
|
s == speed, a == acceleration, t == time, d == distance
|
||
|
|
||
|
Basic definitions:
|
||
|
|
||
|
Speed[s_, a_, t_] := s + (a*t)
|
||
|
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
|
||
|
|
||
|
Distance to reach a specific speed with a constant acceleration:
|
||
|
|
||
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
|
||
|
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
|
||
|
|
||
|
Speed after a given distance of travel with constant acceleration:
|
||
|
|
||
|
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
|
||
|
m -> Sqrt[2 a d + s^2]
|
||
|
|
||
|
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
|
||
|
|
||
|
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
|
||
|
from initial speed s1 without ever stopping at a plateau:
|
||
|
|
||
|
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
|
||
|
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
|
||
|
|
||
|
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
|
||
|
*/
|
||
|
|
||
|
|
||
|
// The number of linear motions that can be in the plan at any give time
|
||
|
#define BLOCK_BUFFER_SIZE 16
|
||
|
#define BLOCK_BUFFER_MASK 0x0f
|
||
|
|
||
|
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||
|
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||
|
static volatile unsigned char block_buffer_tail; // Index of the block to process now
|
||
|
|
||
|
// The current position of the tool in absolute steps
|
||
|
static long position[4];
|
||
|
|
||
|
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||
|
|
||
|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||
|
// given acceleration:
|
||
|
inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration) {
|
||
|
return(
|
||
|
(target_rate*target_rate-initial_rate*initial_rate)/
|
||
|
(2L*acceleration)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||
|
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
|
||
|
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||
|
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||
|
|
||
|
inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance) {
|
||
|
return(
|
||
|
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
||
|
(4*acceleration)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||
|
|
||
|
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
|
||
|
if(block->busy == true) return; // If block is busy then bail out.
|
||
|
float entry_factor = entry_speed / block->nominal_speed;
|
||
|
float exit_factor = exit_speed / block->nominal_speed;
|
||
|
long initial_rate = ceil(block->nominal_rate*entry_factor);
|
||
|
long final_rate = ceil(block->nominal_rate*exit_factor);
|
||
|
|
||
|
#ifdef ADVANCE
|
||
|
long initial_advance = block->advance*entry_factor*entry_factor;
|
||
|
long final_advance = block->advance*exit_factor*exit_factor;
|
||
|
#endif // ADVANCE
|
||
|
|
||
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
||
|
if(initial_rate <32) initial_rate=32;
|
||
|
if(final_rate < 32) final_rate=32;
|
||
|
|
||
|
// Calculate the acceleration steps
|
||
|
long acceleration = block->acceleration;
|
||
|
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
|
||
|
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
|
||
|
|
||
|
// Calculate the size of Plateau of Nominal Rate.
|
||
|
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||
|
|
||
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||
|
// in order to reach the final_rate exactly at the end of this block.
|
||
|
if (plateau_steps < 0) {
|
||
|
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
|
||
|
plateau_steps = 0;
|
||
|
}
|
||
|
|
||
|
long decelerate_after = accelerate_steps+plateau_steps;
|
||
|
long acceleration_rate = (long)((float)acceleration * 8.388608);
|
||
|
|
||
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||
|
if(block->busy == false) { // Don't update variables if block is busy.
|
||
|
block->accelerate_until = accelerate_steps;
|
||
|
block->decelerate_after = decelerate_after;
|
||
|
block->acceleration_rate = acceleration_rate;
|
||
|
block->initial_rate = initial_rate;
|
||
|
block->final_rate = final_rate;
|
||
|
#ifdef ADVANCE
|
||
|
block->initial_advance = initial_advance;
|
||
|
block->final_advance = final_advance;
|
||
|
#endif ADVANCE
|
||
|
}
|
||
|
CRITICAL_SECTION_END;
|
||
|
}
|
||
|
|
||
|
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||
|
// acceleration within the allotted distance.
|
||
|
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||
|
return(
|
||
|
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||
|
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||
|
// velocities of the respective blocks.
|
||
|
inline float junction_jerk(block_t *before, block_t *after) {
|
||
|
return(sqrt(
|
||
|
pow((before->speed_x-after->speed_x), 2)+
|
||
|
pow((before->speed_y-after->speed_y), 2)+
|
||
|
pow((before->speed_z-after->speed_z)*axis_steps_per_unit[Z_AXIS]/axis_steps_per_unit[X_AXIS], 2))
|
||
|
);
|
||
|
}
|
||
|
|
||
|
// Return the safe speed which is max_jerk/2, e.g. the
|
||
|
// speed under which you cannot exceed max_jerk no matter what you do.
|
||
|
float safe_speed(block_t *block) {
|
||
|
float safe_speed;
|
||
|
safe_speed = max_jerk/2;
|
||
|
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
|
||
|
return safe_speed;
|
||
|
}
|
||
|
|
||
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||
|
if(!current) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
float entry_speed = current->nominal_speed;
|
||
|
float exit_factor;
|
||
|
float exit_speed;
|
||
|
if (next) {
|
||
|
exit_speed = next->entry_speed;
|
||
|
}
|
||
|
else {
|
||
|
exit_speed = safe_speed(current);
|
||
|
}
|
||
|
|
||
|
// Calculate the entry_factor for the current block.
|
||
|
if (previous) {
|
||
|
// Reduce speed so that junction_jerk is within the maximum allowed
|
||
|
float jerk = junction_jerk(previous, current);
|
||
|
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
|
||
|
entry_speed = safe_speed(current);
|
||
|
}
|
||
|
else if (jerk > max_jerk) {
|
||
|
entry_speed = (max_jerk/jerk) * entry_speed;
|
||
|
}
|
||
|
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
||
|
if (entry_speed > exit_speed) {
|
||
|
float max_entry_speed = max_allowable_speed(-acceleration,exit_speed, current->millimeters);
|
||
|
if (max_entry_speed < entry_speed) {
|
||
|
entry_speed = max_entry_speed;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
entry_speed = safe_speed(current);
|
||
|
}
|
||
|
// Store result
|
||
|
current->entry_speed = entry_speed;
|
||
|
}
|
||
|
|
||
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||
|
// implements the reverse pass.
|
||
|
void planner_reverse_pass() {
|
||
|
char block_index = block_buffer_head;
|
||
|
block_t *block[3] = {
|
||
|
NULL, NULL, NULL };
|
||
|
while(block_index != block_buffer_tail) {
|
||
|
block_index--;
|
||
|
if(block_index < 0) {
|
||
|
block_index = BLOCK_BUFFER_SIZE-1;
|
||
|
}
|
||
|
block[2]= block[1];
|
||
|
block[1]= block[0];
|
||
|
block[0] = &block_buffer[block_index];
|
||
|
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||
|
}
|
||
|
planner_reverse_pass_kernel(NULL, block[0], block[1]);
|
||
|
}
|
||
|
|
||
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||
|
if(!current) {
|
||
|
return;
|
||
|
}
|
||
|
if(previous) {
|
||
|
// If the previous block is an acceleration block, but it is not long enough to
|
||
|
// complete the full speed change within the block, we need to adjust out entry
|
||
|
// speed accordingly. Remember current->entry_factor equals the exit factor of
|
||
|
// the previous block.
|
||
|
if(previous->entry_speed < current->entry_speed) {
|
||
|
float max_entry_speed = max_allowable_speed(-acceleration, previous->entry_speed, previous->millimeters);
|
||
|
if (max_entry_speed < current->entry_speed) {
|
||
|
current->entry_speed = max_entry_speed;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||
|
// implements the forward pass.
|
||
|
void planner_forward_pass() {
|
||
|
char block_index = block_buffer_tail;
|
||
|
block_t *block[3] = {
|
||
|
NULL, NULL, NULL };
|
||
|
|
||
|
while(block_index != block_buffer_head) {
|
||
|
block[0] = block[1];
|
||
|
block[1] = block[2];
|
||
|
block[2] = &block_buffer[block_index];
|
||
|
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
||
|
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
|
||
|
}
|
||
|
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||
|
}
|
||
|
|
||
|
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
|
||
|
// entry_factor for each junction. Must be called by planner_recalculate() after
|
||
|
// updating the blocks.
|
||
|
void planner_recalculate_trapezoids() {
|
||
|
char block_index = block_buffer_tail;
|
||
|
block_t *current;
|
||
|
block_t *next = NULL;
|
||
|
while(block_index != block_buffer_head) {
|
||
|
current = next;
|
||
|
next = &block_buffer[block_index];
|
||
|
if (current) {
|
||
|
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
|
||
|
}
|
||
|
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
|
||
|
}
|
||
|
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
|
||
|
}
|
||
|
|
||
|
// Recalculates the motion plan according to the following algorithm:
|
||
|
//
|
||
|
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
|
||
|
// so that:
|
||
|
// a. The junction jerk is within the set limit
|
||
|
// b. No speed reduction within one block requires faster deceleration than the one, true constant
|
||
|
// acceleration.
|
||
|
// 2. Go over every block in chronological order and dial down junction speed reduction values if
|
||
|
// a. The speed increase within one block would require faster accelleration than the one, true
|
||
|
// constant acceleration.
|
||
|
//
|
||
|
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
|
||
|
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
|
||
|
// the set limit. Finally it will:
|
||
|
//
|
||
|
// 3. Recalculate trapezoids for all blocks.
|
||
|
|
||
|
void planner_recalculate() {
|
||
|
planner_reverse_pass();
|
||
|
planner_forward_pass();
|
||
|
planner_recalculate_trapezoids();
|
||
|
}
|
||
|
|
||
|
void plan_init() {
|
||
|
block_buffer_head = 0;
|
||
|
block_buffer_tail = 0;
|
||
|
memset(position, 0, sizeof(position)); // clear position
|
||
|
}
|
||
|
|
||
|
|
||
|
inline void plan_discard_current_block() {
|
||
|
if (block_buffer_head != block_buffer_tail) {
|
||
|
block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
inline block_t *plan_get_current_block() {
|
||
|
if (block_buffer_head == block_buffer_tail) {
|
||
|
return(NULL);
|
||
|
}
|
||
|
block_t *block = &block_buffer[block_buffer_tail];
|
||
|
block->busy = true;
|
||
|
return(block);
|
||
|
}
|
||
|
|
||
|
void check_axes_activity() {
|
||
|
unsigned char x_active = 0;
|
||
|
unsigned char y_active = 0;
|
||
|
unsigned char z_active = 0;
|
||
|
unsigned char e_active = 0;
|
||
|
block_t *block;
|
||
|
|
||
|
if(block_buffer_tail != block_buffer_head) {
|
||
|
char block_index = block_buffer_tail;
|
||
|
while(block_index != block_buffer_head) {
|
||
|
block = &block_buffer[block_index];
|
||
|
if(block->steps_x != 0) x_active++;
|
||
|
if(block->steps_y != 0) y_active++;
|
||
|
if(block->steps_z != 0) z_active++;
|
||
|
if(block->steps_e != 0) e_active++;
|
||
|
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
|
||
|
}
|
||
|
}
|
||
|
if((DISABLE_X) && (x_active == 0)) disable_x();
|
||
|
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
||
|
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
||
|
if((DISABLE_E) && (e_active == 0)) disable_e();
|
||
|
}
|
||
|
|
||
|
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||
|
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||
|
// calculation the caller must also provide the physical length of the line in millimeters.
|
||
|
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
|
||
|
|
||
|
// The target position of the tool in absolute steps
|
||
|
// Calculate target position in absolute steps
|
||
|
long target[4];
|
||
|
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||
|
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||
|
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||
|
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||
|
|
||
|
// Calculate the buffer head after we push this byte
|
||
|
int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;
|
||
|
|
||
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
||
|
// Rest here until there is room in the buffer.
|
||
|
while(block_buffer_tail == next_buffer_head) {
|
||
|
manage_heater();
|
||
|
manage_inactivity(1);
|
||
|
}
|
||
|
|
||
|
// Prepare to set up new block
|
||
|
block_t *block = &block_buffer[block_buffer_head];
|
||
|
|
||
|
// Mark block as not busy (Not executed by the stepper interrupt)
|
||
|
block->busy = false;
|
||
|
|
||
|
// Number of steps for each axis
|
||
|
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||
|
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||
|
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||
|
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
||
|
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
||
|
|
||
|
// Bail if this is a zero-length block
|
||
|
if (block->step_event_count == 0) {
|
||
|
return;
|
||
|
};
|
||
|
|
||
|
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
||
|
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||
|
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||
|
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
||
|
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
|
||
|
|
||
|
unsigned long microseconds;
|
||
|
microseconds = lround((block->millimeters/feed_rate)*1000000);
|
||
|
|
||
|
// Calculate speed in mm/minute for each axis
|
||
|
float multiplier = 60.0*1000000.0/microseconds;
|
||
|
block->speed_z = delta_z_mm * multiplier;
|
||
|
block->speed_x = delta_x_mm * multiplier;
|
||
|
block->speed_y = delta_y_mm * multiplier;
|
||
|
block->speed_e = delta_e_mm * multiplier;
|
||
|
|
||
|
// Limit speed per axis
|
||
|
float speed_factor = 1;
|
||
|
float tmp_speed_factor;
|
||
|
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
|
||
|
speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_x);
|
||
|
}
|
||
|
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
|
||
|
tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
|
||
|
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||
|
}
|
||
|
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
|
||
|
tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
|
||
|
if(tmp_speed_factor < speed_factor) speed_factor = tmp_speed_factor;
|
||
|
}
|
||
|
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
|
||
|
tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
|
||
|
if(tmp_speed_factor < speed_factor) speed_factor = tmp_speed_factor;
|
||
|
}
|
||
|
multiplier = multiplier * speed_factor;
|
||
|
block->speed_z = delta_z_mm * multiplier;
|
||
|
block->speed_x = delta_x_mm * multiplier;
|
||
|
block->speed_y = delta_y_mm * multiplier;
|
||
|
block->speed_e = delta_e_mm * multiplier;
|
||
|
|
||
|
block->nominal_speed = block->millimeters * multiplier;
|
||
|
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
|
||
|
if(block->nominal_rate < 32) block->nominal_rate = 32;
|
||
|
block->entry_speed = safe_speed(block);
|
||
|
|
||
|
// Compute the acceleration rate for the trapezoid generator.
|
||
|
float travel_per_step = block->millimeters/block->step_event_count;
|
||
|
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
||
|
block->acceleration = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||
|
}
|
||
|
else {
|
||
|
block->acceleration = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||
|
// Limit acceleration per axis
|
||
|
if((block->acceleration * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
||
|
block->acceleration = axis_steps_per_sqr_second[X_AXIS];
|
||
|
if((block->acceleration * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
||
|
block->acceleration = axis_steps_per_sqr_second[Y_AXIS];
|
||
|
if((block->acceleration * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
||
|
block->acceleration = axis_steps_per_sqr_second[E_AXIS];
|
||
|
if((block->acceleration * block->steps_z / block->step_event_count) > axis_steps_per_sqr_second[Z_AXIS])
|
||
|
block->acceleration = axis_steps_per_sqr_second[Z_AXIS];
|
||
|
}
|
||
|
|
||
|
#ifdef ADVANCE
|
||
|
// Calculate advance rate
|
||
|
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
||
|
block->advance_rate = 0;
|
||
|
block->advance = 0;
|
||
|
}
|
||
|
else {
|
||
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration);
|
||
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
||
|
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
|
||
|
block->advance = advance;
|
||
|
if(acc_dist == 0) {
|
||
|
block->advance_rate = 0;
|
||
|
}
|
||
|
else {
|
||
|
block->advance_rate = advance / (float)acc_dist;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // ADVANCE
|
||
|
|
||
|
// compute a preliminary conservative acceleration trapezoid
|
||
|
float safespeed = safe_speed(block);
|
||
|
calculate_trapezoid_for_block(block, safespeed, safespeed);
|
||
|
|
||
|
// Compute direction bits for this block
|
||
|
block->direction_bits = 0;
|
||
|
if (target[X_AXIS] < position[X_AXIS]) {
|
||
|
block->direction_bits |= (1<<X_AXIS);
|
||
|
}
|
||
|
if (target[Y_AXIS] < position[Y_AXIS]) {
|
||
|
block->direction_bits |= (1<<Y_AXIS);
|
||
|
}
|
||
|
if (target[Z_AXIS] < position[Z_AXIS]) {
|
||
|
block->direction_bits |= (1<<Z_AXIS);
|
||
|
}
|
||
|
if (target[E_AXIS] < position[E_AXIS]) {
|
||
|
block->direction_bits |= (1<<E_AXIS);
|
||
|
}
|
||
|
|
||
|
//enable active axes
|
||
|
if(block->steps_x != 0) enable_x();
|
||
|
if(block->steps_y != 0) enable_y();
|
||
|
if(block->steps_z != 0) enable_z();
|
||
|
if(block->steps_e != 0) enable_e();
|
||
|
|
||
|
// Move buffer head
|
||
|
block_buffer_head = next_buffer_head;
|
||
|
|
||
|
// Update position
|
||
|
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||
|
|
||
|
planner_recalculate();
|
||
|
st_wake_up();
|
||
|
}
|
||
|
|
||
|
void plan_set_position(float x, float y, float z, float e)
|
||
|
{
|
||
|
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
||
|
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||
|
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||
|
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||
|
}
|
||
|
|
||
|
// Stepper
|
||
|
|
||
|
// intRes = intIn1 * intIn2 >> 16
|
||
|
// uses:
|
||
|
// r26 to store 0
|
||
|
// r27 to store the byte 1 of the 24 bit result
|
||
|
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||
|
asm volatile ( \
|
||
|
"clr r26 \n\t" \
|
||
|
"mul %A1, %B2 \n\t" \
|
||
|
"movw %A0, r0 \n\t" \
|
||
|
"mul %A1, %A2 \n\t" \
|
||
|
"add %A0, r1 \n\t" \
|
||
|
"adc %B0, r26 \n\t" \
|
||
|
"lsr r0 \n\t" \
|
||
|
"adc %A0, r26 \n\t" \
|
||
|
"adc %B0, r26 \n\t" \
|
||
|
"clr r1 \n\t" \
|
||
|
: \
|
||
|
"=&r" (intRes) \
|
||
|
: \
|
||
|
"d" (charIn1), \
|
||
|
"d" (intIn2) \
|
||
|
: \
|
||
|
"r26" , "r27" \
|
||
|
)
|
||
|
|
||
|
// intRes = longIn1 * longIn2 >> 24
|
||
|
// uses:
|
||
|
// r26 to store 0
|
||
|
// r27 to store the byte 1 of the 48bit result
|
||
|
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
|
||
|
asm volatile ( \
|
||
|
"clr r26 \n\t" \
|
||
|
"mul %A1, %B2 \n\t" \
|
||
|
"mov r27, r1 \n\t" \
|
||
|
"mul %B1, %C2 \n\t" \
|
||
|
"movw %A0, r0 \n\t" \
|
||
|
"mul %C1, %C2 \n\t" \
|
||
|
"add %B0, r0 \n\t" \
|
||
|
"mul %C1, %B2 \n\t" \
|
||
|
"add %A0, r0 \n\t" \
|
||
|
"adc %B0, r1 \n\t" \
|
||
|
"mul %A1, %C2 \n\t" \
|
||
|
"add r27, r0 \n\t" \
|
||
|
"adc %A0, r1 \n\t" \
|
||
|
"adc %B0, r26 \n\t" \
|
||
|
"mul %B1, %B2 \n\t" \
|
||
|
"add r27, r0 \n\t" \
|
||
|
"adc %A0, r1 \n\t" \
|
||
|
"adc %B0, r26 \n\t" \
|
||
|
"mul %C1, %A2 \n\t" \
|
||
|
"add r27, r0 \n\t" \
|
||
|
"adc %A0, r1 \n\t" \
|
||
|
"adc %B0, r26 \n\t" \
|
||
|
"mul %B1, %A2 \n\t" \
|
||
|
"add r27, r1 \n\t" \
|
||
|
"adc %A0, r26 \n\t" \
|
||
|
"adc %B0, r26 \n\t" \
|
||
|
"lsr r27 \n\t" \
|
||
|
"adc %A0, r26 \n\t" \
|
||
|
"adc %B0, r26 \n\t" \
|
||
|
"clr r1 \n\t" \
|
||
|
: \
|
||
|
"=&r" (intRes) \
|
||
|
: \
|
||
|
"d" (longIn1), \
|
||
|
"d" (longIn2) \
|
||
|
: \
|
||
|
"r26" , "r27" \
|
||
|
)
|
||
|
|
||
|
// Some useful constants
|
||
|
|
||
|
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
||
|
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
||
|
|
||
|
static block_t *current_block; // A pointer to the block currently being traced
|
||
|
|
||
|
// Variables used by The Stepper Driver Interrupt
|
||
|
static unsigned char out_bits; // The next stepping-bits to be output
|
||
|
static long counter_x, // Counter variables for the bresenham line tracer
|
||
|
counter_y,
|
||
|
counter_z,
|
||
|
counter_e;
|
||
|
static unsigned long step_events_completed; // The number of step events executed in the current block
|
||
|
static long advance_rate, advance, final_advance = 0;
|
||
|
static short old_advance = 0;
|
||
|
static short e_steps;
|
||
|
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
||
|
static long acceleration_time, deceleration_time;
|
||
|
static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate;
|
||
|
static unsigned short acc_step_rate; // needed for deccelaration start point
|
||
|
|
||
|
|
||
|
|
||
|
// __________________________
|
||
|
// /| |\ _________________ ^
|
||
|
// / | | \ /| |\ |
|
||
|
// / | | \ / | | \ s
|
||
|
// / | | | | | \ p
|
||
|
// / | | | | | \ e
|
||
|
// +-----+------------------------+---+--+---------------+----+ e
|
||
|
// | BLOCK 1 | BLOCK 2 | d
|
||
|
//
|
||
|
// time ----->
|
||
|
//
|
||
|
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
|
||
|
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
|
||
|
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
|
||
|
// The slope of acceleration is calculated with the leib ramp alghorithm.
|
||
|
|
||
|
void st_wake_up() {
|
||
|
// TCNT1 = 0;
|
||
|
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||
|
}
|
||
|
|
||
|
inline unsigned short calc_timer(unsigned short step_rate) {
|
||
|
unsigned short timer;
|
||
|
if(step_rate < 32) step_rate = 32;
|
||
|
step_rate -= 32; // Correct for minimal speed
|
||
|
if(step_rate > (8*256)){ // higher step rate
|
||
|
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
||
|
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||
|
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
||
|
MultiU16X8toH16(timer, tmp_step_rate, gain);
|
||
|
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
|
||
|
}
|
||
|
else { // lower step rates
|
||
|
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
|
||
|
table_address += ((step_rate)>>1) & 0xfffc;
|
||
|
timer = (unsigned short)pgm_read_word_near(table_address);
|
||
|
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
||
|
}
|
||
|
if(timer < 100) timer = 100;
|
||
|
return timer;
|
||
|
}
|
||
|
|
||
|
// Initializes the trapezoid generator from the current block. Called whenever a new
|
||
|
// block begins.
|
||
|
inline void trapezoid_generator_reset() {
|
||
|
accelerate_until = current_block->accelerate_until;
|
||
|
decelerate_after = current_block->decelerate_after;
|
||
|
acceleration_rate = current_block->acceleration_rate;
|
||
|
initial_rate = current_block->initial_rate;
|
||
|
final_rate = current_block->final_rate;
|
||
|
advance = current_block->initial_advance;
|
||
|
final_advance = current_block->final_advance;
|
||
|
deceleration_time = 0;
|
||
|
advance_rate = current_block->advance_rate;
|
||
|
// step_rate to timer interval
|
||
|
acc_step_rate = initial_rate;
|
||
|
acceleration_time = calc_timer(acc_step_rate);
|
||
|
OCR1A = acceleration_time;
|
||
|
}
|
||
|
|
||
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||
|
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||
|
ISR(TIMER1_COMPA_vect)
|
||
|
{
|
||
|
if(busy){ /*Serial.println("BUSY")*/;
|
||
|
return;
|
||
|
} // The busy-flag is used to avoid reentering this interrupt
|
||
|
|
||
|
busy = true;
|
||
|
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
|
||
|
|
||
|
// If there is no current block, attempt to pop one from the buffer
|
||
|
if (current_block == NULL) {
|
||
|
// Anything in the buffer?
|
||
|
current_block = plan_get_current_block();
|
||
|
if (current_block != NULL) {
|
||
|
trapezoid_generator_reset();
|
||
|
counter_x = -(current_block->step_event_count >> 1);
|
||
|
counter_y = counter_x;
|
||
|
counter_z = counter_x;
|
||
|
counter_e = counter_x;
|
||
|
step_events_completed = 0;
|
||
|
e_steps = 0;
|
||
|
}
|
||
|
else {
|
||
|
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (current_block != NULL) {
|
||
|
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||
|
out_bits = current_block->direction_bits;
|
||
|
|
||
|
#ifdef ADVANCE
|
||
|
// Calculate E early.
|
||
|
counter_e += current_block->steps_e;
|
||
|
if (counter_e > 0) {
|
||
|
counter_e -= current_block->step_event_count;
|
||
|
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
||
|
CRITICAL_SECTION_START;
|
||
|
e_steps--;
|
||
|
CRITICAL_SECTION_END;
|
||
|
}
|
||
|
else {
|
||
|
CRITICAL_SECTION_START;
|
||
|
e_steps++;
|
||
|
CRITICAL_SECTION_END;
|
||
|
}
|
||
|
}
|
||
|
// Do E steps + advance steps
|
||
|
CRITICAL_SECTION_START;
|
||
|
e_steps += ((advance >> 16) - old_advance);
|
||
|
CRITICAL_SECTION_END;
|
||
|
old_advance = advance >> 16;
|
||
|
#endif //ADVANCE
|
||
|
|
||
|
// Set direction en check limit switches
|
||
|
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
||
|
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||
|
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||
|
step_events_completed = current_block->step_event_count;
|
||
|
}
|
||
|
}
|
||
|
else // +direction
|
||
|
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
||
|
|
||
|
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||
|
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
||
|
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||
|
step_events_completed = current_block->step_event_count;
|
||
|
}
|
||
|
}
|
||
|
else // +direction
|
||
|
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
||
|
|
||
|
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||
|
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||
|
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
|
||
|
step_events_completed = current_block->step_event_count;
|
||
|
}
|
||
|
}
|
||
|
else // +direction
|
||
|
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
||
|
|
||
|
#ifndef ADVANCE
|
||
|
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
|
||
|
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||
|
else // +direction
|
||
|
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||
|
#endif //!ADVANCE
|
||
|
|
||
|
counter_x += current_block->steps_x;
|
||
|
if (counter_x > 0) {
|
||
|
WRITE(X_STEP_PIN, HIGH);
|
||
|
counter_x -= current_block->step_event_count;
|
||
|
WRITE(X_STEP_PIN, LOW);
|
||
|
}
|
||
|
|
||
|
counter_y += current_block->steps_y;
|
||
|
if (counter_y > 0) {
|
||
|
WRITE(Y_STEP_PIN, HIGH);
|
||
|
counter_y -= current_block->step_event_count;
|
||
|
WRITE(Y_STEP_PIN, LOW);
|
||
|
}
|
||
|
|
||
|
counter_z += current_block->steps_z;
|
||
|
if (counter_z > 0) {
|
||
|
WRITE(Z_STEP_PIN, HIGH);
|
||
|
counter_z -= current_block->step_event_count;
|
||
|
WRITE(Z_STEP_PIN, LOW);
|
||
|
}
|
||
|
|
||
|
#ifndef ADVANCE
|
||
|
counter_e += current_block->steps_e;
|
||
|
if (counter_e > 0) {
|
||
|
WRITE(E_STEP_PIN, HIGH);
|
||
|
counter_e -= current_block->step_event_count;
|
||
|
WRITE(E_STEP_PIN, LOW);
|
||
|
}
|
||
|
#endif //!ADVANCE
|
||
|
|
||
|
// Calculare new timer value
|
||
|
unsigned short timer;
|
||
|
unsigned short step_rate;
|
||
|
if (step_events_completed < accelerate_until) {
|
||
|
MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
|
||
|
acc_step_rate += initial_rate;
|
||
|
|
||
|
// upper limit
|
||
|
if(acc_step_rate > current_block->nominal_rate)
|
||
|
acc_step_rate = current_block->nominal_rate;
|
||
|
|
||
|
// step_rate to timer interval
|
||
|
timer = calc_timer(acc_step_rate);
|
||
|
advance += advance_rate;
|
||
|
acceleration_time += timer;
|
||
|
OCR1A = timer;
|
||
|
}
|
||
|
else if (step_events_completed > decelerate_after) {
|
||
|
MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
|
||
|
|
||
|
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||
|
step_rate = final_rate;
|
||
|
}
|
||
|
else {
|
||
|
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
|
||
|
}
|
||
|
|
||
|
// lower limit
|
||
|
if(step_rate < final_rate)
|
||
|
step_rate = final_rate;
|
||
|
|
||
|
// step_rate to timer interval
|
||
|
timer = calc_timer(step_rate);
|
||
|
#ifdef ADVANCE
|
||
|
advance -= advance_rate;
|
||
|
if(advance < final_advance)
|
||
|
advance = final_advance;
|
||
|
#endif //ADVANCE
|
||
|
deceleration_time += timer;
|
||
|
OCR1A = timer;
|
||
|
}
|
||
|
// If current block is finished, reset pointer
|
||
|
step_events_completed += 1;
|
||
|
if (step_events_completed >= current_block->step_event_count) {
|
||
|
current_block = NULL;
|
||
|
plan_discard_current_block();
|
||
|
}
|
||
|
}
|
||
|
busy=false;
|
||
|
}
|
||
|
|
||
|
#ifdef ADVANCE
|
||
|
|
||
|
unsigned char old_OCR0A;
|
||
|
// Timer interrupt for E. e_steps is set in the main routine;
|
||
|
// Timer 0 is shared with millies
|
||
|
ISR(TIMER0_COMPA_vect)
|
||
|
{
|
||
|
// Critical section needed because Timer 1 interrupt has higher priority.
|
||
|
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
|
||
|
WRITE(E_STEP_PIN, LOW);
|
||
|
// e_steps is changed in timer 1 interrupt
|
||
|
CRITICAL_SECTION_START;
|
||
|
// Set E direction (Depends on E direction + advance)
|
||
|
if (e_steps < 0) {
|
||
|
WRITE(E_DIR_PIN,INVERT_E_DIR);
|
||
|
e_steps++;
|
||
|
WRITE(E_STEP_PIN, HIGH);
|
||
|
}
|
||
|
if (e_steps > 0) {
|
||
|
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||
|
e_steps--;
|
||
|
WRITE(E_STEP_PIN, HIGH);
|
||
|
}
|
||
|
CRITICAL_SECTION_END;
|
||
|
old_OCR0A += 25; // 10kHz interrupt
|
||
|
OCR0A = old_OCR0A;
|
||
|
}
|
||
|
#endif // ADVANCE
|
||
|
|
||
|
void st_init()
|
||
|
{
|
||
|
// waveform generation = 0100 = CTC
|
||
|
TCCR1B &= ~(1<<WGM13);
|
||
|
TCCR1B |= (1<<WGM12);
|
||
|
TCCR1A &= ~(1<<WGM11);
|
||
|
TCCR1A &= ~(1<<WGM10);
|
||
|
|
||
|
// output mode = 00 (disconnected)
|
||
|
TCCR1A &= ~(3<<COM1A0);
|
||
|
TCCR1A &= ~(3<<COM1B0);
|
||
|
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
|
||
|
|
||
|
OCR1A = 0x4000;
|
||
|
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||
|
|
||
|
#ifdef ADVANCE
|
||
|
e_steps = 0;
|
||
|
TIMSK0 |= (1<<OCIE0A);
|
||
|
#endif //ADVANCE
|
||
|
sei();
|
||
|
}
|
||
|
|
||
|
// Block until all buffered steps are executed
|
||
|
void st_synchronize()
|
||
|
{
|
||
|
while(plan_get_current_block()) {
|
||
|
manage_heater();
|
||
|
manage_inactivity(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Temperature loop
|
||
|
|
||
|
void tp_init()
|
||
|
{
|
||
|
DIDR0 = 1<<5; // TEMP_0_PIN for GEN6
|
||
|
ADMUX = ((1 << REFS0) | (5 & 0x07));
|
||
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, 1/128 prescaler.
|
||
|
TCCR2B = 0; //Stop timer in case of running
|
||
|
|
||
|
#ifdef PIDTEMP
|
||
|
TCCR2A = 0x23; //OC2A disable; FastPWM noninverting; FastPWM mode 7
|
||
|
#else
|
||
|
TCCR2A = 0x03; //OC2A disable; FastPWM noninverting; FastPWM mode 7
|
||
|
#endif
|
||
|
OCR2A = 156; //Period is ~10ms
|
||
|
OCR2B = 0; //Duty Cycle for heater pin is 0 (startup)
|
||
|
TIMSK2 = 0x01; //Enable overflow interrupt
|
||
|
TCCR2B = 0x0F; //1/1024 prescaler, start
|
||
|
}
|
||
|
|
||
|
static unsigned char temp_count = 0;
|
||
|
static unsigned long raw_temp_value = 0;
|
||
|
|
||
|
ISR(TIMER2_OVF_vect)
|
||
|
{
|
||
|
// uint8_t low, high;
|
||
|
|
||
|
// low = ADCL;
|
||
|
// high = ADCH;
|
||
|
raw_temp_value += ADC;
|
||
|
// raw_temp_value = (ADCH <<8) | ADCL;
|
||
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, Enable Interrupt, 1/128 prescaler.
|
||
|
// raw_temp_value += (high <<8) | low;
|
||
|
temp_count++;
|
||
|
|
||
|
if(temp_count >= 16)
|
||
|
{
|
||
|
current_raw = 16383 - raw_temp_value;
|
||
|
temp_meas_ready = true;
|
||
|
temp_count = 0;
|
||
|
raw_temp_value = 0;
|
||
|
#ifdef MAXTEMP
|
||
|
if(current_raw >= maxttemp) {
|
||
|
target_raw = 0;
|
||
|
#ifdef PIDTEMP
|
||
|
OCR2B = 0;
|
||
|
#else
|
||
|
WRITE(HEATER_0_PIN,LOW);
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
#ifdef MINTEMP
|
||
|
if(current_raw <= minttemp) {
|
||
|
target_raw = 0;
|
||
|
#ifdef PIDTEMP
|
||
|
OCR2B = 0;
|
||
|
#else
|
||
|
WRITE(HEATER_0_PIN,LOW);
|
||
|
#endif
|
||
|
}
|
||
|
#endif
|
||
|
#ifndef PIDTEMP
|
||
|
if(current_raw >= target_raw)
|
||
|
{
|
||
|
WRITE(HEATER_0_PIN,LOW);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
WRITE(HEATER_0_PIN,HIGH);
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#include <WProgram.h>
|
||
|
|
||
|
int main(void)
|
||
|
{
|
||
|
init();
|
||
|
|
||
|
setup();
|
||
|
|
||
|
for (;;)
|
||
|
loop();
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|