Revert "Merge pull request #8608 from thinkyhead/bf1_planner_split_first"

This reverts commit 0eef0ff0de, reversing
changes made to d8582b7506.
This commit is contained in:
Scott Lahteine 2017-12-03 17:40:53 -06:00
parent 44d2c5ef88
commit 298a357a43
2 changed files with 67 additions and 114 deletions

View File

@ -688,35 +688,69 @@ void Planner::calculate_volumetric_multipliers() {
#endif // PLANNER_LEVELING #endif // PLANNER_LEVELING
/** /**
* Planner::_buffer_steps * Planner::_buffer_line
* *
* Add a new linear movement to the buffer (in terms of steps). * Add a new linear movement to the buffer in axis units.
* *
* target - target position in steps units * Leveling and kinematics should be applied ahead of calling this.
*
* a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move * fr_mm_s - (target) speed of the move
* extruder - target extruder * extruder - target extruder
*/ */
void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder) { void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
const long target[XYZE] = {
LROUND(a * axis_steps_per_mm[X_AXIS]),
LROUND(b * axis_steps_per_mm[Y_AXIS]),
LROUND(c * axis_steps_per_mm[Z_AXIS]),
LROUND(e * axis_steps_per_mm[E_AXIS_N])
};
// When changing extruders recalculate steps corresponding to the E position
#if ENABLED(DISTINCT_E_FACTORS)
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
last_extruder = extruder;
}
#endif
const int32_t da = target[X_AXIS] - position[X_AXIS], const int32_t da = target[X_AXIS] - position[X_AXIS],
db = target[Y_AXIS] - position[Y_AXIS], db = target[Y_AXIS] - position[Y_AXIS],
dc = target[Z_AXIS] - position[Z_AXIS]; dc = target[Z_AXIS] - position[Z_AXIS];
int32_t de = target[E_AXIS] - position[E_AXIS]; /*
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
/* <-- add a slash to enable SERIAL_CHAR(' ');
SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s); #if IS_KINEMATIC
SERIAL_ECHOPAIR(" A:", target[A_AXIS]); SERIAL_ECHOPAIR("A:", a);
SERIAL_ECHOPAIR(" (", da); SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); SERIAL_ECHOPAIR(") B:", b);
SERIAL_ECHOPAIR(" (", db); #else
SERIAL_ECHOLNPGM(" steps) C:", target[C_AXIS]); SERIAL_ECHOPAIR("X:", a);
SERIAL_ECHOPAIR(" (", dc); SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOLNPGM(" steps) E:", target[E_AXIS]); SERIAL_ECHOPAIR(") Y:", b);
SERIAL_ECHOPAIR(" (", de); #endif
SERIAL_ECHOLNPGM(" steps)"); SERIAL_ECHOPAIR(" (", db);
#if ENABLED(DELTA)
SERIAL_ECHOPAIR(") C:", c);
#else
SERIAL_ECHOPAIR(") Z:", c);
#endif
SERIAL_ECHOPAIR(" (", dc);
SERIAL_CHAR(')');
SERIAL_EOL();
//*/ //*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (DEBUGGING(DRYRUN))
position[E_AXIS] = target[E_AXIS];
int32_t de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) { if (de) {
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION)
@ -1023,7 +1057,6 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
// Segment time im micro seconds // Segment time im micro seconds
uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs); uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
#endif #endif
#if ENABLED(SLOWDOWN) #if ENABLED(SLOWDOWN)
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
if (segment_time_us < min_segment_time_us) { if (segment_time_us < min_segment_time_us) {
@ -1217,12 +1250,12 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if (block_buffer_head != block_buffer_tail && previous_nominal_speed > 0.0) { if (moves_queued() && !UNEAR_ZERO(previous_nominal_speed)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS];
// Skip and use default max junction speed for 0 degree acute junction. // Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) { if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed, block->nominal_speed); vmax_junction = min(previous_nominal_speed, block->nominal_speed);
@ -1262,24 +1295,25 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
} }
} }
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { if (moves_queued > 1 && !UNEAR_ZERO(previous_nominal_speed)) {
// Estimate a maximum velocity allowed at a joint of two successive segments. // Estimate a maximum velocity allowed at a joint of two successive segments.
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
const bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
const float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed; vmax_junction = min(block->nominal_speed, previous_nominal_speed);
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1; float v_factor = 1;
limited = 0; limited = 0;
// Now limit the jerk in all axes. // Now limit the jerk in all axes.
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
LOOP_XYZE(axis) { LOOP_XYZE(axis) {
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop. // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
float v_exit = previous_speed[axis], v_entry = current_speed[axis]; float v_exit = previous_speed[axis] * smaller_speed_factor,
if (prev_speed_larger) v_exit *= smaller_speed_factor; v_entry = current_speed[axis];
if (limited) { if (limited) {
v_exit *= v_factor; v_exit *= v_factor;
v_entry *= v_factor; v_entry *= v_factor;
@ -1374,79 +1408,9 @@ void Planner::_buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uin
recalculate(); recalculate();
} // _buffer_steps()
/**
* Planner::_buffer_line
*
* Add a new linear movement to the buffer in axis units.
*
* Leveling and kinematics should be applied ahead of calling this.
*
* a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) {
// When changing extruders recalculate steps corresponding to the E position
#if ENABLED(DISTINCT_E_FACTORS)
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
last_extruder = extruder;
}
#endif
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
const int32_t target[XYZE] = {
LROUND(a * axis_steps_per_mm[X_AXIS]),
LROUND(b * axis_steps_per_mm[Y_AXIS]),
LROUND(c * axis_steps_per_mm[Z_AXIS]),
LROUND(e * axis_steps_per_mm[E_AXIS_N])
};
/* <-- add a slash to enable
SERIAL_ECHOPAIR(" _buffer_line FR:", fr_mm_s);
#if IS_KINEMATIC
SERIAL_ECHOPAIR(" A:", a);
SERIAL_ECHOPAIR(" (", target[A_AXIS]);
SERIAL_ECHOPAIR(" steps) B:", b);
#else
SERIAL_ECHOPAIR(" X:", a);
SERIAL_ECHOPAIR(" (", target[X_AXIS]);
SERIAL_ECHOPAIR(" steps) Y:", b);
#endif
SERIAL_ECHOPAIR(" (", target[Y_AXIS]);
#if ENABLED(DELTA)
SERIAL_ECHOPAIR(" steps) C:", c);
#else
SERIAL_ECHOPAIR(" steps) Z:", c);
#endif
SERIAL_ECHOPAIR(" (", target[Z_AXIS]);
SERIAL_ECHOPAIR(" steps) E:", e);
SERIAL_ECHOPAIR(" (", target[E_AXIS]);
SERIAL_ECHOLNPGM(" steps)");
//*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (DEBUGGING(DRYRUN))
position[E_AXIS] = target[E_AXIS];
// Always split the first move in two so it can chain
if (!blocks_queued()) {
DISABLE_STEPPER_DRIVER_INTERRUPT();
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
_buffer_steps(between, fr_mm_s, extruder);
_buffer_steps(target, fr_mm_s, extruder);
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
else
_buffer_steps(target, fr_mm_s, extruder);
stepper.wake_up(); stepper.wake_up();
} // _buffer_line() } // buffer_line()
/** /**
* Directly set the planner XYZ position (and stepper positions) * Directly set the planner XYZ position (and stepper positions)

View File

@ -348,29 +348,18 @@ class Planner {
#endif #endif
/**
* Planner::_buffer_steps
*
* Add a new linear movement to the buffer (in terms of steps).
*
* target - target position in steps units
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
static void _buffer_steps(const int32_t target[XYZE], float fr_mm_s, const uint8_t extruder);
/** /**
* Planner::_buffer_line * Planner::_buffer_line
* *
* Add a new linear movement to the buffer in axis units. * Add a new direct linear movement to the buffer.
* *
* Leveling and kinematics should be applied ahead of calling this. * Leveling and kinematics should be applied ahead of this.
* *
* a,b,c,e - target positions in mm and/or degrees * a,b,c,e - target position in mm or degrees
* fr_mm_s - (target) speed of the move * fr_mm_s - (target) speed of the move (mm/s)
* extruder - target extruder * extruder - target extruder
*/ */
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder); static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e); static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);