Firmware/Marlin/Marlin_main.cpp

4391 lines
146 KiB
C++
Raw Normal View History

/* -*- c++ -*- */
/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
2012-11-21 20:53:56 +01:00
#include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h"
#endif
#endif // ENABLE_AUTO_BED_LEVELING
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#include "cardreader.h"
#include "watchdog.h"
#include "ConfigurationStore.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
2013-10-20 09:55:15 +02:00
#ifdef BLINKM
2013-09-10 11:18:29 +02:00
#include "BlinkM.h"
#include "Wire.h"
2013-10-20 09:55:15 +02:00
#endif
2013-09-10 11:18:29 +02:00
#if NUM_SERVOS > 0
#include "Servo.h"
#endif
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
2012-11-21 20:53:56 +01:00
#include <SPI.h>
#endif
#define VERSION_STRING "1.0.0"
// look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home all Axis
2014-02-19 10:06:24 +01:00
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
// G32 - Undock sled (Z_PROBE_SLED only)
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to coordinates given
// M Codes
// M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
// M1 - Same as M0
// M17 - Enable/Power all stepper motors
// M18 - Disable all stepper motors; same as M84
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M30 - Delete file from SD (M30 filename.g)
// M31 - Output time since last M109 or SD card start to serial
// M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
// syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
// Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
// The '#' is necessary when calling from within sd files, as it stops buffer prereading
2013-01-31 18:20:23 +01:00
// M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
// Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
// IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
2014-05-20 16:20:19 +02:00
// M112 - Emergency stop
// M114 - Output current position to serial port
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
// M140 - Set bed target temp
// M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
// M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
// Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
// M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
// M206 - set additional homing offset
// M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
// M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
// M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
// M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
// M220 S<factor in percent>- set speed factor override percentage
// M221 S<factor in percent>- set extrude factor override percentage
// M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
// M240 - Trigger a camera to take a photograph
// M250 - Set LCD contrast C<contrast value> (value 0..63)
// M280 - set servo position absolute. P: servo index, S: angle or microseconds
// M300 - Play beep sound S<frequency Hz> P<duration ms>
// M301 - Set PID parameters P I and D
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - print the current settings (from memory not from EEPROM)
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
// M665 - set delta configurations
// M666 - set delta endstop adjustment
// M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
// M907 - Set digital trimpot motor current using axis codes.
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.
// ************ SCARA Specific - This can change to suit future G-code regulations
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
//************* SCARA End ***************
// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error
//Stepper Movement Variables
//===========================================================================
//=============================imported variables============================
//===========================================================================
//===========================================================================
//=============================public variables=============================
//===========================================================================
#ifdef SDSUPPORT
CardReader card;
#endif
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
int extrudemultiply=100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = {100
#if EXTRUDERS > 1
, 100
#if EXTRUDERS > 2
, 100
#endif
#endif
};
float volumetric_multiplier[EXTRUDERS] = {1.0
2014-01-31 09:54:19 +01:00
#if EXTRUDERS > 1
, 1.0
#if EXTRUDERS > 2
, 1.0
#endif
#endif
};
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
float add_homeing[3]={0,0,0};
#ifdef DELTA
float endstop_adj[3]={0,0,0};
#endif
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false};
float zprobe_zoffset;
// Extruder offset
#if EXTRUDERS > 1
#ifndef DUAL_X_CARRIAGE
#define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
#else
#define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
#endif
float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
#if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
#endif
};
#endif
uint8_t active_extruder = 0;
int fanSpeed=0;
#ifdef SERVO_ENDSTOPS
int servo_endstops[] = SERVO_ENDSTOPS;
int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
#endif
#ifdef BARICUDA
int ValvePressure=0;
int EtoPPressure=0;
#endif
#ifdef FWRETRACT
bool autoretract_enabled=false;
bool retracted[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
bool retracted_swap[EXTRUDERS]={false
#if EXTRUDERS > 1
, false
#if EXTRUDERS > 2
, false
#endif
#endif
};
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif
#ifdef ULTIPANEL
#ifdef PS_DEFAULT_OFF
bool powersupply = false;
#else
bool powersupply = true;
#endif
#endif
#ifdef DELTA
float delta[3] = {0.0, 0.0, 0.0};
#define SIN_60 0.8660254037844386
#define COS_60 0.5
// these are the default values, can be overriden with M665
float delta_radius= DELTA_RADIUS;
float delta_tower1_x= -SIN_60*delta_radius; // front left tower
float delta_tower1_y= -COS_60*delta_radius;
float delta_tower2_x= SIN_60*delta_radius; // front right tower
float delta_tower2_y= -COS_60*delta_radius;
float delta_tower3_x= 0.0; // back middle tower
float delta_tower3_y= delta_radius;
float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_2= sq(delta_diagonal_rod);
float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
#endif
#ifdef SCARA // Build size scaling
float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
#endif
bool cancel_heatup = false ;
//===========================================================================
//=============================Private Variables=============================
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float delta[3] = {0.0, 0.0, 0.0};
#endif
static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
static bool fromsd[BUFSIZE];
static int bufindr = 0;
static int bufindw = 0;
static int buflen = 0;
//static int i = 0;
static char serial_char;
static int serial_count = 0;
static boolean comment_mode = false;
static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
//static float tt = 0;
//static float bt = 0;
//Inactivity shutdown variables
static unsigned long previous_millis_cmd = 0;
static unsigned long max_inactive_time = 0;
static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
unsigned long starttime=0;
unsigned long stoptime=0;
static uint8_t tmp_extruder;
bool Stopped=false;
#if NUM_SERVOS > 0
Servo servos[NUM_SERVOS];
#endif
bool CooldownNoWait = true;
bool target_direction;
//Insert variables if CHDK is defined
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif
//===========================================================================
//=============================Routines======================================
//===========================================================================
void get_arc_coordinates();
bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, float v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v)
{ serialprintPGM(s_P); SERIAL_ECHO(v); }
extern "C"{
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void *__brkval;
int freeMemory() {
int free_memory;
if((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
//adds an command to the main command buffer
//thats really done in a non-safe way.
//needs overworking someday
void enquecommand(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START;
SERIAL_ECHOPGM("enqueing \"");
SERIAL_ECHO(cmdbuffer[bufindw]);
SERIAL_ECHOLNPGM("\"");
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void enquecommand_P(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happens
strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START;
SERIAL_ECHOPGM("enqueing \"");
SERIAL_ECHO(cmdbuffer[bufindw]);
SERIAL_ECHOLNPGM("\"");
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void setup_killpin()
{
#if defined(KILL_PIN) && KILL_PIN > -1
pinMode(KILL_PIN,INPUT);
WRITE(KILL_PIN,HIGH);
#endif
}
void setup_photpin()
{
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
SET_OUTPUT(PHOTOGRAPH_PIN);
WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
#if defined(PS_DEFAULT_OFF)
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
void suicide()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init()
{
#if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
servos[0].attach(SERVO0_PIN);
#endif
#if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
servos[1].attach(SERVO1_PIN);
#endif
#if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
servos[2].attach(SERVO2_PIN);
#endif
#if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
servos[3].attach(SERVO3_PIN);
#endif
#if (NUM_SERVOS >= 5)
#error "TODO: enter initalisation code for more servos"
#endif
// Set position of Servo Endstops that are defined
#ifdef SERVO_ENDSTOPS
for(int8_t i = 0; i < 3; i++)
{
if(servo_endstops[i] > -1) {
servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
}
}
#endif
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
void setup()
{
setup_killpin();
setup_powerhold();
MYSERIAL.begin(BAUDRATE);
SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START;
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
MCUSR=0;
SERIAL_ECHOPGM(MSG_MARLIN);
SERIAL_ECHOLNPGM(VERSION_STRING);
#ifdef STRING_VERSION_CONFIG_H
#ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
SERIAL_ECHOPGM(MSG_AUTHOR);
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOPGM("Compiled: ");
SERIAL_ECHOLNPGM(__DATE__);
#endif
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_FREE_MEMORY);
SERIAL_ECHO(freeMemory());
SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
for(int8_t i = 0; i < BUFSIZE; i++)
{
fromsd[i] = false;
}
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings();
tp_init(); // Initialize temperature loop
plan_init(); // Initialize planner;
watchdog_init();
st_init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
lcd_init();
_delay_ms(1000); // wait 1sec to display the splash screen
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
#ifdef DIGIPOT_I2C
digipot_i2c_init();
#endif
#ifdef Z_PROBE_SLED
pinMode(SERVO0_PIN, OUTPUT);
digitalWrite(SERVO0_PIN, LOW); // turn it off
#endif // Z_PROBE_SLED
}
void loop()
{
if(buflen < (BUFSIZE-1))
get_command();
#ifdef SDSUPPORT
card.checkautostart(false);
#endif
if(buflen)
{
#ifdef SDSUPPORT
if(card.saving)
{
if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
{
card.write_command(cmdbuffer[bufindr]);
if(card.logging)
{
process_commands();
}
else
{
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
}
else
{
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
}
}
else
{
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
}
//check heater every n milliseconds
manage_heater();
manage_inactivity();
checkHitEndstops();
lcd_update();
}
void get_command()
{
while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
serial_char = MYSERIAL.read();
if(serial_char == '\n' ||
serial_char == '\r' ||
(serial_char == ':' && comment_mode == false) ||
serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) { //if empty line
comment_mode = false; //for new command
return;
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
comment_mode = false; //for new command
fromsd[bufindw] = false;
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strchr(cmdbuffer[bufindw], '*') != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strchr(cmdbuffer[bufindw], '*') != NULL))
{
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
SERIAL_ERRORLN(gcode_LastN);
serial_count = 0;
return;
}
}
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
case 0:
case 1:
case 2:
case 3:
if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
#ifdef SDSUPPORT
if(card.saving)
break;
#endif //SDSUPPORT
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
else {
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
}
break;
default:
break;
}
}
2014-03-15 16:56:15 +01:00
2014-03-21 21:42:00 +01:00
//If command was e-stop process now
2014-03-15 16:56:15 +01:00
if(strcmp(cmdbuffer[bufindw], "M112") == 0)
kill();
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
}
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!card.sdprinting || serial_count!=0){
return;
}
//'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
static bool stop_buffering=false;
if(buflen==0) stop_buffering=false;
while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
int16_t n=card.get();
serial_char = (char)n;
if(serial_char == '\n' ||
serial_char == '\r' ||
(serial_char == '#' && comment_mode == false) ||
(serial_char == ':' && comment_mode == false) ||
serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
{
if(card.eof()){
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int hours, minutes;
minutes=(t/60)%60;
hours=t/60/60;
sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
card.printingHasFinished();
card.checkautostart(true);
}
if(serial_char=='#')
stop_buffering=true;
if(!serial_count)
{
comment_mode = false; //for new command
return; //if empty line
}
cmdbuffer[bufindw][serial_count] = 0; //terminate string
// if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
// }
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif //SDSUPPORT
}
float code_value()
{
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
}
long code_value_long()
{
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
}
bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#ifdef DUAL_X_CARRIAGE
#if EXTRUDERS == 1 || defined(COREXY) \
|| !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
|| !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
|| !defined(X_MAX_PIN) || X_MAX_PIN < 0
#error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
#endif
#if X_HOME_DIR != -1 || X2_HOME_DIR != 1
#error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
#endif
#define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE 1
#define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
else
// In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
// This allow soft recalibration of the second extruder offset position without firmware reflash
// (through the M218 command).
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
}
static int x_home_dir(int extruder) {
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static unsigned long delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2
#endif //DUAL_X_CARRIAGE
static void axis_is_at_home(int axis) {
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS) {
if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
return;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return;
}
}
#endif
#ifdef SCARA
float homeposition[3];
char i;
if (axis < 2)
{
for (i=0; i<3; i++)
{
homeposition[i] = base_home_pos(i);
}
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
// Works out real Homeposition angles using inverse kinematics,
// and calculates homing offset using forward kinematics
calculate_delta(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for (i=0; i<2; i++)
{
delta[i] -= add_homeing[i];
}
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
calculate_SCARA_forward_Transform(delta);
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position[axis] = delta[axis];
// SCARA home positions are based on configuration since the actual limits are determined by the
// inverse kinematic transform.
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
}
else
{
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
}
#else
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
#endif
}
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
{
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
2013-12-11 21:27:43 +01:00
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position();
// corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#else // not AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
2014-02-16 03:06:51 +01:00
plan_bed_level_matrix.set_to_identity();
2014-02-16 03:06:51 +01:00
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
2014-02-16 03:06:51 +01:00
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
2014-02-16 03:06:51 +01:00
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
// put the bed at 0 so we don't go below it.
current_position[Z_AXIS] = zprobe_zoffset;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
2014-02-16 03:06:51 +01:00
}
#endif // AUTO_BED_LEVELING_GRID
static void run_z_probe() {
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
float zPosition = -10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_retract_mm(Z_AXIS);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// move back down slowly to find bed
feedrate = homing_feedrate[Z_AXIS]/4;
zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
feedrate = XY_TRAVEL_SPEED;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
current_position[Z_AXIS] = z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = oldFeedRate;
}
static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
}
static void setup_for_endstop_move() {
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(true);
}
static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
}
static void engage_z_probe() {
// Engage Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#endif
}
static void retract_z_probe() {
// Retract Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[Z_AXIS] > -1) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#endif
}
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#ifndef Z_PROBE_SLED
engage_z_probe(); // Engage Z Servo endstop if available
#endif // Z_PROBE_SLED
run_z_probe();
float measured_z = current_position[Z_AXIS];
#ifndef Z_PROBE_SLED
retract_z_probe();
#endif // Z_PROBE_SLED
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" x: ");
SERIAL_PROTOCOL(x);
SERIAL_PROTOCOLPGM(" y: ");
SERIAL_PROTOCOL(y);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL(measured_z);
SERIAL_PROTOCOLPGM("\n");
return measured_z;
}
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
0) {
int axis_home_dir = home_dir(axis);
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS)
axis_home_dir = x_home_dir(active_extruder);
#endif
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
if (axis==Z_AXIS) {
engage_z_probe();
}
else
#endif
if (servo_endstops[axis] > -1) {
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
}
#endif
#endif // Z_PROBE_SLED
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
current_position[axis] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
#ifdef DELTA
feedrate = homing_feedrate[axis]/10;
#else
feedrate = homing_feedrate[axis]/2 ;
#endif
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
#ifdef DELTA
// retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * axis_home_dir < 0) {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[axis] = endstop_adj[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
}
#endif
axis_is_at_home(axis);
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose();
axis_known_position[axis] = true;
// Retract Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
if (servo_endstops[axis] > -1) {
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
}
#endif
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
// if (axis==Z_AXIS) retract_z_probe();
#endif
}
}
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
void refresh_cmd_timeout(void)
{
previous_millis_cmd = millis();
}
#ifdef FWRETRACT
void retract(bool retracting, bool swapretract = false) {
if(retracting && !retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
if (swapretract) {
current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
} else {
current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_feedrate*60;
retracted[active_extruder]=true;
prepare_move();
current_position[Z_AXIS]-=retract_zlift;
#ifdef DELTA
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif
prepare_move();
feedrate = oldFeedrate;
} else if(!retracting && retracted[active_extruder]) {
destination[X_AXIS]=current_position[X_AXIS];
destination[Y_AXIS]=current_position[Y_AXIS];
destination[Z_AXIS]=current_position[Z_AXIS];
destination[E_AXIS]=current_position[E_AXIS];
current_position[Z_AXIS]+=retract_zlift;
#ifdef DELTA
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif
//prepare_move();
if (swapretract) {
current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
} else {
current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_recover_feedrate*60;
retracted[active_extruder]=false;
prepare_move();
feedrate = oldFeedrate;
}
} //retract
#endif //FWRETRACT
#ifdef ENABLE_AUTO_BED_LEVELING
//
// Method to dock/undock a sled designed by Charles Bell.
//
// dock[in] If true, move to MAX_X and engage the electromagnet
// offset[in] The additional distance to move to adjust docking location
//
static void dock_sled(bool dock, int offset=0) {
int z_loc;
if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return;
}
if (dock) {
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
current_position[Y_AXIS],
current_position[Z_AXIS]);
// turn off magnet
digitalWrite(SERVO0_PIN, LOW);
} else {
if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
z_loc = Z_RAISE_BEFORE_PROBING;
else
z_loc = current_position[Z_AXIS];
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
// turn on magnet
digitalWrite(SERVO0_PIN, HIGH);
}
}
#endif
void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
float x_tmp, y_tmp, z_tmp, real_z;
#endif
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
if(Stopped == false) {
get_coordinates(); // For X Y Z E F
#ifdef FWRETRACT
if(autoretract_enabled)
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange=destination[E_AXIS]-current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); //AND from the planner
retract(!retracted);
return;
}
}
#endif //FWRETRACT
prepare_move();
//ClearToSend();
return;
}
Fixed error found by the free coverity tool (https://scan.coverity.com/) =================================================== Hi, Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan. Defect(s) Reported-by: Coverity Scan Showing 15 of 15 defect(s) ** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() ** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() ** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() ** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() ** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() ** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() ** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() ** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() ** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() ** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() ** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() ** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() ** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ________________________________________________________________________________________________________ *** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() 2148 } 2149 #endif 2150 } 2151 } 2152 break; 2153 case 85: // M85 CID 59629: Unchecked return value (CHECKED_RETURN) Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times). 2154 code_seen('S'); 2155 max_inactive_time = code_value() * 1000; 2156 break; 2157 case 92: // M92 2158 for(int8_t i=0; i < NUM_AXIS; i++) 2159 { ________________________________________________________________________________________________________ *** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() 313 else 314 { 315 // two choices for the 16 bit timers: ck/1 or ck/64 316 ocr = F_CPU / frequency / 2 - 1; 317 318 prescalarbits = 0b001; CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) "ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if. 319 if (ocr > 0xffff) 320 { 321 ocr = F_CPU / frequency / 2 / 64 - 1; 322 prescalarbits = 0b011; 323 } 324 ________________________________________________________________________________________________________ *** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() 1181 case 2: // G2 - CW ARC 1182 if(Stopped == false) { 1183 get_arc_coordinates(); 1184 prepare_arc_move(true); 1185 return; 1186 } CID 59631: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } ________________________________________________________________________________________________________ *** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } CID 59632: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1193 case 4: // G4 dwell 1194 LCD_MESSAGEPGM(MSG_DWELL); 1195 codenum = 0; 1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait 1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait 1198 ________________________________________________________________________________________________________ *** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 913 target_temperature[1]=0; CID 59633: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1". 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif 919 ________________________________________________________________________________________________________ *** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() 907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 CID 59634: Out-of-bounds write (OVERRUN) Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1". 913 target_temperature[1]=0; 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif ________________________________________________________________________________________________________ *** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 CID 59635: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1). 626 for (i=1; i<heater_ttbllen_map[e]; i++) 627 { 628 if (PGM_RD_W((*tt)[i][0]) > raw) 629 { 630 celsius = PGM_RD_W((*tt)[i-1][1]) + 631 (raw - PGM_RD_W((*tt)[i-1][0])) * ________________________________________________________________________________________________________ *** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() 614 if (e == 0) 615 { 616 return 0.25 * raw; 617 } 618 #endif 619 CID 59636: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1). 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 ________________________________________________________________________________________________________ *** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() 196 { 197 soft_pwm_bed = (MAX_BED_POWER)/2; 198 bias = d = (MAX_BED_POWER)/2; 199 } 200 else 201 { CID 59637: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1). 202 soft_pwm[extruder] = (PID_MAX)/2; 203 bias = d = (PID_MAX)/2; 204 } 205 206 207 ________________________________________________________________________________________________________ *** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() 208 209 for(;;) { 210 211 if(temp_meas_ready == true) { // temp sample ready 212 updateTemperaturesFromRawValues(); 213 CID 59638: Out-of-bounds read (OVERRUN) Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1). 214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; 215 216 max=max(max,input); 217 min=min(min,input); 218 if(heating == true && input > temp) { 219 if(millis() - t2 > 5000) { ________________________________________________________________________________________________________ *** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() 2272 tmp_extruder = code_value(); 2273 if(tmp_extruder >= EXTRUDERS) { 2274 SERIAL_ECHO_START; 2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); 2276 } 2277 } CID 59639: Out-of-bounds write (OVERRUN) Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1). 2278 volumetric_multiplier[tmp_extruder] = 1 / area; 2279 } 2280 break; 2281 case 201: // M201 2282 for(int8_t i=0; i < NUM_AXIS; i++) 2283 { ________________________________________________________________________________________________________ *** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() 1796 int pin_status = code_value(); 1797 int pin_number = LED_PIN; 1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255) 1799 pin_number = code_value(); 1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) 1801 { CID 59640: Out-of-bounds read (OVERRUN) Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55). 1802 if (sensitive_pins[i] == pin_number) 1803 { 1804 pin_number = -1; 1805 break; 1806 } 1807 } ________________________________________________________________________________________________________ *** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59641: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 51 } 52 53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, 54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 56 { ________________________________________________________________________________________________________ *** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 39 } 40 41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 43 { 44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59642: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); ________________________________________________________________________________________________________ *** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 26 27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 30 { 31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); CID 59643: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 32 } 33 34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 37 { ________________________________________________________________________________________________________ To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
2014-05-14 21:59:48 +02:00
break;
2014-06-23 18:16:42 +02:00
#ifndef SCARA //disable arc support
case 2: // G2 - CW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(true);
return;
}
Fixed error found by the free coverity tool (https://scan.coverity.com/) =================================================== Hi, Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan. Defect(s) Reported-by: Coverity Scan Showing 15 of 15 defect(s) ** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() ** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() ** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() ** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() ** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() ** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() ** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() ** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() ** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() ** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() ** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() ** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() ** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ________________________________________________________________________________________________________ *** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() 2148 } 2149 #endif 2150 } 2151 } 2152 break; 2153 case 85: // M85 CID 59629: Unchecked return value (CHECKED_RETURN) Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times). 2154 code_seen('S'); 2155 max_inactive_time = code_value() * 1000; 2156 break; 2157 case 92: // M92 2158 for(int8_t i=0; i < NUM_AXIS; i++) 2159 { ________________________________________________________________________________________________________ *** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() 313 else 314 { 315 // two choices for the 16 bit timers: ck/1 or ck/64 316 ocr = F_CPU / frequency / 2 - 1; 317 318 prescalarbits = 0b001; CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) "ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if. 319 if (ocr > 0xffff) 320 { 321 ocr = F_CPU / frequency / 2 / 64 - 1; 322 prescalarbits = 0b011; 323 } 324 ________________________________________________________________________________________________________ *** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() 1181 case 2: // G2 - CW ARC 1182 if(Stopped == false) { 1183 get_arc_coordinates(); 1184 prepare_arc_move(true); 1185 return; 1186 } CID 59631: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } ________________________________________________________________________________________________________ *** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } CID 59632: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1193 case 4: // G4 dwell 1194 LCD_MESSAGEPGM(MSG_DWELL); 1195 codenum = 0; 1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait 1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait 1198 ________________________________________________________________________________________________________ *** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 913 target_temperature[1]=0; CID 59633: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1". 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif 919 ________________________________________________________________________________________________________ *** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() 907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 CID 59634: Out-of-bounds write (OVERRUN) Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1". 913 target_temperature[1]=0; 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif ________________________________________________________________________________________________________ *** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 CID 59635: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1). 626 for (i=1; i<heater_ttbllen_map[e]; i++) 627 { 628 if (PGM_RD_W((*tt)[i][0]) > raw) 629 { 630 celsius = PGM_RD_W((*tt)[i-1][1]) + 631 (raw - PGM_RD_W((*tt)[i-1][0])) * ________________________________________________________________________________________________________ *** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() 614 if (e == 0) 615 { 616 return 0.25 * raw; 617 } 618 #endif 619 CID 59636: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1). 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 ________________________________________________________________________________________________________ *** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() 196 { 197 soft_pwm_bed = (MAX_BED_POWER)/2; 198 bias = d = (MAX_BED_POWER)/2; 199 } 200 else 201 { CID 59637: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1). 202 soft_pwm[extruder] = (PID_MAX)/2; 203 bias = d = (PID_MAX)/2; 204 } 205 206 207 ________________________________________________________________________________________________________ *** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() 208 209 for(;;) { 210 211 if(temp_meas_ready == true) { // temp sample ready 212 updateTemperaturesFromRawValues(); 213 CID 59638: Out-of-bounds read (OVERRUN) Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1). 214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; 215 216 max=max(max,input); 217 min=min(min,input); 218 if(heating == true && input > temp) { 219 if(millis() - t2 > 5000) { ________________________________________________________________________________________________________ *** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() 2272 tmp_extruder = code_value(); 2273 if(tmp_extruder >= EXTRUDERS) { 2274 SERIAL_ECHO_START; 2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); 2276 } 2277 } CID 59639: Out-of-bounds write (OVERRUN) Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1). 2278 volumetric_multiplier[tmp_extruder] = 1 / area; 2279 } 2280 break; 2281 case 201: // M201 2282 for(int8_t i=0; i < NUM_AXIS; i++) 2283 { ________________________________________________________________________________________________________ *** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() 1796 int pin_status = code_value(); 1797 int pin_number = LED_PIN; 1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255) 1799 pin_number = code_value(); 1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) 1801 { CID 59640: Out-of-bounds read (OVERRUN) Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55). 1802 if (sensitive_pins[i] == pin_number) 1803 { 1804 pin_number = -1; 1805 break; 1806 } 1807 } ________________________________________________________________________________________________________ *** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59641: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 51 } 52 53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, 54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 56 { ________________________________________________________________________________________________________ *** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 39 } 40 41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 43 { 44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59642: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); ________________________________________________________________________________________________________ *** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 26 27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 30 { 31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); CID 59643: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 32 } 33 34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 37 { ________________________________________________________________________________________________________ To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
2014-05-14 21:59:48 +02:00
break;
case 3: // G3 - CCW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(false);
return;
}
Fixed error found by the free coverity tool (https://scan.coverity.com/) =================================================== Hi, Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan. Defect(s) Reported-by: Coverity Scan Showing 15 of 15 defect(s) ** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() ** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() ** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() ** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() ** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() ** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() ** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() ** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() ** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() ** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() ** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() ** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() ** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ________________________________________________________________________________________________________ *** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() 2148 } 2149 #endif 2150 } 2151 } 2152 break; 2153 case 85: // M85 CID 59629: Unchecked return value (CHECKED_RETURN) Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times). 2154 code_seen('S'); 2155 max_inactive_time = code_value() * 1000; 2156 break; 2157 case 92: // M92 2158 for(int8_t i=0; i < NUM_AXIS; i++) 2159 { ________________________________________________________________________________________________________ *** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() 313 else 314 { 315 // two choices for the 16 bit timers: ck/1 or ck/64 316 ocr = F_CPU / frequency / 2 - 1; 317 318 prescalarbits = 0b001; CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) "ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if. 319 if (ocr > 0xffff) 320 { 321 ocr = F_CPU / frequency / 2 / 64 - 1; 322 prescalarbits = 0b011; 323 } 324 ________________________________________________________________________________________________________ *** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() 1181 case 2: // G2 - CW ARC 1182 if(Stopped == false) { 1183 get_arc_coordinates(); 1184 prepare_arc_move(true); 1185 return; 1186 } CID 59631: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } ________________________________________________________________________________________________________ *** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } CID 59632: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1193 case 4: // G4 dwell 1194 LCD_MESSAGEPGM(MSG_DWELL); 1195 codenum = 0; 1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait 1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait 1198 ________________________________________________________________________________________________________ *** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 913 target_temperature[1]=0; CID 59633: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1". 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif 919 ________________________________________________________________________________________________________ *** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() 907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 CID 59634: Out-of-bounds write (OVERRUN) Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1". 913 target_temperature[1]=0; 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif ________________________________________________________________________________________________________ *** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 CID 59635: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1). 626 for (i=1; i<heater_ttbllen_map[e]; i++) 627 { 628 if (PGM_RD_W((*tt)[i][0]) > raw) 629 { 630 celsius = PGM_RD_W((*tt)[i-1][1]) + 631 (raw - PGM_RD_W((*tt)[i-1][0])) * ________________________________________________________________________________________________________ *** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() 614 if (e == 0) 615 { 616 return 0.25 * raw; 617 } 618 #endif 619 CID 59636: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1). 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 ________________________________________________________________________________________________________ *** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() 196 { 197 soft_pwm_bed = (MAX_BED_POWER)/2; 198 bias = d = (MAX_BED_POWER)/2; 199 } 200 else 201 { CID 59637: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1). 202 soft_pwm[extruder] = (PID_MAX)/2; 203 bias = d = (PID_MAX)/2; 204 } 205 206 207 ________________________________________________________________________________________________________ *** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() 208 209 for(;;) { 210 211 if(temp_meas_ready == true) { // temp sample ready 212 updateTemperaturesFromRawValues(); 213 CID 59638: Out-of-bounds read (OVERRUN) Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1). 214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; 215 216 max=max(max,input); 217 min=min(min,input); 218 if(heating == true && input > temp) { 219 if(millis() - t2 > 5000) { ________________________________________________________________________________________________________ *** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() 2272 tmp_extruder = code_value(); 2273 if(tmp_extruder >= EXTRUDERS) { 2274 SERIAL_ECHO_START; 2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); 2276 } 2277 } CID 59639: Out-of-bounds write (OVERRUN) Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1). 2278 volumetric_multiplier[tmp_extruder] = 1 / area; 2279 } 2280 break; 2281 case 201: // M201 2282 for(int8_t i=0; i < NUM_AXIS; i++) 2283 { ________________________________________________________________________________________________________ *** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() 1796 int pin_status = code_value(); 1797 int pin_number = LED_PIN; 1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255) 1799 pin_number = code_value(); 1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) 1801 { CID 59640: Out-of-bounds read (OVERRUN) Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55). 1802 if (sensitive_pins[i] == pin_number) 1803 { 1804 pin_number = -1; 1805 break; 1806 } 1807 } ________________________________________________________________________________________________________ *** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59641: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 51 } 52 53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, 54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 56 { ________________________________________________________________________________________________________ *** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 39 } 40 41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 43 { 44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59642: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); ________________________________________________________________________________________________________ *** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 26 27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 30 { 31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); CID 59643: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 32 } 33 34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 37 { ________________________________________________________________________________________________________ To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
2014-05-14 21:59:48 +02:00
break;
#endif
case 4: // G4 dwell
LCD_MESSAGEPGM(MSG_DWELL);
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
st_synchronize();
codenum += millis(); // keep track of when we started waiting
previous_millis_cmd = millis();
while(millis() < codenum ){
manage_heater();
manage_inactivity();
lcd_update();
}
break;
#ifdef FWRETRACT
case 10: // G10 retract
#if EXTRUDERS > 1
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
retract(true,retracted_swap[active_extruder]);
#else
retract(true);
#endif
break;
2013-10-25 03:58:42 +02:00
case 11: // G11 retract_recover
#if EXTRUDERS > 1
retract(false,retracted_swap[active_extruder]);
#else
retract(false);
#endif
break;
#endif //FWRETRACT
case 28: //G28 Home all Axis one at a time
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(true);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0.0;
2013-06-10 06:10:00 +02:00
#ifdef DELTA
// A delta can only safely home all axis at the same time
// all axis have to home at the same time
// Move all carriages up together until the first endstop is hit.
current_position[X_AXIS] = 0;
current_position[Y_AXIS] = 0;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
2013-06-10 06:10:00 +02:00
destination[X_AXIS] = 3 * Z_MAX_LENGTH;
destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
2013-06-10 06:10:00 +02:00
// take care of back off and rehome now we are all at the top
HOMEAXIS(X);
HOMEAXIS(Y);
HOMEAXIS(Z);
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
2013-06-10 06:10:00 +02:00
#else // NOT DELTA
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
HOMEAXIS(Z);
}
#endif
#ifdef QUICK_HOME
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
{
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
#ifndef DUAL_X_CARRIAGE
int x_axis_home_dir = home_dir(X_AXIS);
#else
int x_axis_home_dir = x_home_dir(active_extruder);
extruder_duplication_enabled = false;
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS]<feedrate)
feedrate = homing_feedrate[Y_AXIS];
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
} else {
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
axis_is_at_home(X_AXIS);
axis_is_at_home(Y_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
#ifndef SCARA
current_position[Z_AXIS] = destination[Z_AXIS];
#endif
}
#endif
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
{
#ifdef DUAL_X_CARRIAGE
int tmp_extruder = active_extruder;
extruder_duplication_enabled = false;
active_extruder = !active_extruder;
HOMEAXIS(X);
inactive_extruder_x_pos = current_position[X_AXIS];
active_extruder = tmp_extruder;
HOMEAXIS(X);
// reset state used by the different modes
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0;
active_extruder_parked = true;
#else
HOMEAXIS(X);
#endif
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
HOMEAXIS(Y);
}
if(code_seen(axis_codes[X_AXIS]))
{
if(code_value_long() != 0) {
#ifdef SCARA
current_position[X_AXIS]=code_value();
#else
current_position[X_AXIS]=code_value()+add_homeing[0];
#endif
}
}
if(code_seen(axis_codes[Y_AXIS])) {
if(code_value_long() != 0) {
#ifdef SCARA
current_position[Y_AXIS]=code_value();
#else
current_position[Y_AXIS]=code_value()+add_homeing[1];
#endif
}
}
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
#endif
HOMEAXIS(Z);
}
#else // Z Safe mode activated.
if(home_all_axis) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
HOMEAXIS(Z);
}
// Let's see if X and Y are homed and probe is inside bed area.
if(code_seen(axis_codes[Z_AXIS])) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
HOMEAXIS(Z);
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
} else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
}
}
#endif
#endif
if(code_seen(axis_codes[Z_AXIS])) {
if(code_value_long() != 0) {
current_position[Z_AXIS]=code_value()+add_homeing[2];
}
}
#ifdef ENABLE_AUTO_BED_LEVELING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
}
#endif
2013-06-10 06:10:00 +02:00
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif // else DELTA
#ifdef SCARA
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#endif SCARA
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
endstops_hit_on_purpose();
break;
#ifdef ENABLE_AUTO_BED_LEVELING
2014-02-19 23:04:37 +01:00
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
#endif
// Prevent user from running a G29 without first homing in X and Y
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
{
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
}
#ifdef Z_PROBE_SLED
dock_sled(false);
#endif // Z_PROBE_SLED
st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position durring G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
2014-02-19 23:04:37 +01:00
// probe at the points of a lattice grid
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
// "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
int probePointCounter = 0;
bool zig = true;
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
{
int xProbe, xInc;
if (zig)
{
xProbe = LEFT_PROBE_BED_POSITION;
//xEnd = RIGHT_PROBE_BED_POSITION;
xInc = xGridSpacing;
zig = false;
} else // zag
{
xProbe = RIGHT_PROBE_BED_POSITION;
//xEnd = LEFT_PROBE_BED_POSITION;
xInc = -xGridSpacing;
zig = true;
}
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
{
float z_before;
if (probePointCounter == 0)
{
// raise before probing
z_before = Z_RAISE_BEFORE_PROBING;
} else
{
// raise extruder
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
}
float measured_z = probe_pt(xProbe, yProbe, z_before);
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
probePointCounter++;
xProbe += xInc;
}
}
clean_up_after_endstop_move();
// solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients);
#else // AUTO_BED_LEVELING_GRID not defined
2014-02-19 23:04:37 +01:00
// Probe at 3 arbitrary points
2014-02-16 03:06:51 +01:00
// probe 1
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
2014-02-16 03:06:51 +01:00
// probe 2
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
2014-02-16 03:06:51 +01:00
// probe 3
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // AUTO_BED_LEVELING_GRID
st_synchronize();
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
#endif // Z_PROBE_SLED
}
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
{
engage_z_probe(); // Engage Z Servo endstop if available
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
run_z_probe();
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM("\n");
clean_up_after_endstop_move();
retract_z_probe(); // Retract Z Servo endstop if available
}
break;
#else
case 31: // dock the sled
dock_sled(true);
break;
case 32: // undock the sled
dock_sled(false);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) {
if(i == E_AXIS) {
current_position[i] = code_value();
plan_set_e_position(current_position[E_AXIS]);
}
else {
#ifdef SCARA
if (i == X_AXIS || i == Y_AXIS) {
current_position[i] = code_value();
}
else {
current_position[i] = code_value()+add_homeing[i];
}
#else
current_position[i] = code_value()+add_homeing[i];
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
}
}
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
{
LCD_MESSAGEPGM(MSG_USERWAIT);
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
st_synchronize();
previous_millis_cmd = millis();
if (codenum > 0){
codenum += millis(); // keep track of when we started waiting
while(millis() < codenum && !lcd_clicked()){
manage_heater();
manage_inactivity();
lcd_update();
}
}else{
while(!lcd_clicked()){
manage_heater();
manage_inactivity();
lcd_update();
}
}
LCD_MESSAGEPGM(MSG_RESUMING);
}
break;
#endif
case 17:
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_x();
enable_y();
enable_z();
enable_e0();
enable_e1();
enable_e2();
break;
#ifdef SDSUPPORT
case 20: // M20 - list SD card
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
break;
case 21: // M21 - init SD card
card.initsd();
break;
case 22: //M22 - release SD card
card.release();
break;
case 23: //M23 - Select file
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos)='\0';
card.openFile(strchr_pointer + 4,true);
break;
case 24: //M24 - Start SD print
card.startFileprint();
starttime=millis();
break;
case 25: //M25 - Pause SD print
card.pauseSDPrint();
break;
case 26: //M26 - Set SD index
if(card.cardOK && code_seen('S')) {
card.setIndex(code_value_long());
}
break;
case 27: //M27 - Get SD status
card.getStatus();
break;
case 28: //M28 - Start SD write
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openFile(strchr_pointer+4,false);
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//card,saving = false;
break;
case 30: //M30 <filename> Delete File
if (card.cardOK){
card.closefile();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
break;
case 32: //M32 - Select file and start SD print
{
if(card.sdprinting) {
st_synchronize();
}
starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
if(namestartpos==NULL)
{
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
}
else
namestartpos++; //to skip the '!'
if(starpos!=NULL)
*(starpos)='\0';
bool call_procedure=(code_seen('P'));
if(strchr_pointer>namestartpos)
call_procedure=false; //false alert, 'P' found within filename
if( card.cardOK )
{
card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S'))
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
card.setIndex(code_value_long());
card.startFileprint();
if(!call_procedure)
starttime=millis(); //procedure calls count as normal print time.
}
} break;
case 928: //M928 - Start SD write
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer+5);
break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
{
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
autotempShutdown();
}
break;
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
int pin_number = LED_PIN;
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
pin_number = code_value();
Fixed error found by the free coverity tool (https://scan.coverity.com/) =================================================== Hi, Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan. Defect(s) Reported-by: Coverity Scan Showing 15 of 15 defect(s) ** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() ** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() ** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() ** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() ** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() ** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() ** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() ** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() ** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() ** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() ** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() ** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() ** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ________________________________________________________________________________________________________ *** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() 2148 } 2149 #endif 2150 } 2151 } 2152 break; 2153 case 85: // M85 CID 59629: Unchecked return value (CHECKED_RETURN) Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times). 2154 code_seen('S'); 2155 max_inactive_time = code_value() * 1000; 2156 break; 2157 case 92: // M92 2158 for(int8_t i=0; i < NUM_AXIS; i++) 2159 { ________________________________________________________________________________________________________ *** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() 313 else 314 { 315 // two choices for the 16 bit timers: ck/1 or ck/64 316 ocr = F_CPU / frequency / 2 - 1; 317 318 prescalarbits = 0b001; CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) "ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if. 319 if (ocr > 0xffff) 320 { 321 ocr = F_CPU / frequency / 2 / 64 - 1; 322 prescalarbits = 0b011; 323 } 324 ________________________________________________________________________________________________________ *** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() 1181 case 2: // G2 - CW ARC 1182 if(Stopped == false) { 1183 get_arc_coordinates(); 1184 prepare_arc_move(true); 1185 return; 1186 } CID 59631: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } ________________________________________________________________________________________________________ *** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } CID 59632: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1193 case 4: // G4 dwell 1194 LCD_MESSAGEPGM(MSG_DWELL); 1195 codenum = 0; 1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait 1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait 1198 ________________________________________________________________________________________________________ *** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 913 target_temperature[1]=0; CID 59633: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1". 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif 919 ________________________________________________________________________________________________________ *** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() 907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 CID 59634: Out-of-bounds write (OVERRUN) Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1". 913 target_temperature[1]=0; 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif ________________________________________________________________________________________________________ *** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 CID 59635: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1). 626 for (i=1; i<heater_ttbllen_map[e]; i++) 627 { 628 if (PGM_RD_W((*tt)[i][0]) > raw) 629 { 630 celsius = PGM_RD_W((*tt)[i-1][1]) + 631 (raw - PGM_RD_W((*tt)[i-1][0])) * ________________________________________________________________________________________________________ *** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() 614 if (e == 0) 615 { 616 return 0.25 * raw; 617 } 618 #endif 619 CID 59636: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1). 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 ________________________________________________________________________________________________________ *** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() 196 { 197 soft_pwm_bed = (MAX_BED_POWER)/2; 198 bias = d = (MAX_BED_POWER)/2; 199 } 200 else 201 { CID 59637: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1). 202 soft_pwm[extruder] = (PID_MAX)/2; 203 bias = d = (PID_MAX)/2; 204 } 205 206 207 ________________________________________________________________________________________________________ *** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() 208 209 for(;;) { 210 211 if(temp_meas_ready == true) { // temp sample ready 212 updateTemperaturesFromRawValues(); 213 CID 59638: Out-of-bounds read (OVERRUN) Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1). 214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; 215 216 max=max(max,input); 217 min=min(min,input); 218 if(heating == true && input > temp) { 219 if(millis() - t2 > 5000) { ________________________________________________________________________________________________________ *** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() 2272 tmp_extruder = code_value(); 2273 if(tmp_extruder >= EXTRUDERS) { 2274 SERIAL_ECHO_START; 2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); 2276 } 2277 } CID 59639: Out-of-bounds write (OVERRUN) Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1). 2278 volumetric_multiplier[tmp_extruder] = 1 / area; 2279 } 2280 break; 2281 case 201: // M201 2282 for(int8_t i=0; i < NUM_AXIS; i++) 2283 { ________________________________________________________________________________________________________ *** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() 1796 int pin_status = code_value(); 1797 int pin_number = LED_PIN; 1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255) 1799 pin_number = code_value(); 1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) 1801 { CID 59640: Out-of-bounds read (OVERRUN) Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55). 1802 if (sensitive_pins[i] == pin_number) 1803 { 1804 pin_number = -1; 1805 break; 1806 } 1807 } ________________________________________________________________________________________________________ *** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59641: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 51 } 52 53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, 54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 56 { ________________________________________________________________________________________________________ *** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 39 } 40 41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 43 { 44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59642: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); ________________________________________________________________________________________________________ *** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 26 27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 30 { 31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); CID 59643: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 32 } 33 34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 37 { ________________________________________________________________________________________________________ To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
2014-05-14 21:59:48 +02:00
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
#if defined(FAN_PIN) && FAN_PIN > -1
if (pin_number == FAN_PIN)
fanSpeed = pin_status;
#endif
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
break;
// M48 Z-Probe repeatability measurement function.
//
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
//
// This function assumes the bed has been homed. Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified. You can use upper or lower case
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef Z_PROBE_REPEATABILITY_TEST
case 48: // M48 Z-Probe repeatability
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
#endif
double sum=0.0;
double mean=0.0;
double sigma=0.0;
double sample_set[50];
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
double X_current, Y_current, Z_current;
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value();
if (verbose_level<0 || verbose_level>4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
goto Sigma_Exit;
}
}
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
}
if (code_seen('n')) {
n_samples = code_value();
if (n_samples<4 || n_samples>50 ) {
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
goto Sigma_Exit;
}
}
X_current = X_probe_location = st_get_position_mm(X_AXIS);
Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
ext_position = st_get_position_mm(E_AXIS);
if (code_seen('E') || code_seen('e') )
engage_probe_for_each_reading++;
if (code_seen('X') || code_seen('x') ) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('Y') || code_seen('y') ) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
goto Sigma_Exit;
}
}
if (code_seen('L') || code_seen('l') ) {
n_legs = code_value();
if ( n_legs==1 )
n_legs = 2;
if ( n_legs<0 || n_legs>15 ) {
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
goto Sigma_Exit;
}
}
//
// Do all the preliminary setup work. First raise the probe.
//
st_synchronize();
plan_bed_level_matrix.set_to_identity();
plan_buffer_line( X_current, Y_current, Z_start_location,
ext_position,
homing_feedrate[Z_AXIS]/60,
active_extruder);
st_synchronize();
//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe.
//
if (verbose_level > 2)
SERIAL_PROTOCOL("Positioning probe for the test.\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
//
// OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//
engage_z_probe();
setup_for_endstop_move();
run_z_probe();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
ext_position,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
if (engage_probe_for_each_reading)
retract_z_probe();
for( n=0; n<n_samples; n++) {
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
if ( n_legs) {
double radius=0.0, theta=0.0, x_sweep, y_sweep;
int rotational_direction, l;
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");
for( l=0; l<n_legs-1; l++) {
if (rotational_direction==1)
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
else
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
if ( radius<0.0 )
radius = -radius;
X_current = X_probe_location + cos(theta) * radius;
Y_current = Y_probe_location + sin(theta) * radius;
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
X_current = X_MIN_POS;
if ( X_current>X_MAX_POS)
X_current = X_MAX_POS;
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
Y_current = Y_MIN_POS;
if ( Y_current>Y_MAX_POS)
Y_current = Y_MAX_POS;
if (verbose_level>3 ) {
SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_PROTOCOLLNPGM("");
}
do_blocking_move_to( X_current, Y_current, Z_current );
}
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
}
if (engage_probe_for_each_reading) {
engage_z_probe();
delay(1000);
}
setup_for_endstop_move();
run_z_probe();
sample_set[n] = current_position[Z_AXIS];
//
// Get the current mean for the data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + sample_set[j];
}
mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum=0.0;
for( j=0; j<=n; j++) {
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
}
sigma = sqrt( sum / (double (n+1)) );
if (verbose_level > 1) {
SERIAL_PROTOCOL(n+1);
SERIAL_PROTOCOL(" of ");
SERIAL_PROTOCOL(n_samples);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
}
if (verbose_level > 2) {
SERIAL_PROTOCOL(" mean: ");
SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOL(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6);
}
if (verbose_level > 0)
SERIAL_PROTOCOLPGM("\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
st_synchronize();
if (engage_probe_for_each_reading) {
retract_z_probe();
delay(1000);
}
}
retract_z_probe();
delay(1000);
clean_up_after_endstop_move();
// enable_endstops(true);
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM("\n");
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");
Sigma_Exit:
break;
}
#endif // Z_PROBE_REPEATABILITY_TEST
#endif // ENABLE_AUTO_BED_LEVELING
case 104: // M104
if(setTargetedHotend(104)){
break;
}
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
setWatch();
break;
2014-03-15 00:19:43 +01:00
case 112: // M112 -Emergency Stop
kill();
break;
case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value());
break;
case 105 : // M105
if(setTargetedHotend(105)){
break;
}
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(),1);
#endif //TEMP_BED_PIN
2013-05-29 18:06:12 +02:00
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
2013-05-29 18:06:12 +02:00
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
2013-05-29 18:06:12 +02:00
}
2013-07-23 23:34:42 +02:00
#else
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
SERIAL_PROTOCOLPGM("W");
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#ifdef SHOW_TEMP_ADC_VALUES
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLPGM(":");
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
}
#endif
SERIAL_PROTOCOLLN("");
return;
break;
case 109:
{// M109 - Wait for extruder heater to reach target.
if(setTargetedHotend(109)){
break;
}
LCD_MESSAGEPGM(MSG_HEATING);
#ifdef AUTOTEMP
autotemp_enabled=false;
#endif
if (code_seen('S')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = false;
}
#ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value();
if (code_seen('B')) autotemp_max=code_value();
if (code_seen('F'))
{
autotemp_factor=code_value();
autotemp_enabled=true;
}
#endif
setWatch();
codenum = millis();
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
cancel_heatup = false;
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((!cancel_heatup)&&((residencyStart == -1) ||
2014-06-12 18:43:16 +02:00
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
#else
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000UL )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)tmp_extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1)
{
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
SERIAL_PROTOCOLLN( codenum );
}
else
{
SERIAL_PROTOCOLLN( "?" );
}
#else
SERIAL_PROTOCOLLN("");
#endif
codenum = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
{
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
starttime=millis();
previous_millis_cmd = millis();
}
break;
case 190: // M190 - Wait for bed heater to reach target.
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
LCD_MESSAGEPGM(MSG_BED_HEATING);
if (code_seen('S')) {
setTargetBed(code_value());
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetBed(code_value());
CooldownNoWait = false;
}
codenum = millis();
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
{
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLLN("");
codenum = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
}
LCD_MESSAGEPGM(MSG_BED_DONE);
previous_millis_cmd = millis();
#endif
break;
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255);
}
else {
fanSpeed=255;
}
break;
case 107: //M107 Fan Off
fanSpeed = 0;
break;
#endif //FAN_PIN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
case 126: //M126 valve open
if (code_seen('S')){
ValvePressure=constrain(code_value(),0,255);
}
else {
ValvePressure=255;
}
break;
case 127: //M127 valve closed
ValvePressure = 0;
break;
#endif //HEATER_1_PIN
// PWM for HEATER_2_PIN
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
case 128: //M128 valve open
if (code_seen('S')){
EtoPPressure=constrain(code_value(),0,255);
}
else {
EtoPPressure=255;
}
break;
case 129: //M129 valve closed
EtoPPressure = 0;
break;
#endif //HEATER_2_PIN
#endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, PS_ON_AWAKE);
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#endif
#ifdef ULTIPANEL
powersupply = true;
LCD_MESSAGEPGM(WELCOME_MSG);
lcd_update();
#endif
break;
#endif
case 81: // M81 - Turn off Power Supply
disable_heater();
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
fanSpeed = 0;
delay(1000); // Wait a little before to switch off
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize();
suicide();
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#ifdef ULTIPANEL
powersupply = false;
LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
lcd_update();
#endif
break;
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18: //compatibility
case 84: // M84
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else
{
2014-02-19 09:10:17 +01:00
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if(all_axis)
{
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
finishAndDisableSteppers();
}
else
{
st_synchronize();
if(code_seen('X')) disable_x();
if(code_seen('Y')) disable_y();
if(code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if(code_seen('E')) {
disable_e0();
disable_e1();
disable_e2();
}
#endif
}
}
break;
case 85: // M85
Fixed error found by the free coverity tool (https://scan.coverity.com/) =================================================== Hi, Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan. Defect(s) Reported-by: Coverity Scan Showing 15 of 15 defect(s) ** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() ** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() ** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() ** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() ** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() ** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() ** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() ** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() ** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() ** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() ** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() ** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() ** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ________________________________________________________________________________________________________ *** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() 2148 } 2149 #endif 2150 } 2151 } 2152 break; 2153 case 85: // M85 CID 59629: Unchecked return value (CHECKED_RETURN) Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times). 2154 code_seen('S'); 2155 max_inactive_time = code_value() * 1000; 2156 break; 2157 case 92: // M92 2158 for(int8_t i=0; i < NUM_AXIS; i++) 2159 { ________________________________________________________________________________________________________ *** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() 313 else 314 { 315 // two choices for the 16 bit timers: ck/1 or ck/64 316 ocr = F_CPU / frequency / 2 - 1; 317 318 prescalarbits = 0b001; CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) "ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if. 319 if (ocr > 0xffff) 320 { 321 ocr = F_CPU / frequency / 2 / 64 - 1; 322 prescalarbits = 0b011; 323 } 324 ________________________________________________________________________________________________________ *** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() 1181 case 2: // G2 - CW ARC 1182 if(Stopped == false) { 1183 get_arc_coordinates(); 1184 prepare_arc_move(true); 1185 return; 1186 } CID 59631: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } ________________________________________________________________________________________________________ *** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } CID 59632: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1193 case 4: // G4 dwell 1194 LCD_MESSAGEPGM(MSG_DWELL); 1195 codenum = 0; 1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait 1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait 1198 ________________________________________________________________________________________________________ *** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 913 target_temperature[1]=0; CID 59633: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1". 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif 919 ________________________________________________________________________________________________________ *** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() 907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 CID 59634: Out-of-bounds write (OVERRUN) Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1". 913 target_temperature[1]=0; 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif ________________________________________________________________________________________________________ *** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 CID 59635: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1). 626 for (i=1; i<heater_ttbllen_map[e]; i++) 627 { 628 if (PGM_RD_W((*tt)[i][0]) > raw) 629 { 630 celsius = PGM_RD_W((*tt)[i-1][1]) + 631 (raw - PGM_RD_W((*tt)[i-1][0])) * ________________________________________________________________________________________________________ *** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() 614 if (e == 0) 615 { 616 return 0.25 * raw; 617 } 618 #endif 619 CID 59636: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1). 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 ________________________________________________________________________________________________________ *** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() 196 { 197 soft_pwm_bed = (MAX_BED_POWER)/2; 198 bias = d = (MAX_BED_POWER)/2; 199 } 200 else 201 { CID 59637: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1). 202 soft_pwm[extruder] = (PID_MAX)/2; 203 bias = d = (PID_MAX)/2; 204 } 205 206 207 ________________________________________________________________________________________________________ *** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() 208 209 for(;;) { 210 211 if(temp_meas_ready == true) { // temp sample ready 212 updateTemperaturesFromRawValues(); 213 CID 59638: Out-of-bounds read (OVERRUN) Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1). 214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; 215 216 max=max(max,input); 217 min=min(min,input); 218 if(heating == true && input > temp) { 219 if(millis() - t2 > 5000) { ________________________________________________________________________________________________________ *** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() 2272 tmp_extruder = code_value(); 2273 if(tmp_extruder >= EXTRUDERS) { 2274 SERIAL_ECHO_START; 2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); 2276 } 2277 } CID 59639: Out-of-bounds write (OVERRUN) Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1). 2278 volumetric_multiplier[tmp_extruder] = 1 / area; 2279 } 2280 break; 2281 case 201: // M201 2282 for(int8_t i=0; i < NUM_AXIS; i++) 2283 { ________________________________________________________________________________________________________ *** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() 1796 int pin_status = code_value(); 1797 int pin_number = LED_PIN; 1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255) 1799 pin_number = code_value(); 1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) 1801 { CID 59640: Out-of-bounds read (OVERRUN) Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55). 1802 if (sensitive_pins[i] == pin_number) 1803 { 1804 pin_number = -1; 1805 break; 1806 } 1807 } ________________________________________________________________________________________________________ *** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59641: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 51 } 52 53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, 54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 56 { ________________________________________________________________________________________________________ *** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 39 } 40 41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 43 { 44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59642: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); ________________________________________________________________________________________________________ *** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 26 27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 30 { 31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); CID 59643: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 32 } 33 34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 37 { ________________________________________________________________________________________________________ To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
2014-05-14 21:59:48 +02:00
if(code_seen('S')) {
max_inactive_time = code_value() * 1000;
}
break;
case 92: // M92
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
if(i == 3) { // E
float value = code_value();
if(value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
max_e_jerk *= factor;
max_feedrate[i] *= factor;
axis_steps_per_sqr_second[i] *= factor;
}
axis_steps_per_unit[i] = value;
}
else {
axis_steps_per_unit[i] = code_value();
}
}
}
break;
case 115: // M115
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
break;
case 117: // M117 display message
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos!=NULL)
*(starpos)='\0';
lcd_setstatus(strchr_pointer + 5);
break;
case 114: // M114
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
2014-02-17 06:01:19 +01:00
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
2014-02-17 06:01:19 +01:00
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
2014-02-17 06:01:19 +01:00
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
2014-02-17 06:01:19 +01:00
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
2014-02-17 06:01:19 +01:00
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLLN("");
#ifdef SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL(delta[Y_AXIS]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLLN("");
#endif
break;
case 120: // M120
enable_endstops(false) ;
break;
case 121: // M121
enable_endstops(true) ;
break;
case 119: // M119
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
2013-09-10 11:18:29 +02:00
case 150: // M150
{
byte red;
byte grn;
byte blu;
2013-09-10 11:18:29 +02:00
if(code_seen('R')) red = code_value();
if(code_seen('U')) grn = code_value();
if(code_seen('B')) blu = code_value();
SendColors(red,grn,blu);
2013-09-10 11:18:29 +02:00
}
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
2014-01-31 09:54:19 +01:00
{
float area = .0;
float radius = .0;
if(code_seen('D')) {
radius = (float)code_value() * .5;
2014-01-31 09:54:19 +01:00
if(radius == 0) {
area = 1;
} else {
area = M_PI * pow(radius, 2);
}
} else {
//reserved for setting filament diameter via UFID or filament measuring device
break;
}
tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
Fixed error found by the free coverity tool (https://scan.coverity.com/) =================================================== Hi, Please find the latest report on new defect(s) introduced to ErikZalm/Marlin found with Coverity Scan. Defect(s) Reported-by: Coverity Scan Showing 15 of 15 defect(s) ** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() ** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() ** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() ** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() ** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() ** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() ** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() ** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() ** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() ** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() ** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() ** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() ** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() ________________________________________________________________________________________________________ *** CID 59629: Unchecked return value (CHECKED_RETURN) /Marlin_main.cpp: 2154 in process_commands()() 2148 } 2149 #endif 2150 } 2151 } 2152 break; 2153 case 85: // M85 CID 59629: Unchecked return value (CHECKED_RETURN) Calling "code_seen" without checking return value (as is done elsewhere 66 out of 67 times). 2154 code_seen('S'); 2155 max_inactive_time = code_value() * 1000; 2156 break; 2157 case 92: // M92 2158 for(int8_t i=0; i < NUM_AXIS; i++) 2159 { ________________________________________________________________________________________________________ *** CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) /Applications/Arduino.app/Contents/Resources/Java/hardware/arduino/cores/arduino/Tone.cpp: 319 in tone(unsigned char, unsigned int, unsigned long)() 313 else 314 { 315 // two choices for the 16 bit timers: ck/1 or ck/64 316 ocr = F_CPU / frequency / 2 - 1; 317 318 prescalarbits = 0b001; CID 59630: Operands don't affect result (CONSTANT_EXPRESSION_RESULT) "ocr > 65535U" is always false regardless of the values of its operands. This occurs as the logical operand of if. 319 if (ocr > 0xffff) 320 { 321 ocr = F_CPU / frequency / 2 / 64 - 1; 322 prescalarbits = 0b011; 323 } 324 ________________________________________________________________________________________________________ *** CID 59631: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1187 in process_commands()() 1181 case 2: // G2 - CW ARC 1182 if(Stopped == false) { 1183 get_arc_coordinates(); 1184 prepare_arc_move(true); 1185 return; 1186 } CID 59631: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } ________________________________________________________________________________________________________ *** CID 59632: Missing break in switch (MISSING_BREAK) /Marlin_main.cpp: 1193 in process_commands()() 1187 case 3: // G3 - CCW ARC 1188 if(Stopped == false) { 1189 get_arc_coordinates(); 1190 prepare_arc_move(false); 1191 return; 1192 } CID 59632: Missing break in switch (MISSING_BREAK) The above case falls through to this one. 1193 case 4: // G4 dwell 1194 LCD_MESSAGEPGM(MSG_DWELL); 1195 codenum = 0; 1196 if(code_seen('P')) codenum = code_value(); // milliseconds to wait 1197 if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait 1198 ________________________________________________________________________________________________________ *** CID 59633: Out-of-bounds write (OVERRUN) /temperature.cpp: 914 in disable_heater()() 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 913 target_temperature[1]=0; CID 59633: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "1". 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif 919 ________________________________________________________________________________________________________ *** CID 59634: Out-of-bounds write (OVERRUN) /temperature.cpp: 913 in disable_heater()() 907 #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 908 WRITE(HEATER_0_PIN,LOW); 909 #endif 910 #endif 911 912 #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 CID 59634: Out-of-bounds write (OVERRUN) Overrunning array "target_temperature" of 1 2-byte elements at element index 1 (byte offset 2) using index "1". 913 target_temperature[1]=0; 914 soft_pwm[1]=0; 915 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 916 WRITE(HEATER_1_PIN,LOW); 917 #endif 918 #endif ________________________________________________________________________________________________________ *** CID 59635: Out-of-bounds read (OVERRUN) /temperature.cpp: 626 in analog2temp(int, unsigned char)() 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 CID 59635: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbllen_map" of 1 bytes at byte offset 1 using index "e" (which evaluates to 1). 626 for (i=1; i<heater_ttbllen_map[e]; i++) 627 { 628 if (PGM_RD_W((*tt)[i][0]) > raw) 629 { 630 celsius = PGM_RD_W((*tt)[i-1][1]) + 631 (raw - PGM_RD_W((*tt)[i-1][0])) * ________________________________________________________________________________________________________ *** CID 59636: Out-of-bounds read (OVERRUN) /temperature.cpp: 620 in analog2temp(int, unsigned char)() 614 if (e == 0) 615 { 616 return 0.25 * raw; 617 } 618 #endif 619 CID 59636: Out-of-bounds read (OVERRUN) Overrunning array "heater_ttbl_map" of 1 2-byte elements at element index 1 (byte offset 2) using index "e" (which evaluates to 1). 620 if(heater_ttbl_map[e] != NULL) 621 { 622 float celsius = 0; 623 uint8_t i; 624 short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]); 625 ________________________________________________________________________________________________________ *** CID 59637: Out-of-bounds write (OVERRUN) /temperature.cpp: 202 in PID_autotune(float, int, int)() 196 { 197 soft_pwm_bed = (MAX_BED_POWER)/2; 198 bias = d = (MAX_BED_POWER)/2; 199 } 200 else 201 { CID 59637: Out-of-bounds write (OVERRUN) Overrunning array "soft_pwm" of 1 bytes at byte offset 1 using index "extruder" (which evaluates to 1). 202 soft_pwm[extruder] = (PID_MAX)/2; 203 bias = d = (PID_MAX)/2; 204 } 205 206 207 ________________________________________________________________________________________________________ *** CID 59638: Out-of-bounds read (OVERRUN) /temperature.cpp: 214 in PID_autotune(float, int, int)() 208 209 for(;;) { 210 211 if(temp_meas_ready == true) { // temp sample ready 212 updateTemperaturesFromRawValues(); 213 CID 59638: Out-of-bounds read (OVERRUN) Overrunning array "current_temperature" of 1 4-byte elements at element index 1 (byte offset 4) using index "extruder" (which evaluates to 1). 214 input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; 215 216 max=max(max,input); 217 min=min(min,input); 218 if(heating == true && input > temp) { 219 if(millis() - t2 > 5000) { ________________________________________________________________________________________________________ *** CID 59639: Out-of-bounds write (OVERRUN) /Marlin_main.cpp: 2278 in process_commands()() 2272 tmp_extruder = code_value(); 2273 if(tmp_extruder >= EXTRUDERS) { 2274 SERIAL_ECHO_START; 2275 SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); 2276 } 2277 } CID 59639: Out-of-bounds write (OVERRUN) Overrunning array "volumetric_multiplier" of 1 4-byte elements at element index 1 (byte offset 4) using index "tmp_extruder" (which evaluates to 1). 2278 volumetric_multiplier[tmp_extruder] = 1 / area; 2279 } 2280 break; 2281 case 201: // M201 2282 for(int8_t i=0; i < NUM_AXIS; i++) 2283 { ________________________________________________________________________________________________________ *** CID 59640: Out-of-bounds read (OVERRUN) /Marlin_main.cpp: 1802 in process_commands()() 1796 int pin_status = code_value(); 1797 int pin_number = LED_PIN; 1798 if (code_seen('P') && pin_status >= 0 && pin_status <= 255) 1799 pin_number = code_value(); 1800 for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++) 1801 { CID 59640: Out-of-bounds read (OVERRUN) Overrunning array "sensitive_pins" of 28 2-byte elements at element index 55 (byte offset 110) using index "i" (which evaluates to 55). 1802 if (sensitive_pins[i] == pin_number) 1803 { 1804 pin_number = -1; 1805 break; 1806 } 1807 } ________________________________________________________________________________________________________ *** CID 59641: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 51 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59641: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 51 } 52 53 void LiquidCrystal::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, 54 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 55 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 56 { ________________________________________________________________________________________________________ *** CID 59642: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 45 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 39 } 40 41 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 42 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 43 { 44 init(1, rs, rw, enable, d0, d1, d2, d3, 0, 0, 0, 0); CID 59642: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 45 } 46 47 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 48 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3) 49 { 50 init(1, rs, 255, enable, d0, d1, d2, d3, 0, 0, 0, 0); ________________________________________________________________________________________________________ *** CID 59643: Uninitialized scalar field (UNINIT_CTOR) /Applications/Arduino.app/Contents/Resources/Java/libraries/LiquidCrystal/LiquidCrystal.cpp: 32 in LiquidCrystal::LiquidCrystal(unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char, unsigned char)() 26 27 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t rw, uint8_t enable, 28 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 29 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 30 { 31 init(0, rs, rw, enable, d0, d1, d2, d3, d4, d5, d6, d7); CID 59643: Uninitialized scalar field (UNINIT_CTOR) Non-static class member "_initialized" is not initialized in this constructor nor in any functions that it calls. 32 } 33 34 LiquidCrystal::LiquidCrystal(uint8_t rs, uint8_t enable, 35 uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, 36 uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) 37 { ________________________________________________________________________________________________________ To view the defects in Coverity Scan visit, http://scan.coverity.com/projects/2224?tab=overview
2014-05-14 21:59:48 +02:00
break;
2014-01-31 09:54:19 +01:00
}
}
volumetric_multiplier[tmp_extruder] = 1 / area;
2014-01-31 09:54:19 +01:00
}
break;
case 201: // M201
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
max_acceleration_units_per_sq_second[i] = code_value();
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value();
if(code_seen('T')) mintravelfeedrate = code_value();
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value() ;
if(code_seen('Z')) max_z_jerk = code_value() ;
if(code_seen('E')) max_e_jerk = code_value() ;
}
break;
case 206: // M206 additional homeing offset
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
}
#ifdef SCARA
if(code_seen('T')) // Theta
{
add_homeing[0] = code_value() ;
}
if(code_seen('P')) // Psi
{
add_homeing[1] = code_value() ;
}
#endif
break;
#ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
if(code_seen('L')) {
delta_diagonal_rod= code_value();
}
if(code_seen('R')) {
delta_radius= code_value();
}
if(code_seen('S')) {
delta_segments_per_second= code_value();
}
recalc_delta_settings(delta_radius, delta_diagonal_rod);
break;
case 666: // M666 set delta endstop adjustemnt
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
}
break;
#endif
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
{
if(code_seen('S'))
{
retract_length = code_value() ;
}
if(code_seen('F'))
{
retract_feedrate = code_value()/60 ;
}
if(code_seen('Z'))
{
retract_zlift = code_value() ;
}
}break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
{
if(code_seen('S'))
{
retract_recover_length = code_value() ;
}
if(code_seen('F'))
{
retract_recover_feedrate = code_value()/60 ;
}
}break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{
if(code_seen('S'))
{
int t= code_value() ;
switch(t)
{
case 0:
{
autoretract_enabled=false;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
case 1:
{
autoretract_enabled=true;
retracted[0]=false;
#if EXTRUDERS > 1
retracted[1]=false;
#endif
#if EXTRUDERS > 2
retracted[2]=false;
#endif
}break;
default:
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHOLNPGM("\"");
}
}
}break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
{
if(setTargetedHotend(218)){
break;
}
if(code_seen('X'))
{
extruder_offset[X_AXIS][tmp_extruder] = code_value();
}
if(code_seen('Y'))
{
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
}
#ifdef DUAL_X_CARRIAGE
if(code_seen('Z'))
{
extruder_offset[Z_AXIS][tmp_extruder] = code_value();
}
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
{
SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
#ifdef DUAL_X_CARRIAGE
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
#endif
}
SERIAL_ECHOLN("");
}break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
}
}
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
{
if(code_seen('S'))
{
int tmp_code = code_value();
if (code_seen('T'))
{
if(setTargetedHotend(221)){
break;
}
extruder_multiply[tmp_extruder] = tmp_code;
}
else
{
extrudemultiply = tmp_code ;
}
}
}
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{
if(code_seen('P')){
int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted
if(code_seen('S')) pin_state = code_value(); // required pin state
if(pin_state >= -1 && pin_state <= 1){
2014-05-15 22:09:50 +02:00
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
st_synchronize();
pinMode(pin_number, INPUT);
int target;
switch(pin_state){
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while(digitalRead(pin_number) != target){
manage_heater();
manage_inactivity();
lcd_update();
}
}
}
}
}
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = -1;
int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach();
#endif
}
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servos[servo_index].read());
SERIAL_PROTOCOLLN("");
}
}
break;
#endif // NUM_SERVOS > 0
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
2013-03-25 05:35:05 +01:00
case 300: // M300
{
int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0)
{
#if BEEPER > 0
tone(BEEPER, beepS);
delay(beepP);
noTone(BEEPER);
#elif defined(ULTRALCD)
lcd_buzz(beepS, beepP);
#elif defined(LCD_USE_I2C_BUZZER)
lcd_buzz(beepP, beepS);
#endif
}
else
{
delay(beepP);
}
2013-03-25 05:35:05 +01:00
}
break;
#endif // M300
#ifdef PIDTEMP
case 301: // M301
{
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = scalePID_i(code_value());
if(code_seen('D')) Kd = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE
if(code_seen('C')) Kc = code_value();
#endif
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(Kp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(Ki));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(Kd));
#ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(Kc);
#endif
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
{
if(code_seen('P')) bedKp = code_value();
if(code_seen('I')) bedKi = scalePID_i(code_value());
if(code_seen('D')) bedKd = scalePID_d(code_value());
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(bedKp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(bedKi));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(bedKd));
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{
#ifdef CHDK
SET_OUTPUT(CHDK);
WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#else
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
const uint8_t NUM_PULSES=16;
const float PULSE_LENGTH=0.01524;
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
delay(7.33);
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif
#endif //chdk end if
}
break;
#ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
{
if (code_seen('C')) {
lcd_setcontrast( ((int)code_value())&63 );
}
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_PROTOCOLLN("");
}
break;
#endif
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
{
float temp = .0;
if (code_seen('S')) temp=code_value();
set_extrude_min_temp(temp);
}
break;
#endif
case 303: // M303 PID autotune
{
float temp = 150.0;
int e=0;
int c=5;
if (code_seen('E')) e=code_value();
if (e<0)
temp=70;
if (code_seen('S')) temp=code_value();
if (code_seen('C')) c=code_value();
PID_autotune(temp, e, c);
}
break;
#ifdef SCARA
case 360: // M360 SCARA Theta pos1
SERIAL_ECHOLN(" Cal: Theta 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 0;
delta[1] = 120;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 361: // SCARA Theta pos2
SERIAL_ECHOLN(" Cal: Theta 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 90;
delta[1] = 130;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 362: // SCARA Psi pos1
SERIAL_ECHOLN(" Cal: Psi 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 60;
delta[1] = 180;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 363: // SCARA Psi pos2
SERIAL_ECHOLN(" Cal: Psi 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 50;
delta[1] = 90;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 364: // SCARA Psi pos3 (90 deg to Theta)
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 45;
delta[1] = 135;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 365: // M364 Set SCARA scaling for X Y Z
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i]))
{
axis_scaling[i] = code_value();
}
}
break;
#endif
case 400: // M400 finish all moves
{
st_synchronize();
}
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
case 401:
{
engage_z_probe(); // Engage Z Servo endstop if available
}
break;
case 402:
{
retract_z_probe(); // Retract Z Servo endstop if enabled
}
break;
#endif
case 500: // M500 Store settings in EEPROM
{
Config_StoreSettings();
}
break;
case 501: // M501 Read settings from EEPROM
{
Config_RetrieveSettings();
}
break;
case 502: // M502 Revert to default settings
{
Config_ResetDefault();
}
break;
case 503: // M503 print settings currently in memory
{
Config_PrintSettings();
}
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
{
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
}
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
{
float value;
if (code_seen('Z'))
{
value = code_value();
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
{
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START;
2014-04-07 02:43:46 +02:00
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
SERIAL_PROTOCOLLN("");
}
else
{
SERIAL_ECHO_START;
2014-04-07 02:43:46 +02:00
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_ECHOPGM(MSG_Z_MIN);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
2014-04-07 02:43:46 +02:00
SERIAL_ECHOPGM(MSG_Z_MAX);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
SERIAL_PROTOCOLLN("");
}
}
else
{
SERIAL_ECHO_START;
2014-04-07 02:43:46 +02:00
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
SERIAL_ECHO(-zprobe_zoffset);
SERIAL_PROTOCOLLN("");
}
break;
}
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
{
float target[4];
float lastpos[4];
target[X_AXIS]=current_position[X_AXIS];
target[Y_AXIS]=current_position[Y_AXIS];
target[Z_AXIS]=current_position[Z_AXIS];
target[E_AXIS]=current_position[E_AXIS];
lastpos[X_AXIS]=current_position[X_AXIS];
lastpos[Y_AXIS]=current_position[Y_AXIS];
lastpos[Z_AXIS]=current_position[Z_AXIS];
lastpos[E_AXIS]=current_position[E_AXIS];
//retract by E
if(code_seen('E'))
{
target[E_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_FIRSTRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
//lift Z
if(code_seen('Z'))
{
target[Z_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_ZADD
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
//move xy
if(code_seen('X'))
{
target[X_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_XPOS
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
#endif
}
if(code_seen('Y'))
{
target[Y_AXIS]= code_value();
}
else
{
#ifdef FILAMENTCHANGE_YPOS
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
if(code_seen('L'))
{
target[E_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
#endif
}
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt=0;
while(!lcd_clicked()){
cnt++;
manage_heater();
manage_inactivity();
lcd_update();
if(cnt==0)
{
#if BEEPER > 0
SET_OUTPUT(BEEPER);
WRITE(BEEPER,HIGH);
delay(3);
WRITE(BEEPER,LOW);
delay(3);
#else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6,100);
#else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
#endif
#endif
}
}
//return to normal
if(code_seen('L'))
{
target[E_AXIS]+= -code_value();
}
else
{
#ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
#endif
}
current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
plan_set_e_position(current_position[E_AXIS]);
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
}
break;
#endif //FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
case 605: // Set dual x-carriage movement mode:
// M605 S0: Full control mode. The slicer has full control over x-carriage movement
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
// millimeters x-offset and an optional differential hotend temperature of
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
// the first with a spacing of 100mm in the x direction and 2 degrees hotter.
//
// Note: the X axis should be homed after changing dual x-carriage mode.
{
st_synchronize();
if (code_seen('S'))
dual_x_carriage_mode = code_value();
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{
if (code_seen('X'))
duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
if (code_seen('R'))
duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
SERIAL_ECHO(",");
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
SERIAL_ECHO(" ");
SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_ECHO(",");
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
}
else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
{
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
break;
#endif //DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
if(code_seen('B')) digipot_current(4,code_value());
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
if(code_seen('X')) digipot_current(0, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_Z_PIN
if(code_seen('Z')) digipot_current(1, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_E_PIN
if(code_seen('E')) digipot_current(2, code_value());
#endif
#ifdef DIGIPOT_I2C
// this one uses actual amps in floating point
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
#endif
}
break;
case 908: // M908 Control digital trimpot directly.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
uint8_t channel,current;
if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value();
digitalPotWrite(channel, current);
#endif
}
break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value());
microstep_readings();
#endif
}
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) switch((int)code_value())
{
case 1:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
if(code_seen('B')) microstep_ms(4,code_value(),-1);
break;
case 2:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
if(code_seen('B')) microstep_ms(4,-1,code_value());
break;
}
microstep_readings();
#endif
}
break;
case 999: // M999: Restart after being stopped
Stopped = false;
lcd_reset_alert_level();
gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
break;
}
}
else if(code_seen('T'))
{
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO("T");
SERIAL_ECHO(tmp_extruder);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
else {
boolean make_move = false;
if(code_seen('F')) {
make_move = true;
next_feedrate = code_value();
if(next_feedrate > 0.0) {
feedrate = next_feedrate;
}
}
#if EXTRUDERS > 1
if(tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination));
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
{
// Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
st_synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] +
extruder_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] +
extruder_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below.
axis_is_at_home(X_AXIS);
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
{
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
}
else
{
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
}
#else
// Offset extruder (only by XY)
int i;
for(i = 0; i < 2; i++) {
current_position[i] = current_position[i] -
extruder_offset[i][active_extruder] +
extruder_offset[i][tmp_extruder];
}
// Set the new active extruder and position
active_extruder = tmp_extruder;
#endif //else DUAL_X_CARRIAGE
#ifdef DELTA
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
//sent position to plan_set_position();
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
#else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif
// Move to the old position if 'F' was in the parameters
if(make_move && Stopped == false) {
prepare_move();
}
}
#endif
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
}
}
else
{
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHOLNPGM("\"");
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend()
{
previous_millis_cmd = millis();
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
#endif //SDSUPPORT
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
void get_coordinates()
{
bool seen[4]={false,false,false,false};
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i]))
{
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
seen[i]=true;
}
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void get_arc_coordinates()
{
#ifdef SF_ARC_FIX
bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
get_coordinates();
#ifdef SF_ARC_FIX
relative_mode=relative_mode_backup;
#endif
if(code_seen('I')) {
offset[0] = code_value();
}
else {
offset[0] = 0.0;
}
if(code_seen('J')) {
offset[1] = code_value();
}
else {
offset[1] = 0.0;
}
}
void clamp_to_software_endstops(float target[3])
{
if (min_software_endstops) {
if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
}
if (max_software_endstops) {
if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
}
}
#ifdef DELTA
void recalc_delta_settings(float radius, float diagonal_rod)
{
delta_tower1_x= -SIN_60*radius; // front left tower
delta_tower1_y= -COS_60*radius;
delta_tower2_x= SIN_60*radius; // front right tower
delta_tower2_y= -COS_60*radius;
delta_tower3_x= 0.0; // back middle tower
delta_tower3_y= radius;
delta_diagonal_rod_2= sq(diagonal_rod);
}
void calculate_delta(float cartesian[3])
{
delta[X_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower1_x-cartesian[X_AXIS])
- sq(delta_tower1_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower2_x-cartesian[X_AXIS])
- sq(delta_tower2_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
- sq(delta_tower3_x-cartesian[X_AXIS])
- sq(delta_tower3_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
*/
}
#endif
void prepare_move()
{
clamp_to_software_endstops(destination);
previous_millis_cmd = millis();
#ifdef SCARA //for now same as delta-code
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination);
//SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
//SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
//SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // SCARA
#ifdef DELTA
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // DELTA
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked)
{
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
{
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[X_AXIS], 1);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
st_synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
{
if (current_position[E_AXIS] == destination[E_AXIS])
{
// this is a travel move - skit it but keep track of current position (so that it can later
// be used as start of first non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL)
{
memcpy(current_position, destination, sizeof(current_position));
if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
raised_parked_position[Z_AXIS] = destination[Z_AXIS];
delayed_move_time = millis();
return;
}
}
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
}
#endif //DUAL_X_CARRIAGE
#if ! (defined DELTA || defined SCARA)
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
}
else {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
}
#endif // !(DELTA || SCARA)
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void prepare_arc_move(char isclockwise) {
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
previous_millis_cmd = millis();
}
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
#if defined(FAN_PIN)
#if CONTROLLERFAN_PIN == FAN_PIN
#error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
#endif
#endif
unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
unsigned long lastMotorCheck = 0;
void controllerFan()
{
if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
{
lastMotorCheck = millis();
if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
#if EXTRUDERS > 2
|| !READ(E2_ENABLE_PIN)
#endif
#if EXTRUDER > 1
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|| !READ(X2_ENABLE_PIN)
#endif
|| !READ(E1_ENABLE_PIN)
#endif
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
{
lastMotor = millis(); //... set time to NOW so the fan will turn on
}
if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
{
digitalWrite(CONTROLLERFAN_PIN, 0);
analogWrite(CONTROLLERFAN_PIN, 0);
}
else
{
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
}
}
}
#endif
#ifdef SCARA
void calculate_SCARA_forward_Transform(float f_scara[3])
{
// Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
2014-06-24 18:43:36 +02:00
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}
void calculate_delta(float cartesian[3]){
//reverse kinematics.
// Perform reversed kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float SCARA_pos[2];
2014-06-24 18:43:36 +02:00
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2)
2014-06-24 18:43:36 +02:00
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
#else
2014-06-24 18:43:36 +02:00
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
#endif
2014-06-24 18:43:36 +02:00
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
2014-06-24 18:43:36 +02:00
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
SCARA_K2 = Linkage_2 * SCARA_S2;
2014-06-24 18:43:36 +02:00
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
2014-06-24 18:43:36 +02:00
SERIAL_ECHOLN(" ");*/
}
#endif
#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;
static uint32_t stat_update = 0;
void handle_status_leds(void) {
float max_temp = 0.0;
if(millis() > stat_update) {
stat_update += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
max_temp = max(max_temp, degHotend(cur_extruder));
max_temp = max(max_temp, degTargetHotend(cur_extruder));
}
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
max_temp = max(max_temp, degTargetBed());
max_temp = max(max_temp, degBed());
#endif
if((max_temp > 55.0) && (red_led == false)) {
digitalWrite(STAT_LED_RED, 1);
digitalWrite(STAT_LED_BLUE, 0);
red_led = true;
blue_led = false;
}
if((max_temp < 54.0) && (blue_led == false)) {
digitalWrite(STAT_LED_RED, 0);
digitalWrite(STAT_LED_BLUE, 1);
red_led = false;
blue_led = true;
}
}
}
#endif
void manage_inactivity()
{
2014-03-15 16:56:15 +01:00
if(buflen < (BUFSIZE-1))
get_command();
if( (millis() - previous_millis_cmd) > max_inactive_time )
if(max_inactive_time)
kill();
if(stepper_inactive_time) {
if( (millis() - previous_millis_cmd) > stepper_inactive_time )
{
if(blocks_queued() == false) {
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
}
}
}
#ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
{
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
#if defined(KILL_PIN) && KILL_PIN > -1
if( 0 == READ(KILL_PIN) )
kill();
#endif
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
controllerFan(); //Check if fan should be turned on to cool stepper drivers down
#endif
#ifdef EXTRUDER_RUNOUT_PREVENT
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
{
bool oldstatus=READ(E0_ENABLE_PIN);
enable_e0();
float oldepos=current_position[E_AXIS];
float oldedes=destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
current_position[E_AXIS]=oldepos;
destination[E_AXIS]=oldedes;
plan_set_e_position(oldepos);
2014-01-20 07:06:45 +01:00
previous_millis_cmd=millis();
st_synchronize();
WRITE(E0_ENABLE_PIN,oldstatus);
}
#endif
#if defined(DUAL_X_CARRIAGE)
// handle delayed move timeout
if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
{
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
memcpy(destination,current_position,sizeof(destination));
prepare_move();
}
#endif
#ifdef TEMP_STAT_LEDS
handle_status_leds();
#endif
check_axes_activity();
}
void kill()
{
cli(); // Stop interrupts
disable_heater();
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT);
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
LCD_ALERTMESSAGEPGM(MSG_KILLED);
suicide();
2012-11-12 15:35:28 +01:00
while(1) { /* Intentionally left empty */ } // Wait for reset
}
void Stop()
{
disable_heater();
if(Stopped == false) {
Stopped = true;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
}
}
bool IsStopped() { return Stopped; };
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val)
{
val &= 0x07;
switch(digitalPinToTimer(pin))
{
#if defined(TCCR0A)
case TIMER0A:
case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A)
case TIMER1A:
case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break;
#endif
#if defined(TCCR2)
case TIMER2:
case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val;
break;
#endif
#if defined(TCCR2A)
case TIMER2A:
case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val;
break;
#endif
#if defined(TCCR3A)
case TIMER3A:
case TIMER3B:
case TIMER3C:
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR3B |= val;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
case TIMER4B:
case TIMER4C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR4B |= val;
break;
#endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif //FAST_PWM_FAN
bool setTargetedHotend(int code){
tmp_extruder = active_extruder;
if(code_seen('T')) {
tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
switch(code){
case 104:
SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
break;
case 105:
SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
break;
case 109:
SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
break;
case 218:
SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
break;
case 221:
SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
break;
}
SERIAL_ECHOLN(tmp_extruder);
return true;
}
}
return false;
}