2016-03-25 07:19:46 +01:00
/**
2016-03-24 19:01:20 +01:00
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
2016-03-25 07:19:46 +01:00
/**
2016-04-27 16:15:20 +02:00
* stepper . h - stepper motor driver : executes motion plans of planner . c using the stepper motors
2016-05-08 21:16:26 +02:00
* Derived from Grbl
2016-04-27 16:15:20 +02:00
*
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* Grbl is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* Grbl is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with Grbl . If not , see < http : //www.gnu.org/licenses/>.
*/
2011-11-20 14:50:08 +01:00
2016-04-27 16:15:20 +02:00
# ifndef STEPPER_H
# define STEPPER_H
2011-11-20 14:50:08 +01:00
2018-06-13 01:15:44 +02:00
# include "MarlinConfig.h"
// Disable multiple steps per ISR
//#define DISABLE_MULTI_STEPPING
//
// Estimate the amount of time the Stepper ISR will take to execute
//
# ifndef MINIMUM_STEPPER_PULSE
2018-06-22 16:53:46 +02:00
# define MINIMUM_STEPPER_PULSE 0UL
2018-06-13 01:15:44 +02:00
# endif
# ifndef MAXIMUM_STEPPER_RATE
# if MINIMUM_STEPPER_PULSE
# define MAXIMUM_STEPPER_RATE (1000000UL / (2UL * (MINIMUM_STEPPER_PULSE)))
# else
# define MAXIMUM_STEPPER_RATE 500000UL
# endif
# endif
2018-06-22 16:53:46 +02:00
// The base ISR takes 752 cycles
# define ISR_BASE_CYCLES 752UL
2018-06-13 01:15:44 +02:00
2018-06-22 16:53:46 +02:00
// Linear advance base time is 32 cycles
# if ENABLED(LIN_ADVANCE)
# define ISR_LA_BASE_CYCLES 32UL
2018-06-13 01:15:44 +02:00
# else
2018-06-22 16:53:46 +02:00
# define ISR_LA_BASE_CYCLES 0UL
# endif
2018-06-13 01:15:44 +02:00
2018-06-22 16:53:46 +02:00
// S curve interpolation adds 160 cycles
# if ENABLED(S_CURVE_ACCELERATION)
# define ISR_S_CURVE_CYCLES 160UL
# else
# define ISR_S_CURVE_CYCLES 0UL
# endif
2018-06-13 01:15:44 +02:00
2018-06-22 16:53:46 +02:00
// Stepper Loop base cycles
# define ISR_LOOP_BASE_CYCLES 32UL
2018-06-13 01:15:44 +02:00
2018-06-22 16:53:46 +02:00
// To start the step pulse, in the worst case takes
# define ISR_START_STEPPER_CYCLES 57UL
2018-06-13 01:15:44 +02:00
2018-06-22 16:53:46 +02:00
// And each stepper (start + stop pulse) takes in worst case
# define ISR_STEPPER_CYCLES 88UL
2018-06-13 01:15:44 +02:00
// Add time for each stepper
# ifdef HAS_X_STEP
2018-06-22 16:53:46 +02:00
# define ISR_START_X_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
# define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-13 01:15:44 +02:00
# else
2018-06-22 16:53:46 +02:00
# define ISR_START_X_STEPPER_CYCLES 0UL
# define ISR_X_STEPPER_CYCLES 0UL
2018-06-13 01:15:44 +02:00
# endif
# ifdef HAS_Y_STEP
2018-06-22 16:53:46 +02:00
# define ISR_START_Y_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
# define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-13 01:15:44 +02:00
# else
2018-06-22 16:53:46 +02:00
# define ISR_START_Y_STEPPER_CYCLES 0UL
# define ISR_Y_STEPPER_CYCLES 0UL
2018-06-13 01:15:44 +02:00
# endif
# ifdef HAS_Z_STEP
2018-06-22 16:53:46 +02:00
# define ISR_START_Z_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
# define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-13 01:15:44 +02:00
# else
2018-06-22 16:53:46 +02:00
# define ISR_START_Z_STEPPER_CYCLES 0UL
# define ISR_Z_STEPPER_CYCLES 0UL
2018-06-13 01:15:44 +02:00
# endif
// E is always interpolated, even for mixing extruders
2018-06-22 16:53:46 +02:00
# define ISR_START_E_STEPPER_CYCLES ISR_START_STEPPER_CYCLES
# define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES
2018-06-13 01:15:44 +02:00
// If linear advance is disabled, then the loop also handles them
# if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER)
2018-06-22 16:53:46 +02:00
# define ISR_START_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_START_STEPPER_CYCLES))
2018-06-13 01:15:44 +02:00
# define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
# else
2018-06-22 16:53:46 +02:00
# define ISR_START_MIXING_STEPPER_CYCLES 0UL
2018-06-13 01:15:44 +02:00
# define ISR_MIXING_STEPPER_CYCLES 0UL
# endif
2018-06-22 16:53:46 +02:00
// Calculate the minimum time to start all stepper pulses in the ISR loop
# define MIN_ISR_START_LOOP_CYCLES (ISR_START_X_STEPPER_CYCLES + ISR_START_Y_STEPPER_CYCLES + ISR_START_Z_STEPPER_CYCLES + ISR_START_E_STEPPER_CYCLES + ISR_START_MIXING_STEPPER_CYCLES)
2018-06-13 01:15:44 +02:00
// And the total minimum loop time, not including the base
# define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES)
// Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate
2018-06-22 16:53:46 +02:00
# define _MIN_STEPPER_PULSE_CYCLES(N) MAX((F_CPU) / (MAXIMUM_STEPPER_RATE), ((F_CPU) / 500000UL) * (N))
2018-06-13 01:15:44 +02:00
# if MINIMUM_STEPPER_PULSE
2018-06-22 16:53:46 +02:00
# define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES((MINIMUM_STEPPER_PULSE))
2018-06-13 01:15:44 +02:00
# else
2018-06-22 16:53:46 +02:00
# define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL)
2018-06-13 01:15:44 +02:00
# endif
2018-06-22 16:53:46 +02:00
// Calculate the minimum ticks of the PULSE timer that must elapse with the step pulse enabled
// adding the "start stepper pulse" code section execution cycles to account for that not all
// pulses start at the beginning of the loop, so an extra time must be added to compensate so
// the last generated pulse (usually the extruder stepper) has the right length
# define MIN_PULSE_TICKS (((PULSE_TIMER_TICKS_PER_US) * (MINIMUM_STEPPER_PULSE)) + ((MIN_ISR_START_LOOP_CYCLES) / (PULSE_TIMER_PRESCALE)))
// Calculate the extra ticks of the PULSE timer between step pulses
# define ADDED_STEP_TICKS (((MIN_STEPPER_PULSE_CYCLES) / (PULSE_TIMER_PRESCALE)) - (MIN_PULSE_TICKS))
2018-06-13 01:15:44 +02:00
// But the user could be enforcing a minimum time, so the loop time is
2018-06-22 16:53:46 +02:00
# define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES))
2018-06-13 01:15:44 +02:00
// If linear advance is enabled, then it is handled separately
# if ENABLED(LIN_ADVANCE)
// Estimate the minimum LA loop time
# if ENABLED(MIXING_EXTRUDER)
# define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES))
# else
# define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES
# endif
// And the real loop time
2018-06-22 16:53:46 +02:00
# define ISR_LA_LOOP_CYCLES MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES)
2018-06-13 01:15:44 +02:00
# else
# define ISR_LA_LOOP_CYCLES 0UL
# endif
// Now estimate the total ISR execution time in cycles given a step per ISR multiplier
# define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R))
// The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz)
# define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128))
# define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64))
# define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32))
# define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16))
# define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8))
# define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4))
# define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2))
# define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1))
// The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz)
# define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X
//
// Stepper class definition
//
2016-04-27 16:15:20 +02:00
# include "planner.h"
# include "speed_lookuptable.h"
# include "stepper_indirection.h"
# include "language.h"
2016-08-03 04:36:58 +02:00
# include "types.h"
2011-11-20 14:50:08 +01:00
2016-04-27 16:15:20 +02:00
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
2018-05-13 17:36:37 +02:00
static FORCE_INLINE uint16_t MultiU16X8toH16 ( uint8_t charIn1 , uint16_t intIn2 ) {
register uint8_t tmp ;
register uint16_t intRes ;
__asm__ __volatile__ (
A ( " clr %[tmp] " )
A ( " mul %[charIn1], %B[intIn2] " )
A ( " movw %A[intRes], r0 " )
A ( " mul %[charIn1], %A[intIn2] " )
A ( " add %A[intRes], r1 " )
A ( " adc %B[intRes], %[tmp] " )
A ( " lsr r0 " )
A ( " adc %A[intRes], %[tmp] " )
A ( " adc %B[intRes], %[tmp] " )
A ( " clr r1 " )
: [ intRes ] " =&r " ( intRes ) ,
[ tmp ] " =&r " ( tmp )
: [ charIn1 ] " d " ( charIn1 ) ,
[ intIn2 ] " d " ( intIn2 )
: " cc "
) ;
return intRes ;
}
2011-11-20 14:50:08 +01:00
2016-04-27 16:15:20 +02:00
class Stepper {
2011-11-20 14:50:08 +01:00
2016-04-27 16:15:20 +02:00
public :
2016-05-12 00:24:24 +02:00
static block_t * current_block ; // A pointer to the block currently being traced
2016-04-27 16:15:20 +02:00
2017-10-27 23:24:34 +02:00
# if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
2018-06-02 23:50:22 +02:00
static bool homing_dual_axis ;
2016-04-27 16:15:20 +02:00
# endif
2017-06-03 07:38:07 +02:00
# if HAS_MOTOR_CURRENT_PWM
# ifndef PWM_MOTOR_CURRENT
# define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
# endif
static uint32_t motor_current_setting [ 3 ] ;
# endif
2016-04-27 16:15:20 +02:00
private :
2018-05-23 10:45:12 +02:00
static uint8_t last_direction_bits , // The next stepping-bits to be output
axis_did_move ; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
2018-06-10 06:26:34 +02:00
2018-05-23 10:45:12 +02:00
static bool abort_current_block ; // Signals to the stepper that current block should be aborted
2016-04-27 16:15:20 +02:00
2018-06-10 06:26:34 +02:00
# if DISABLED(MIXING_EXTRUDER)
static uint8_t last_moved_extruder ; // Last-moved extruder, as set when the last movement was fetched from planner
# endif
2017-10-27 23:24:34 +02:00
# if ENABLED(X_DUAL_ENDSTOPS)
2018-06-02 02:00:59 +02:00
static bool locked_X_motor , locked_X2_motor ;
2017-10-27 23:24:34 +02:00
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
2018-06-02 02:00:59 +02:00
static bool locked_Y_motor , locked_Y2_motor ;
2017-10-27 23:24:34 +02:00
# endif
2016-04-27 16:15:20 +02:00
# if ENABLED(Z_DUAL_ENDSTOPS)
2018-06-02 02:00:59 +02:00
static bool locked_Z_motor , locked_Z2_motor ;
2016-04-27 16:15:20 +02:00
# endif
2018-06-10 06:26:34 +02:00
static uint32_t acceleration_time , deceleration_time ; // time measured in Stepper Timer ticks
static uint8_t steps_per_isr ; // Count of steps to perform per Stepper ISR call
# if ENABLED(ADAPTIVE_STEP_SMOOTHING)
static uint8_t oversampling_factor ; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
# else
static constexpr uint8_t oversampling_factor = 0 ;
# endif
// Delta error variables for the Bresenham line tracer
static int32_t delta_error [ XYZE ] ;
static uint32_t advance_dividend [ XYZE ] ,
advance_divisor ,
step_events_completed , // The number of step events executed in the current block
accelerate_until , // The point from where we need to stop acceleration
decelerate_after , // The point from where we need to start decelerating
step_event_count ; // The total event count for the current block
// Mixing extruder mix delta_errors for bresenham tracing
# if ENABLED(MIXING_EXTRUDER)
static int32_t delta_error_m [ MIXING_STEPPERS ] ;
static uint32_t advance_dividend_m [ MIXING_STEPPERS ] ,
advance_divisor_m ;
# define MIXING_STEPPERS_LOOP(VAR) \
for ( uint8_t VAR = 0 ; VAR < MIXING_STEPPERS ; VAR + + )
# else
static int8_t active_extruder ; // Active extruder
# endif
2016-04-27 16:15:20 +02:00
2018-05-26 08:58:06 +02:00
# if ENABLED(S_CURVE_ACCELERATION)
2018-05-08 10:42:45 +02:00
static int32_t bezier_A , // A coefficient in Bézier speed curve
bezier_B , // B coefficient in Bézier speed curve
bezier_C ; // C coefficient in Bézier speed curve
static uint32_t bezier_F , // F coefficient in Bézier speed curve
bezier_AV ; // AV coefficient in Bézier speed curve
static bool A_negative , // If A coefficient was negative
bezier_2nd_half ; // If Bézier curve has been initialized or not
# endif
2018-05-20 15:19:11 +02:00
static uint32_t nextMainISR ; // time remaining for the next Step ISR
2017-10-09 11:13:43 +02:00
# if ENABLED(LIN_ADVANCE)
2018-06-10 06:26:34 +02:00
static uint32_t nextAdvanceISR , LA_isr_rate ;
static uint16_t LA_current_adv_steps , LA_final_adv_steps , LA_max_adv_steps ; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static int8_t LA_steps ;
static bool LA_use_advance_lead ;
2018-05-20 15:19:11 +02:00
# endif // LIN_ADVANCE
2017-10-09 11:13:43 +02:00
2018-06-10 06:26:34 +02:00
static int32_t ticks_nominal ;
2018-05-26 08:58:06 +02:00
# if DISABLED(S_CURVE_ACCELERATION)
2018-05-20 15:19:11 +02:00
static uint32_t acc_step_rate ; // needed for deceleration start point
2018-05-08 10:42:45 +02:00
# endif
2016-04-27 16:15:20 +02:00
2018-05-04 03:30:13 +02:00
static volatile int32_t endstops_trigsteps [ XYZ ] ;
2016-04-27 16:15:20 +02:00
2016-09-15 10:18:10 +02:00
//
// Positions of stepper motors, in step units
//
2018-05-04 03:30:13 +02:00
static volatile int32_t count_position [ NUM_AXIS ] ;
2016-09-15 10:18:10 +02:00
2016-04-27 16:15:20 +02:00
//
// Current direction of stepper motors (+1 or -1)
//
2018-06-02 23:50:22 +02:00
static int8_t count_direction [ NUM_AXIS ] ;
2016-04-27 16:15:20 +02:00
public :
//
// Constructor / initializer
//
2016-05-12 00:24:24 +02:00
Stepper ( ) { } ;
2016-04-27 16:15:20 +02:00
// Initialize stepper hardware
2016-06-03 02:57:56 +02:00
static void init ( ) ;
2016-04-27 16:15:20 +02:00
// Interrupt Service Routines
2018-05-20 15:19:11 +02:00
// The ISR scheduler
2018-06-02 02:00:59 +02:00
static void isr ( ) ;
2016-04-27 16:15:20 +02:00
2018-05-20 15:19:11 +02:00
// The stepper pulse phase ISR
static void stepper_pulse_phase_isr ( ) ;
2018-05-04 03:23:35 +02:00
2018-05-20 15:19:11 +02:00
// The stepper block processing phase ISR
static uint32_t stepper_block_phase_isr ( ) ;
2018-05-04 03:23:35 +02:00
2018-05-20 15:19:11 +02:00
# if ENABLED(LIN_ADVANCE)
// The Linear advance stepper ISR
static uint32_t advance_isr ( ) ;
# endif
2016-04-27 16:15:20 +02:00
// Get the position of a stepper, in steps
2018-05-04 03:30:13 +02:00
static int32_t position ( const AxisEnum axis ) ;
2016-04-27 16:15:20 +02:00
// Report the positions of the steppers, in steps
2016-06-03 02:57:56 +02:00
static void report_positions ( ) ;
2016-04-27 16:15:20 +02:00
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
2016-06-03 02:57:56 +02:00
static void wake_up ( ) ;
2016-04-27 16:15:20 +02:00
2018-05-20 15:19:11 +02:00
// Quickly stop all steppers
2018-05-20 17:59:58 +02:00
FORCE_INLINE static void quick_stop ( ) { abort_current_block = true ; }
2011-11-20 14:50:08 +01:00
2016-04-27 16:15:20 +02:00
// The direction of a single motor
2017-12-09 13:43:38 +01:00
FORCE_INLINE static bool motor_direction ( const AxisEnum axis ) { return TEST ( last_direction_bits , axis ) ; }
2011-12-12 19:34:37 +01:00
2018-05-20 17:59:58 +02:00
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
2018-05-23 10:45:12 +02:00
FORCE_INLINE static bool axis_is_moving ( const AxisEnum axis ) { return TEST ( axis_did_move , axis ) ; }
2018-05-20 17:59:58 +02:00
// The extruder associated to the last movement
2018-06-10 06:26:34 +02:00
FORCE_INLINE static uint8_t movement_extruder ( ) {
return
# if ENABLED(MIXING_EXTRUDER)
0
# else
last_moved_extruder
# endif
;
}
2018-05-20 15:19:11 +02:00
// Handle a triggered endstop
static void endstop_triggered ( const AxisEnum axis ) ;
// Triggered position of an axis in steps
static int32_t triggered_position ( const AxisEnum axis ) ;
2016-09-25 13:32:58 +02:00
# if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
2017-06-25 05:23:45 +02:00
static void digitalPotWrite ( const int16_t address , const int16_t value ) ;
static void digipot_current ( const uint8_t driver , const int16_t current ) ;
2016-09-25 13:32:58 +02:00
# endif
# if HAS_MICROSTEPS
2017-06-25 05:23:45 +02:00
static void microstep_ms ( const uint8_t driver , const int8_t ms1 , const int8_t ms2 ) ;
static void microstep_mode ( const uint8_t driver , const uint8_t stepping ) ;
2016-09-25 13:32:58 +02:00
static void microstep_readings ( ) ;
2016-04-27 16:15:20 +02:00
# endif
2011-11-20 14:50:08 +01:00
2018-06-02 23:50:22 +02:00
# if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
FORCE_INLINE static void set_homing_dual_axis ( const bool state ) { homing_dual_axis = state ; }
# endif
2017-10-27 23:24:34 +02:00
# if ENABLED(X_DUAL_ENDSTOPS)
2018-06-02 02:00:59 +02:00
FORCE_INLINE static void set_x_lock ( const bool state ) { locked_X_motor = state ; }
FORCE_INLINE static void set_x2_lock ( const bool state ) { locked_X2_motor = state ; }
2017-10-27 23:24:34 +02:00
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
2018-06-02 02:00:59 +02:00
FORCE_INLINE static void set_y_lock ( const bool state ) { locked_Y_motor = state ; }
FORCE_INLINE static void set_y2_lock ( const bool state ) { locked_Y2_motor = state ; }
2017-10-27 23:24:34 +02:00
# endif
2016-04-27 16:15:20 +02:00
# if ENABLED(Z_DUAL_ENDSTOPS)
2018-06-02 02:00:59 +02:00
FORCE_INLINE static void set_z_lock ( const bool state ) { locked_Z_motor = state ; }
FORCE_INLINE static void set_z2_lock ( const bool state ) { locked_Z2_motor = state ; }
2016-04-27 16:15:20 +02:00
# endif
2011-11-20 14:50:08 +01:00
2016-04-27 16:15:20 +02:00
# if ENABLED(BABYSTEPPING)
2016-11-04 00:23:31 +01:00
static void babystep ( const AxisEnum axis , const bool direction ) ; // perform a short step with a single stepper motor, outside of any convention
2016-04-27 16:15:20 +02:00
# endif
2011-11-20 14:50:08 +01:00
2017-06-03 07:38:07 +02:00
# if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power ( ) ;
# endif
2018-05-21 22:23:00 +02:00
// Set the current position in steps
inline static void set_position ( const int32_t & a , const int32_t & b , const int32_t & c , const int32_t & e ) {
planner . synchronize ( ) ;
2018-06-02 02:00:59 +02:00
const bool was_enabled = STEPPER_ISR_ENABLED ( ) ;
if ( was_enabled ) DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
2018-05-21 22:23:00 +02:00
_set_position ( a , b , c , e ) ;
2018-06-02 02:00:59 +02:00
if ( was_enabled ) ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
2018-05-21 22:23:00 +02:00
}
inline static void set_position ( const AxisEnum a , const int32_t & v ) {
planner . synchronize ( ) ;
2018-06-02 02:00:59 +02:00
const bool was_enabled = STEPPER_ISR_ENABLED ( ) ;
if ( was_enabled ) DISABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
2018-05-21 22:23:00 +02:00
count_position [ a ] = v ;
2018-06-02 02:00:59 +02:00
if ( was_enabled ) ENABLE_STEPPER_DRIVER_INTERRUPT ( ) ;
2018-05-21 22:23:00 +02:00
}
2016-05-04 02:00:28 +02:00
private :
2018-05-20 15:19:11 +02:00
// Set the current position in steps
static void _set_position ( const int32_t & a , const int32_t & b , const int32_t & c , const int32_t & e ) ;
// Set direction bits for all steppers
static void set_directions ( ) ;
2015-10-03 08:08:58 +02:00
2018-06-10 06:26:34 +02:00
FORCE_INLINE static uint32_t calc_timer_interval ( uint32_t step_rate , uint8_t scale , uint8_t * loops ) {
2018-05-20 15:19:11 +02:00
uint32_t timer ;
2018-06-10 06:26:34 +02:00
// Scale the frequency, as requested by the caller
step_rate < < = scale ;
uint8_t multistep = 1 ;
# if DISABLED(DISABLE_MULTI_STEPPING)
// The stepping frequency limits for each multistepping rate
static const uint32_t limit [ ] PROGMEM = {
2018-06-13 01:15:44 +02:00
( MAX_STEP_ISR_FREQUENCY_1X ) ,
( MAX_STEP_ISR_FREQUENCY_2X > > 1 ) ,
( MAX_STEP_ISR_FREQUENCY_4X > > 2 ) ,
( MAX_STEP_ISR_FREQUENCY_8X > > 3 ) ,
( MAX_STEP_ISR_FREQUENCY_16X > > 4 ) ,
( MAX_STEP_ISR_FREQUENCY_32X > > 5 ) ,
( MAX_STEP_ISR_FREQUENCY_64X > > 6 ) ,
( MAX_STEP_ISR_FREQUENCY_128X > > 7 )
2018-06-10 06:26:34 +02:00
} ;
// Select the proper multistepping
uint8_t idx = 0 ;
while ( idx < 7 & & step_rate > ( uint32_t ) pgm_read_dword ( & limit [ idx ] ) ) {
step_rate > > = 1 ;
multistep < < = 1 ;
+ + idx ;
} ;
# else
2018-06-13 01:15:44 +02:00
NOMORE ( step_rate , uint32_t ( MAX_STEP_ISR_FREQUENCY_1X ) ) ;
2018-06-10 06:26:34 +02:00
# endif
* loops = multistep ;
2011-12-04 20:17:21 +01:00
2018-06-10 06:26:34 +02:00
constexpr uint32_t min_step_rate = F_CPU / 500000U ;
NOLESS ( step_rate , min_step_rate ) ;
step_rate - = min_step_rate ; // Correct for minimal speed
2016-04-27 16:15:20 +02:00
if ( step_rate > = ( 8 * 256 ) ) { // higher step rate
2018-05-20 15:19:11 +02:00
const uint8_t tmp_step_rate = ( step_rate & 0x00FF ) ;
const uint16_t table_address = ( uint16_t ) & speed_lookuptable_fast [ ( uint8_t ) ( step_rate > > 8 ) ] [ 0 ] ,
gain = ( uint16_t ) pgm_read_word_near ( table_address + 2 ) ;
timer = MultiU16X8toH16 ( tmp_step_rate , gain ) ;
timer = ( uint16_t ) pgm_read_word_near ( table_address ) - timer ;
2016-04-27 16:15:20 +02:00
}
else { // lower step rates
2018-05-13 17:36:37 +02:00
uint16_t table_address = ( uint16_t ) & speed_lookuptable_slow [ 0 ] [ 0 ] ;
2017-04-22 04:42:27 +02:00
table_address + = ( ( step_rate ) > > 1 ) & 0xFFFC ;
2018-05-13 17:36:37 +02:00
timer = ( uint16_t ) pgm_read_word_near ( table_address )
- ( ( ( uint16_t ) pgm_read_word_near ( table_address + 2 ) * ( uint8_t ) ( step_rate & 0x0007 ) ) > > 3 ) ;
2016-04-27 16:15:20 +02:00
}
2018-06-10 06:26:34 +02:00
// (there is no need to limit the timer value here. All limits have been
// applied above, and AVR is able to keep up at 30khz Stepping ISR rate)
2018-05-20 15:19:11 +02:00
2016-04-27 16:15:20 +02:00
return timer ;
}
2016-03-24 11:18:45 +01:00
2018-05-26 08:58:06 +02:00
# if ENABLED(S_CURVE_ACCELERATION)
2018-05-08 10:42:45 +02:00
static void _calc_bezier_curve_coeffs ( const int32_t v0 , const int32_t v1 , const uint32_t av ) ;
static int32_t _eval_bezier_curve ( const uint32_t curr_step ) ;
# endif
2012-08-30 09:16:57 +02:00
2017-06-03 07:38:07 +02:00
# if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digipot_init ( ) ;
# endif
2016-09-25 13:32:58 +02:00
# if HAS_MICROSTEPS
static void microstep_init ( ) ;
# endif
2015-03-24 18:06:44 +01:00
2016-04-27 16:15:20 +02:00
} ;
2015-10-03 08:08:58 +02:00
2018-06-13 01:15:44 +02:00
extern Stepper stepper ;
2016-09-20 22:57:48 +02:00
# endif // STEPPER_H