Firmware/Marlin/I2CPositionEncoder.h

357 lines
12 KiB
C
Raw Normal View History

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef I2CPOSENC_H
#define I2CPOSENC_H
#include "MarlinConfig.h"
#if ENABLED(I2C_POSITION_ENCODERS)
#include "enum.h"
#include "macros.h"
#include "types.h"
#include <Wire.h>
//=========== Advanced / Less-Common Encoder Configuration Settings ==========
#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
// proportional to the current speed of the axis allows
// for very small error margin at low speeds without
// stuttering due to reading latency at high speeds
#define I2CPE_DEBUG // enable encoder-related debug serial echos
#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
// after changing address.
#define I2CPE_MAG_SIG_GOOD 0
#define I2CPE_MAG_SIG_MID 1
#define I2CPE_MAG_SIG_BAD 2
#define I2CPE_MAG_SIG_NF 255
#define I2CPE_REQ_REPORT 0
#define I2CPE_RESET_COUNT 1
#define I2CPE_SET_ADDR 2
#define I2CPE_SET_REPORT_MODE 3
#define I2CPE_CLEAR_EEPROM 4
#define I2CPE_LED_PAR_MODE 10
#define I2CPE_LED_PAR_BRT 11
#define I2CPE_LED_PAR_RATE 14
#define I2CPE_REPORT_DISTANCE 0
#define I2CPE_REPORT_STRENGTH 1
#define I2CPE_REPORT_VERSION 2
// Default I2C addresses
#define I2CPE_PRESET_ADDR_X 30
#define I2CPE_PRESET_ADDR_Y 31
#define I2CPE_PRESET_ADDR_Z 32
#define I2CPE_PRESET_ADDR_E 33
#define I2CPE_DEF_AXIS X_AXIS
#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
// Error event counter; tracks how many times there is an error exceeding a certain threshold
#define I2CPE_ERR_CNT_THRESH 3.00
#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
#define I2CPE_ERR_ARRAY_SIZE 32
#endif
// Error Correction Methods
#define I2CPE_ECM_NONE 0
#define I2CPE_ECM_MICROSTEP 1
#define I2CPE_ECM_PLANNER 2
#define I2CPE_ECM_STALLDETECT 3
// Encoder types
#define I2CPE_ENC_TYPE_ROTARY 0
#define I2CPE_ENC_TYPE_LINEAR 1
// Parser
#define I2CPE_PARSE_ERR 1
#define I2CPE_PARSE_OK 0
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
#define CHECK_IDX if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return;
extern const char axis_codes[XYZE];
typedef union {
volatile long val = 0;
uint8_t bval[4];
} i2cLong;
class I2CPositionEncoder {
private:
AxisEnum encoderAxis = I2CPE_DEF_AXIS;
uint8_t i2cAddress = I2CPE_DEF_ADDR,
ecMethod = I2CPE_DEF_EC_METHOD,
type = I2CPE_DEF_TYPE,
H = I2CPE_MAG_SIG_NF; // Magnetic field strength
int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
stepperTicks = I2CPE_DEF_TICKS_REV;
float ecThreshold = I2CPE_DEF_EC_THRESH;
bool homed = false,
trusted = false,
initialised = false,
active = false,
invert = false,
ec = true;
int errorCount = 0,
errorPrev = 0;
float axisOffset = 0;
long axisOffsetTicks = 0,
zeroOffset = 0,
lastPosition = 0,
position;
unsigned long lastPositionTime = 0,
nextErrorCountTime = 0,
lastErrorTime;
//double positionMm; //calculate
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
uint8_t errIdx = 0;
int err[I2CPE_ERR_ARRAY_SIZE] = {0};
#endif
public:
void init(uint8_t address, AxisEnum axis);
void reset();
void update();
void set_homed();
long get_raw_count();
FORCE_INLINE double mm_from_count(long count) {
if (type == I2CPE_ENC_TYPE_LINEAR) return count / encoderTicksPerUnit;
else if (type == I2CPE_ENC_TYPE_ROTARY)
return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]);
return -1;
}
FORCE_INLINE double get_position_mm() { return mm_from_count(get_position()); }
FORCE_INLINE long get_position() { return get_raw_count() - zeroOffset - axisOffsetTicks; }
long get_axis_error_steps(bool report);
double get_axis_error_mm(bool report);
void calibrate_steps_mm(int iter);
bool passes_test(bool report);
bool test_axis(void);
FORCE_INLINE int get_error_count(void) { return errorCount; }
FORCE_INLINE void set_error_count(int newCount) { errorCount = newCount; }
FORCE_INLINE uint8_t get_address() { return i2cAddress; }
FORCE_INLINE void set_address(uint8_t addr) { i2cAddress = addr; }
FORCE_INLINE bool get_active(void) { return active; }
FORCE_INLINE void set_active(bool a) { active = a; }
FORCE_INLINE void set_inverted(bool i) { invert = i; }
FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
FORCE_INLINE bool get_ec_enabled() { return ec; }
FORCE_INLINE void set_ec_enabled(bool enabled) { ec = enabled; }
FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
FORCE_INLINE void set_ec_method(byte method) { ecMethod = method; }
FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
FORCE_INLINE void set_ec_threshold(float newThreshold) { ecThreshold = newThreshold; }
FORCE_INLINE int get_encoder_ticks_mm() {
if (type == I2CPE_ENC_TYPE_LINEAR) return encoderTicksPerUnit;
else if (type == I2CPE_ENC_TYPE_ROTARY)
return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]);
return 0;
}
FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
FORCE_INLINE void set_ticks_unit(int ticks) { encoderTicksPerUnit = ticks; }
FORCE_INLINE uint8_t get_type() { return type; }
FORCE_INLINE void set_type(byte newType) { type = newType; }
FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
FORCE_INLINE void set_stepper_ticks(int ticks) { stepperTicks = ticks; }
FORCE_INLINE float get_axis_offset() { return axisOffset; }
FORCE_INLINE void set_axis_offset(float newOffset) {
axisOffset = newOffset;
axisOffsetTicks = (long)(axisOffset * get_encoder_ticks_mm());
}
FORCE_INLINE void set_current_position(float newPositionMm) {
set_axis_offset(get_position_mm() - newPositionMm + axisOffset);
}
};
class I2CPositionEncodersMgr {
private:
bool I2CPE_anyaxis;
uint8_t I2CPE_addr;
int8_t I2CPE_idx;
public:
void init(void);
// consider only updating one endoder per call / tick if encoders become too time intensive
void update(void) { LOOP_PE(i) encoders[i].update(); }
void homed(AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) encoders[i].set_homed();
}
void report_position(uint8_t idx, bool units, bool noOffset);
void report_status(uint8_t idx) {
CHECK_IDX
SERIAL_ECHOPAIR("Encoder ",idx);
SERIAL_ECHOPGM(": ");
encoders[idx].get_raw_count();
encoders[idx].passes_test(true);
}
void report_error(uint8_t idx) {
CHECK_IDX
encoders[idx].get_axis_error_steps(true);
}
void test_axis(uint8_t idx) {
CHECK_IDX
encoders[idx].test_axis();
}
void calibrate_steps_mm(uint8_t idx, int iterations) {
CHECK_IDX
encoders[idx].calibrate_steps_mm(iterations);
}
void change_module_address(uint8_t oldaddr, uint8_t newaddr);
void report_module_firmware(uint8_t address);
void report_error_count(uint8_t idx, AxisEnum axis) {
CHECK_IDX
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count());
}
void reset_error_count(uint8_t idx, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_error_count(0);
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPGM(" axis has been reset.");
}
void enable_ec(uint8_t idx, bool enabled, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_ec_enabled(enabled);
SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
SERIAL_ECHOPGM(" axis is ");
serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis"));
SERIAL_ECHOLNPGM("abled.");
}
void set_ec_threshold(uint8_t idx, float newThreshold, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_ec_threshold(newThreshold);
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis set to ", newThreshold);
SERIAL_ECHOLNPGM("mm.");
}
void get_ec_threshold(uint8_t idx, AxisEnum axis) {
CHECK_IDX
float threshold = encoders[idx].get_ec_threshold();
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis is ", threshold);
SERIAL_ECHOLNPGM("mm.");
}
int8_t idx_from_axis(AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) return i;
return -1;
}
int8_t idx_from_addr(uint8_t addr) {
LOOP_PE(i)
if (encoders[i].get_address() == addr) return i;
return -1;
}
int8_t parse();
void M860();
void M861();
void M862();
void M863();
void M864();
void M865();
void M866();
void M867();
void M868();
void M869();
I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
};
extern I2CPositionEncodersMgr I2CPEM;
FORCE_INLINE void gcode_M860() { I2CPEM.M860(); }
FORCE_INLINE void gcode_M861() { I2CPEM.M861(); }
FORCE_INLINE void gcode_M862() { I2CPEM.M862(); }
FORCE_INLINE void gcode_M863() { I2CPEM.M863(); }
FORCE_INLINE void gcode_M864() { I2CPEM.M864(); }
FORCE_INLINE void gcode_M865() { I2CPEM.M865(); }
FORCE_INLINE void gcode_M866() { I2CPEM.M866(); }
FORCE_INLINE void gcode_M867() { I2CPEM.M867(); }
FORCE_INLINE void gcode_M868() { I2CPEM.M868(); }
FORCE_INLINE void gcode_M869() { I2CPEM.M869(); }
#endif //I2C_POSITION_ENCODERS
#endif //I2CPOSENC_H