Merge pull request #4837 from thinkyhead/rc_nonlinear_in_planner

Handle nonlinear bed-leveling in Planner
This commit is contained in:
Scott Lahteine 2016-09-18 15:31:51 -05:00 committed by GitHub
commit 127d796420
6 changed files with 117 additions and 111 deletions

View File

@ -675,7 +675,7 @@
#endif #endif
#endif #endif
#define PLANNER_LEVELING (ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_LINEAR)) #define PLANNER_LEVELING (ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_FEATURE))
/** /**
* Buzzer/Speaker * Buzzer/Speaker

View File

@ -303,12 +303,11 @@ float code_value_temp_diff();
#if IS_KINEMATIC #if IS_KINEMATIC
extern float delta[ABC]; extern float delta[ABC];
void inverse_kinematics(const float cartesian[XYZ]); void inverse_kinematics(const float logical[XYZ]);
#endif #endif
#if ENABLED(DELTA) #if ENABLED(DELTA)
extern float delta[ABC], extern float endstop_adj[ABC],
endstop_adj[ABC],
delta_radius, delta_radius,
delta_diagonal_rod, delta_diagonal_rod,
delta_segments_per_second, delta_segments_per_second,
@ -322,7 +321,7 @@ float code_value_temp_diff();
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR) #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
extern int nonlinear_grid_spacing[2]; extern int nonlinear_grid_spacing[2];
void adjust_delta(float cartesian[XYZ]); float nonlinear_z_offset(float logical[XYZ]);
#endif #endif
#if ENABLED(Z_DUAL_ENDSTOPS) #if ENABLED(Z_DUAL_ENDSTOPS)

View File

@ -400,7 +400,6 @@ static uint8_t target_extruder;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
bool bed_leveling_in_progress = false;
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED) #elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
@ -658,16 +657,20 @@ inline void sync_plan_position() {
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
#if IS_KINEMATIC #if IS_KINEMATIC
inline void sync_plan_position_kinematic() { inline void sync_plan_position_kinematic() {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position); if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
#endif #endif
inverse_kinematics(current_position); inverse_kinematics(current_position);
planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
} }
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic() #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
#else #else
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
#endif #endif
#if ENABLED(SDSUPPORT) #if ENABLED(SDSUPPORT)
@ -795,7 +798,6 @@ void setup_homepin(void) {
#endif #endif
} }
void setup_photpin() { void setup_photpin() {
#if HAS_PHOTOGRAPH #if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW); OUT_WRITE(PHOTOGRAPH_PIN, LOW);
@ -1479,7 +1481,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
#endif #endif
refresh_cmd_timeout(); refresh_cmd_timeout();
inverse_kinematics(destination); inverse_kinematics(destination);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
set_current_to_destination(); set_current_to_destination();
} }
#endif #endif
@ -3431,8 +3433,6 @@ inline void gcode_G28() {
// Deploy the probe. Probe will raise if needed. // Deploy the probe. Probe will raise if needed.
if (DEPLOY_PROBE()) return; if (DEPLOY_PROBE()) return;
bed_leveling_in_progress = true;
float xProbe, yProbe, measured_z = 0; float xProbe, yProbe, measured_z = 0;
#if ENABLED(AUTO_BED_LEVELING_GRID) #if ENABLED(AUTO_BED_LEVELING_GRID)
@ -3573,6 +3573,8 @@ inline void gcode_G28() {
#elif ENABLED(AUTO_BED_LEVELING_LINEAR) #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
// For LINEAR leveling calculate matrix, print reports, correct the position
// solve lsq problem // solve lsq problem
double plane_equation_coefficients[3]; double plane_equation_coefficients[3];
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
@ -3666,6 +3668,8 @@ inline void gcode_G28() {
} }
} //do_topography_map } //do_topography_map
// For LINEAR and 3POINT leveling correct the current position
if (verbose_level > 0) if (verbose_level > 0)
planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:"); planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
@ -3735,8 +3739,6 @@ inline void gcode_G28() {
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
#endif #endif
bed_leveling_in_progress = false;
report_current_position(); report_current_position();
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
@ -5075,22 +5077,20 @@ static void report_current_position() {
#if IS_SCARA #if IS_SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:"); SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOL(delta[A_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL(delta[Y_AXIS]); SERIAL_PROTOCOLLN(delta[B_AXIS]);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOL(delta[A_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90); SERIAL_PROTOCOLLN(delta[B_AXIS] - delta[A_AXIS] - 90);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]); SERIAL_PROTOCOL(delta[A_AXIS] / 90 * planner.axis_steps_per_mm[A_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]); SERIAL_PROTOCOLLN((delta[B_AXIS] - delta[A_AXIS]) / 90 * planner.axis_steps_per_mm[A_AXIS]);
SERIAL_EOL; SERIAL_EOL; SERIAL_EOL;
#endif #endif
} }
@ -6160,7 +6160,7 @@ inline void gcode_M503() {
// Define runplan for move axes // Define runplan for move axes
#if IS_KINEMATIC #if IS_KINEMATIC
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \ #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
#else #else
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S); #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
#endif #endif
@ -6282,8 +6282,8 @@ inline void gcode_M503() {
#if IS_KINEMATIC #if IS_KINEMATIC
// Move XYZ to starting position, then E // Move XYZ to starting position, then E
inverse_kinematics(lastpos); inverse_kinematics(lastpos);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
#else #else
// Move XY to starting position, then Z, then E // Move XY to starting position, then Z, then E
destination[X_AXIS] = lastpos[X_AXIS]; destination[X_AXIS] = lastpos[X_AXIS];
@ -7637,6 +7637,48 @@ void ok_to_send() {
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
// Get the Z adjustment for non-linear bed leveling
float nonlinear_z_offset(float cartesian[XYZ]) {
if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
int half_x = (ABL_GRID_POINTS_X - 1) / 2,
half_y = (ABL_GRID_POINTS_Y - 1) / 2;
float hx2 = half_x - 0.001, hx1 = -hx2,
hy2 = half_y - 0.001, hy1 = -hy2,
grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4;
/*
SERIAL_ECHOPAIR("grid_x=", grid_x);
SERIAL_ECHOPAIR(" grid_y=", grid_y);
SERIAL_ECHOPAIR(" floor_x=", floor_x);
SERIAL_ECHOPAIR(" floor_y=", floor_y);
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
SERIAL_ECHOPAIR(" z1=", z1);
SERIAL_ECHOPAIR(" z2=", z2);
SERIAL_ECHOPAIR(" z3=", z3);
SERIAL_ECHOPAIR(" z4=", z4);
SERIAL_ECHOPAIR(" left=", left);
SERIAL_ECHOPAIR(" right=", right);
SERIAL_ECHOPAIR(" offset=", (1 - ratio_x) * left + ratio_x * right);
//*/
return (1 - ratio_x) * left + ratio_x * right;
}
#endif // AUTO_BED_LEVELING_NONLINEAR
#if ENABLED(DELTA) #if ENABLED(DELTA)
/** /**
@ -7827,50 +7869,6 @@ void ok_to_send() {
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
} }
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
// Adjust print surface height by linear interpolation over the bed_level array.
void adjust_delta(float cartesian[XYZ]) {
if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
int half_x = (ABL_GRID_POINTS_X - 1) / 2,
half_y = (ABL_GRID_POINTS_Y - 1) / 2;
float hx2 = half_x - 0.001, hx1 = -hx2,
hy2 = half_y - 0.001, hy1 = -hy2,
grid_x = max(hx1, min(hx2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
grid_y = max(hy1, min(hy2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level_grid[floor_x + half_x][floor_y + half_y],
z2 = bed_level_grid[floor_x + half_x][floor_y + half_y + 1],
z3 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y],
z4 = bed_level_grid[floor_x + half_x + 1][floor_y + half_y + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4,
offset = (1 - ratio_x) * left + ratio_x * right;
delta[X_AXIS] += offset;
delta[Y_AXIS] += offset;
delta[Z_AXIS] += offset;
/**
SERIAL_ECHOPAIR("grid_x=", grid_x);
SERIAL_ECHOPAIR(" grid_y=", grid_y);
SERIAL_ECHOPAIR(" floor_x=", floor_x);
SERIAL_ECHOPAIR(" floor_y=", floor_y);
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
SERIAL_ECHOPAIR(" ratio_y=", ratio_y);
SERIAL_ECHOPAIR(" z1=", z1);
SERIAL_ECHOPAIR(" z2=", z2);
SERIAL_ECHOPAIR(" z3=", z3);
SERIAL_ECHOPAIR(" z4=", z4);
SERIAL_ECHOPAIR(" left=", left);
SERIAL_ECHOPAIR(" right=", right);
SERIAL_ECHOLNPAIR(" offset=", offset);
*/
}
#endif // AUTO_BED_LEVELING_NONLINEAR
#endif // DELTA #endif // DELTA
/** /**
@ -7992,9 +7990,9 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
* This calls planner.buffer_line several times, adding * This calls planner.buffer_line several times, adding
* small incremental moves for DELTA or SCARA. * small incremental moves for DELTA or SCARA.
*/ */
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) { inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
float difference[NUM_AXIS]; float difference[NUM_AXIS];
LOOP_XYZE(i) difference[i] = target[i] - current_position[i]; LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
@ -8013,18 +8011,14 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
float fraction = float(s) * inv_steps; float fraction = float(s) * inv_steps;
LOOP_XYZE(i) LOOP_XYZE(i)
target[i] = current_position[i] + difference[i] * fraction; logical[i] = current_position[i] + difference[i] * fraction;
inverse_kinematics(target); inverse_kinematics(logical);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) //DEBUG_POS("prepare_kinematic_move_to", logical);
if (!bed_leveling_in_progress) adjust_delta(target);
#endif
//DEBUG_POS("prepare_kinematic_move_to", target);
//DEBUG_POS("prepare_kinematic_move_to", delta); //DEBUG_POS("prepare_kinematic_move_to", delta);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
} }
return true; return true;
} }
@ -8156,20 +8150,20 @@ void prepare_move_to_destination() {
* options for G2/G3 arc generation. In future these options may be GCode tunable. * options for G2/G3 arc generation. In future these options may be GCode tunable.
*/ */
void plan_arc( void plan_arc(
float target[NUM_AXIS], // Destination position float logical[NUM_AXIS], // Destination position
float* offset, // Center of rotation relative to current_position float* offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise? uint8_t clockwise // Clockwise?
) { ) {
float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]), float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
center_X = current_position[X_AXIS] + offset[X_AXIS], center_X = current_position[X_AXIS] + offset[X_AXIS],
center_Y = current_position[Y_AXIS] + offset[Y_AXIS], center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = target[Z_AXIS] - current_position[Z_AXIS], linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = target[E_AXIS] - current_position[E_AXIS], extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
r_X = -offset[X_AXIS], // Radius vector from center to current location r_X = -offset[X_AXIS], // Radius vector from center to current location
r_Y = -offset[Y_AXIS], r_Y = -offset[Y_AXIS],
rt_X = target[X_AXIS] - center_X, rt_X = logical[X_AXIS] - center_X,
rt_Y = target[Y_AXIS] - center_Y; rt_Y = logical[Y_AXIS] - center_Y;
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
@ -8177,7 +8171,7 @@ void prepare_move_to_destination() {
if (clockwise) angular_travel -= RADIANS(360); if (clockwise) angular_travel -= RADIANS(360);
// Make a circle if the angular rotation is 0 // Make a circle if the angular rotation is 0
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
angular_travel += RADIANS(360); angular_travel += RADIANS(360);
float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel)); float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
@ -8271,10 +8265,7 @@ void prepare_move_to_destination() {
#if IS_KINEMATIC #if IS_KINEMATIC
inverse_kinematics(arc_target); inverse_kinematics(arc_target);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
adjust_delta(arc_target);
#endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
#else #else
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder); planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
#endif #endif
@ -8282,13 +8273,10 @@ void prepare_move_to_destination() {
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
#if IS_KINEMATIC #if IS_KINEMATIC
inverse_kinematics(target); inverse_kinematics(logical);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
adjust_delta(target);
#endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
#else #else
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder); planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
#endif #endif
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
@ -8303,7 +8291,7 @@ void prepare_move_to_destination() {
void plan_cubic_move(const float offset[4]) { void plan_cubic_move(const float offset[4]) {
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder); cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == destination. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position
// in any intermediate location. // in any intermediate location.
set_current_to_destination(); set_current_to_destination();
@ -8376,7 +8364,7 @@ void prepare_move_to_destination() {
//*/ //*/
} }
void inverse_kinematics(const float cartesian[XYZ]) { void inverse_kinematics(const float logical[XYZ]) {
// Inverse kinematics. // Inverse kinematics.
// Perform SCARA IK and place results in delta[]. // Perform SCARA IK and place results in delta[].
// The maths and first version were done by QHARLEY. // The maths and first version were done by QHARLEY.
@ -8384,8 +8372,8 @@ void prepare_move_to_destination() {
static float C2, S2, SK1, SK2, THETA, PSI; static float C2, S2, SK1, SK2, THETA, PSI;
float sx = RAW_X_POSITION(cartesian[X_AXIS]) - SCARA_OFFSET_X, //Translate SCARA to standard X Y float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
sy = RAW_Y_POSITION(cartesian[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
#if (L1 == L2) #if (L1 == L2)
C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1; C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
@ -8403,10 +8391,10 @@ void prepare_move_to_destination() {
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor) delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS]; delta[C_AXIS] = logical[Z_AXIS];
/** /*
DEBUG_POS("SCARA IK", cartesian); DEBUG_POS("SCARA IK", logical);
DEBUG_POS("SCARA IK", delta); DEBUG_POS("SCARA IK", delta);
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx); SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
SERIAL_ECHOPAIR(",", sy); SERIAL_ECHOPAIR(",", sy);

View File

@ -541,6 +541,23 @@ void Planner::check_axes_activity() {
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
lz = LOGICAL_Z_POSITION(dz); lz = LOGICAL_Z_POSITION(dz);
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
float tmp[XYZ] = { lx, ly, 0 };
#if ENABLED(DELTA)
float offset = nonlinear_z_offset(tmp);
lx += offset;
ly += offset;
lz += offset;
#else
lz += nonlinear_z_offset(tmp);
#endif
#endif #endif
} }
@ -562,6 +579,11 @@ void Planner::check_axes_activity() {
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM); ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
lz = LOGICAL_Z_POSITION(dz); lz = LOGICAL_Z_POSITION(dz);
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
float tmp[XYZ] = { lx, ly, 0 };
lz -= nonlinear_z_offset(tmp);
#endif #endif
} }
@ -1205,7 +1227,7 @@ void Planner::refresh_positioning() {
LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i]; LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
#if IS_KINEMATIC #if IS_KINEMATIC
inverse_kinematics(current_position); inverse_kinematics(current_position);
set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
#else #else
set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif #endif

View File

@ -190,10 +190,7 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
#if IS_KINEMATIC #if IS_KINEMATIC
inverse_kinematics(bez_target); inverse_kinematics(bez_target);
#if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE) planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
adjust_delta(bez_target);
#endif
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
#else #else
planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder); planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
#endif #endif

View File

@ -547,7 +547,7 @@ void kill_screen(const char* lcd_msg) {
inline void line_to_current(AxisEnum axis) { inline void line_to_current(AxisEnum axis) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
inverse_kinematics(current_position); inverse_kinematics(current_position);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
#else // !DELTA #else // !DELTA
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
#endif // !DELTA #endif // !DELTA
@ -1297,7 +1297,7 @@ void kill_screen(const char* lcd_msg) {
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
#if ENABLED(DELTA) #if ENABLED(DELTA)
inverse_kinematics(current_position); inverse_kinematics(current_position);
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
#else #else
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
#endif #endif