Add HAL.h for AVR for easier 2.0.x parity
This commit is contained in:
parent
ddc1a48844
commit
38e1823375
305
Marlin/HAL.h
Normal file
305
Marlin/HAL.h
Normal file
@ -0,0 +1,305 @@
|
||||
/* **************************************************************************
|
||||
|
||||
Marlin 3D Printer Firmware
|
||||
Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
|
||||
Copyright (c) 2016 Bob Cousins bobcousins42@googlemail.com
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
****************************************************************************/
|
||||
|
||||
/**
|
||||
* Description: HAL for __AVR__
|
||||
*/
|
||||
|
||||
#ifndef _HAL_AVR_H_
|
||||
#define _HAL_AVR_H_
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Includes
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
#include "fastio.h"
|
||||
|
||||
#include <stdint.h>
|
||||
#include <Arduino.h>
|
||||
#include <util/delay.h>
|
||||
#include <avr/eeprom.h>
|
||||
#include <avr/pgmspace.h>
|
||||
#include <avr/interrupt.h>
|
||||
#include <avr/io.h>
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Defines
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
//#define analogInputToDigitalPin(IO) IO
|
||||
|
||||
// Bracket code that shouldn't be interrupted
|
||||
#ifndef CRITICAL_SECTION_START
|
||||
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
|
||||
#define CRITICAL_SECTION_END SREG = _sreg;
|
||||
#endif
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Types
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
typedef uint16_t hal_timer_t;
|
||||
#define HAL_TIMER_TYPE_MAX 0xFFFF
|
||||
|
||||
typedef int8_t pin_t;
|
||||
|
||||
#define HAL_SERVO_LIB Servo
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Public Variables
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
//extern uint8_t MCUSR;
|
||||
|
||||
// --------------------------------------------------------------------------
|
||||
// Public functions
|
||||
// --------------------------------------------------------------------------
|
||||
|
||||
//void cli(void);
|
||||
|
||||
//void _delay_ms(const int delay);
|
||||
|
||||
inline void HAL_clear_reset_source(void) { MCUSR = 0; }
|
||||
inline uint8_t HAL_get_reset_source(void) { return MCUSR; }
|
||||
|
||||
// eeprom
|
||||
//void eeprom_write_byte(unsigned char *pos, unsigned char value);
|
||||
//unsigned char eeprom_read_byte(unsigned char *pos);
|
||||
|
||||
// timers
|
||||
#define HAL_TIMER_RATE ((F_CPU) / 8) // i.e., 2MHz or 2.5MHz
|
||||
|
||||
#define STEP_TIMER_NUM 1
|
||||
#define TEMP_TIMER_NUM 0
|
||||
#define PULSE_TIMER_NUM TEMP_TIMER_NUM
|
||||
|
||||
#define HAL_STEPPER_TIMER_RATE HAL_TIMER_RATE
|
||||
#define HAL_TICKS_PER_US ((HAL_STEPPER_TIMER_RATE) / 1000000) // Cannot be of type double
|
||||
#define STEPPER_TIMER_PRESCALE 8
|
||||
#define STEP_TIMER_MIN_INTERVAL 8 // minimum time in µs between stepper interrupts
|
||||
|
||||
#define TEMP_TIMER_FREQUENCY ((F_CPU) / 64.0 / 256.0)
|
||||
|
||||
#define TIMER_OCR_1 OCR1A
|
||||
#define TIMER_COUNTER_1 TCNT1
|
||||
|
||||
#define TIMER_OCR_0 OCR0A
|
||||
#define TIMER_COUNTER_0 TCNT0
|
||||
|
||||
#define PULSE_TIMER_PRESCALE 8
|
||||
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
|
||||
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
|
||||
|
||||
#define ENABLE_TEMPERATURE_INTERRUPT() SBI(TIMSK0, OCIE0B)
|
||||
#define DISABLE_TEMPERATURE_INTERRUPT() CBI(TIMSK0, OCIE0B)
|
||||
#define TEMPERATURE_ISR_ENABLED() TEST(TIMSK0, OCIE0B)
|
||||
|
||||
#define HAL_timer_start(timer_num, frequency)
|
||||
|
||||
#define _CAT(a, ...) a ## __VA_ARGS__
|
||||
#define HAL_timer_set_compare(timer, compare) (_CAT(TIMER_OCR_, timer) = compare)
|
||||
#define HAL_timer_restrain(timer, interval_ticks) NOLESS(_CAT(TIMER_OCR_, timer), _CAT(TIMER_COUNTER_, timer) + interval_ticks)
|
||||
|
||||
#define HAL_timer_get_compare(timer) _CAT(TIMER_OCR_, timer)
|
||||
#define HAL_timer_get_count(timer) _CAT(TIMER_COUNTER_, timer)
|
||||
|
||||
/**
|
||||
* On AVR there is no hardware prioritization and preemption of
|
||||
* interrupts, so this emulates it. The UART has first priority
|
||||
* (otherwise, characters will be lost due to UART overflow).
|
||||
* Then: Stepper, Endstops, Temperature, and -finally- all others.
|
||||
*/
|
||||
#define HAL_timer_isr_prologue(TIMER_NUM)
|
||||
#define HAL_timer_isr_epilogue(TIMER_NUM)
|
||||
|
||||
/* 18 cycles maximum latency */
|
||||
#define HAL_STEP_TIMER_ISR \
|
||||
extern "C" void TIMER1_COMPA_vect (void) __attribute__ ((signal, naked, used, externally_visible)); \
|
||||
extern "C" void TIMER1_COMPA_vect_bottom (void) asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
|
||||
void TIMER1_COMPA_vect (void) { \
|
||||
__asm__ __volatile__ ( \
|
||||
A("push r16") /* 2 Save R16 */ \
|
||||
A("in r16, __SREG__") /* 1 Get SREG */ \
|
||||
A("push r16") /* 2 Save SREG into stack */ \
|
||||
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
|
||||
A("push r16") /* 2 Save TIMSK0 into the stack */ \
|
||||
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
|
||||
A("sts %[timsk0], r16") /* 2 And set the new value */ \
|
||||
A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \
|
||||
A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \
|
||||
A("sts %[timsk1], r16") /* 2 And set the new value */ \
|
||||
A("sei") /* 1 Enable global interrupts - stepper and temperature ISRs are disabled, so no risk of reentry or being preempted by the temperature ISR */ \
|
||||
A("push r16") /* 2 Save TIMSK1 into stack */ \
|
||||
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
|
||||
A("push r16") /* 2 Save RAMPZ into stack */ \
|
||||
A("in r16, 0x3C") /* 1 Get EIND register */ \
|
||||
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
|
||||
A("push r1") \
|
||||
A("push r18") \
|
||||
A("push r19") \
|
||||
A("push r20") \
|
||||
A("push r21") \
|
||||
A("push r22") \
|
||||
A("push r23") \
|
||||
A("push r24") \
|
||||
A("push r25") \
|
||||
A("push r26") \
|
||||
A("push r27") \
|
||||
A("push r30") \
|
||||
A("push r31") \
|
||||
A("clr r1") /* C runtime expects this register to be 0 */ \
|
||||
A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
|
||||
A("pop r31") \
|
||||
A("pop r30") \
|
||||
A("pop r27") \
|
||||
A("pop r26") \
|
||||
A("pop r25") \
|
||||
A("pop r24") \
|
||||
A("pop r23") \
|
||||
A("pop r22") \
|
||||
A("pop r21") \
|
||||
A("pop r20") \
|
||||
A("pop r19") \
|
||||
A("pop r18") \
|
||||
A("pop r1") \
|
||||
A("pop r0") \
|
||||
A("out 0x3C, r16") /* 1 Restore EIND register */ \
|
||||
A("pop r16") /* 2 Get the original RAMPZ register value */ \
|
||||
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
|
||||
A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \
|
||||
A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \
|
||||
A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \
|
||||
A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \
|
||||
A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \
|
||||
A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \
|
||||
A("pop r16") /* 2 Get the old SREG value */ \
|
||||
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
|
||||
A("pop r16") /* 2 Restore R16 value */ \
|
||||
A("reti") /* 4 Return from interrupt */ \
|
||||
: \
|
||||
: [timsk0] "i" ((uint16_t)&TIMSK0), \
|
||||
[timsk1] "i" ((uint16_t)&TIMSK1), \
|
||||
[msk0] "M" ((uint8_t)(1<<OCIE0B)),\
|
||||
[msk1] "M" ((uint8_t)(1<<OCIE1A)) \
|
||||
: \
|
||||
); \
|
||||
} \
|
||||
void TIMER1_COMPA_vect_bottom(void)
|
||||
|
||||
/* 14 cycles maximum latency */
|
||||
#define HAL_TEMP_TIMER_ISR \
|
||||
extern "C" void TIMER0_COMPB_vect (void) __attribute__ ((signal, naked, used, externally_visible)); \
|
||||
extern "C" void TIMER0_COMPB_vect_bottom(void) asm ("TIMER0_COMPB_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \
|
||||
void TIMER0_COMPB_vect (void) { \
|
||||
__asm__ __volatile__ ( \
|
||||
A("push r16") /* 2 Save R16 */ \
|
||||
A("in r16, __SREG__") /* 1 Get SREG */ \
|
||||
A("push r16") /* 2 Save SREG into stack */ \
|
||||
A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \
|
||||
A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \
|
||||
A("sts %[timsk0], r16") /* 2 And set the new value */ \
|
||||
A("sei") /* 1 Enable global interrupts - It is safe, as the temperature ISR is disabled, so we cannot reenter it */ \
|
||||
A("push r16") /* 2 Save TIMSK0 into stack */ \
|
||||
A("in r16, 0x3B") /* 1 Get RAMPZ register */ \
|
||||
A("push r16") /* 2 Save RAMPZ into stack */ \
|
||||
A("in r16, 0x3C") /* 1 Get EIND register */ \
|
||||
A("push r0") /* C runtime can modify all the following registers without restoring them */ \
|
||||
A("push r1") \
|
||||
A("push r18") \
|
||||
A("push r19") \
|
||||
A("push r20") \
|
||||
A("push r21") \
|
||||
A("push r22") \
|
||||
A("push r23") \
|
||||
A("push r24") \
|
||||
A("push r25") \
|
||||
A("push r26") \
|
||||
A("push r27") \
|
||||
A("push r30") \
|
||||
A("push r31") \
|
||||
A("clr r1") /* C runtime expects this register to be 0 */ \
|
||||
A("call TIMER0_COMPB_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \
|
||||
A("pop r31") \
|
||||
A("pop r30") \
|
||||
A("pop r27") \
|
||||
A("pop r26") \
|
||||
A("pop r25") \
|
||||
A("pop r24") \
|
||||
A("pop r23") \
|
||||
A("pop r22") \
|
||||
A("pop r21") \
|
||||
A("pop r20") \
|
||||
A("pop r19") \
|
||||
A("pop r18") \
|
||||
A("pop r1") \
|
||||
A("pop r0") \
|
||||
A("out 0x3C, r16") /* 1 Restore EIND register */ \
|
||||
A("pop r16") /* 2 Get the original RAMPZ register value */ \
|
||||
A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \
|
||||
A("pop r16") /* 2 Get the original TIMSK0 value but with temperature ISR disabled */ \
|
||||
A("ori r16,%[msk0]") /* 1 Enable temperature ISR */ \
|
||||
A("cli") /* 1 Disable global interrupts - We must do this, as we will reenable the temperature ISR, and we don´t want to reenter this handler until the current one is done */ \
|
||||
A("sts %[timsk0], r16") /* 2 And restore the old value */ \
|
||||
A("pop r16") /* 2 Get the old SREG */ \
|
||||
A("out __SREG__, r16") /* 1 And restore the SREG value */ \
|
||||
A("pop r16") /* 2 Restore R16 */ \
|
||||
A("reti") /* 4 Return from interrupt */ \
|
||||
: \
|
||||
: [timsk0] "i"((uint16_t)&TIMSK0), \
|
||||
[msk0] "M" ((uint8_t)(1<<OCIE0B)) \
|
||||
: \
|
||||
); \
|
||||
} \
|
||||
void TIMER0_COMPB_vect_bottom(void)
|
||||
|
||||
// ADC
|
||||
#ifdef DIDR2
|
||||
#define HAL_ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin & 0x07); }while(0)
|
||||
#else
|
||||
#define HAL_ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
|
||||
#endif
|
||||
|
||||
inline void HAL_adc_init(void) {
|
||||
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
|
||||
DIDR0 = 0;
|
||||
#ifdef DIDR2
|
||||
DIDR2 = 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
|
||||
#ifdef MUX5
|
||||
#define HAL_START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#else
|
||||
#define HAL_START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#endif
|
||||
|
||||
#define HAL_READ_ADC ADC
|
||||
|
||||
#define GET_PIN_MAP_PIN(index) index
|
||||
#define GET_PIN_MAP_INDEX(pin) pin
|
||||
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
|
||||
|
||||
#define HAL_SENSITIVE_PINS 0, 1
|
||||
|
||||
#endif // _HAL_AVR_H_
|
@ -23,21 +23,25 @@
|
||||
#ifndef MARLIN_CONFIG_H
|
||||
#define MARLIN_CONFIG_H
|
||||
|
||||
#include "fastio.h"
|
||||
#include "macros.h"
|
||||
#include "boards.h"
|
||||
#include "macros.h"
|
||||
#include "Version.h"
|
||||
#include "Configuration.h"
|
||||
#include "Conditionals_LCD.h"
|
||||
#include "Configuration_adv.h"
|
||||
#include "pins.h"
|
||||
|
||||
#if defined(__AVR__) && !defined(USBCON)
|
||||
#define HardwareSerial_h // trick to disable the standard HWserial
|
||||
#endif
|
||||
#include "Arduino.h"
|
||||
|
||||
#include "types.h"
|
||||
#include "HAL.h"
|
||||
#include "pins.h"
|
||||
#include "Conditionals_post.h"
|
||||
#include "SanityCheck.h"
|
||||
|
||||
#include <avr/pgmspace.h>
|
||||
#include "enum.h"
|
||||
#include "language.h"
|
||||
#include "utility.h"
|
||||
#include "serial.h"
|
||||
|
||||
#endif // MARLIN_CONFIG_H
|
||||
|
@ -27,7 +27,6 @@
|
||||
#ifndef __ENDSTOPS_H__
|
||||
#define __ENDSTOPS_H__
|
||||
|
||||
#include "enum.h"
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
class Endstops {
|
||||
|
@ -28,7 +28,6 @@
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
typedef int8_t pin_t;
|
||||
#ifndef _FASTIO_ARDUINO_H_
|
||||
#define _FASTIO_ARDUINO_H_
|
||||
|
||||
|
@ -47,12 +47,6 @@
|
||||
#define _O2 __attribute__((optimize("O2")))
|
||||
#define _O3 __attribute__((optimize("O3")))
|
||||
|
||||
// Bracket code that shouldn't be interrupted
|
||||
#ifndef CRITICAL_SECTION_START
|
||||
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
|
||||
#define CRITICAL_SECTION_END SREG = _sreg;
|
||||
#endif
|
||||
|
||||
// Clock speed factors
|
||||
#define CYCLES_PER_MICROSECOND (F_CPU / 1000000L) // 16 or 20
|
||||
#define INT0_PRESCALER 8
|
||||
|
@ -1394,7 +1394,7 @@ void Stepper::isr() {
|
||||
* 10µs = 160 or 200 cycles.
|
||||
*/
|
||||
#if EXTRA_CYCLES_XYZE > 20
|
||||
uint32_t pulse_start = TCNT0;
|
||||
hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
|
||||
#endif
|
||||
|
||||
#if HAS_X_STEP
|
||||
@ -1459,8 +1459,8 @@ void Stepper::isr() {
|
||||
|
||||
// For minimum pulse time wait before stopping pulses
|
||||
#if EXTRA_CYCLES_XYZE > 20
|
||||
while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
|
||||
pulse_start = TCNT0;
|
||||
while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
||||
pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
|
||||
#elif EXTRA_CYCLES_XYZE > 0
|
||||
DELAY_NS(EXTRA_CYCLES_XYZE * NANOSECONDS_PER_CYCLE);
|
||||
#endif
|
||||
@ -1495,7 +1495,7 @@ void Stepper::isr() {
|
||||
|
||||
// For minimum pulse time wait after stopping pulses also
|
||||
#if EXTRA_CYCLES_XYZE > 20
|
||||
if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
|
||||
if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
||||
#elif EXTRA_CYCLES_XYZE > 0
|
||||
if (i) DELAY_NS(EXTRA_CYCLES_XYZE * NANOSECONDS_PER_CYCLE);
|
||||
#endif
|
||||
@ -1736,8 +1736,8 @@ void Stepper::isr() {
|
||||
|
||||
// For minimum pulse time wait before stopping pulses
|
||||
#if EXTRA_CYCLES_E > 20
|
||||
while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
|
||||
pulse_start = TCNT0;
|
||||
while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
||||
pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM);
|
||||
#elif EXTRA_CYCLES_E > 0
|
||||
DELAY_NS(EXTRA_CYCLES_E * NANOSECONDS_PER_CYCLE);
|
||||
#endif
|
||||
@ -1760,7 +1760,7 @@ void Stepper::isr() {
|
||||
|
||||
// For minimum pulse time wait before looping
|
||||
#if EXTRA_CYCLES_E > 20
|
||||
if (e_steps) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
|
||||
if (e_steps) while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
||||
#elif EXTRA_CYCLES_E > 0
|
||||
if (e_steps) DELAY_NS(EXTRA_CYCLES_E * NANOSECONDS_PER_CYCLE);
|
||||
#endif
|
||||
@ -2056,11 +2056,16 @@ void Stepper::endstop_triggered(const AxisEnum axis) {
|
||||
}
|
||||
|
||||
void Stepper::report_positions() {
|
||||
CRITICAL_SECTION_START;
|
||||
|
||||
// Protect the access to the position.
|
||||
const bool was_enabled = STEPPER_ISR_ENABLED();
|
||||
if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
const int32_t xpos = count_position[X_AXIS],
|
||||
ypos = count_position[Y_AXIS],
|
||||
zpos = count_position[Z_AXIS];
|
||||
CRITICAL_SECTION_END;
|
||||
|
||||
if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
||||
#if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA
|
||||
SERIAL_PROTOCOLPGM(MSG_COUNT_A);
|
||||
@ -2101,8 +2106,8 @@ void Stepper::report_positions() {
|
||||
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
|
||||
|
||||
#if EXTRA_CYCLES_BABYSTEP > 20
|
||||
#define _SAVE_START const uint32_t pulse_start = TCNT0
|
||||
#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
|
||||
#define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(STEP_TIMER_NUM)
|
||||
#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(STEP_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
||||
#else
|
||||
#define _SAVE_START NOOP
|
||||
#if EXTRA_CYCLES_BABYSTEP > 0
|
||||
|
@ -52,11 +52,6 @@
|
||||
class Stepper;
|
||||
extern Stepper stepper;
|
||||
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
|
||||
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
|
||||
#define HAL_STEPPER_TIMER_RATE ((F_CPU) * 0.125)
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
|
@ -1066,9 +1066,7 @@ void Temperature::updateTemperaturesFromRawValues() {
|
||||
watchdog_reset();
|
||||
#endif
|
||||
|
||||
CRITICAL_SECTION_START;
|
||||
temp_meas_ready = false;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
|
||||
@ -1179,43 +1177,38 @@ void Temperature::init() {
|
||||
|
||||
#endif // HEATER_0_USES_MAX6675
|
||||
|
||||
#ifdef DIDR2
|
||||
#define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin & 0x07); }while(0)
|
||||
#else
|
||||
#define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
|
||||
#endif
|
||||
HAL_adc_init();
|
||||
|
||||
// Set analog inputs
|
||||
ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
|
||||
DIDR0 = 0;
|
||||
#ifdef DIDR2
|
||||
DIDR2 = 0;
|
||||
#endif
|
||||
#if HAS_TEMP_ADC_0
|
||||
ANALOG_SELECT(TEMP_0_PIN);
|
||||
HAL_ANALOG_SELECT(TEMP_0_PIN);
|
||||
#endif
|
||||
#if HAS_TEMP_ADC_1
|
||||
ANALOG_SELECT(TEMP_1_PIN);
|
||||
HAL_ANALOG_SELECT(TEMP_1_PIN);
|
||||
#endif
|
||||
#if HAS_TEMP_ADC_2
|
||||
ANALOG_SELECT(TEMP_2_PIN);
|
||||
HAL_ANALOG_SELECT(TEMP_2_PIN);
|
||||
#endif
|
||||
#if HAS_TEMP_ADC_3
|
||||
ANALOG_SELECT(TEMP_3_PIN);
|
||||
HAL_ANALOG_SELECT(TEMP_3_PIN);
|
||||
#endif
|
||||
#if HAS_TEMP_ADC_4
|
||||
ANALOG_SELECT(TEMP_4_PIN);
|
||||
HAL_ANALOG_SELECT(TEMP_4_PIN);
|
||||
#endif
|
||||
#if HAS_HEATED_BED
|
||||
ANALOG_SELECT(TEMP_BED_PIN);
|
||||
HAL_ANALOG_SELECT(TEMP_BED_PIN);
|
||||
#endif
|
||||
#if HAS_TEMP_CHAMBER
|
||||
ANALOG_SELECT(TEMP_CHAMBER_PIN);
|
||||
HAL_ANALOG_SELECT(TEMP_CHAMBER_PIN);
|
||||
#endif
|
||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||
ANALOG_SELECT(FILWIDTH_PIN);
|
||||
HAL_ANALOG_SELECT(FILWIDTH_PIN);
|
||||
#endif
|
||||
|
||||
// Use timer0 for temperature measurement
|
||||
// Interleave temperature interrupt with millies interrupt
|
||||
OCR0B = 128;
|
||||
ENABLE_TEMPERATURE_INTERRUPT();
|
||||
|
||||
#if HAS_AUTO_FAN_0
|
||||
#if E0_AUTO_FAN_PIN == FAN1_PIN
|
||||
SET_OUTPUT(E0_AUTO_FAN_PIN);
|
||||
@ -1277,11 +1270,6 @@ void Temperature::init() {
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Use timer0 for temperature measurement
|
||||
// Interleave temperature interrupt with millies interrupt
|
||||
OCR0B = 128;
|
||||
ENABLE_TEMPERATURE_INTERRUPT();
|
||||
|
||||
// Wait for temperature measurement to settle
|
||||
delay(250);
|
||||
|
||||
@ -1793,23 +1781,12 @@ void Temperature::set_current_temp_raw() {
|
||||
* - For PINS_DEBUGGING, monitor and report endstop pins
|
||||
* - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
|
||||
*/
|
||||
ISR(TIMER0_COMPB_vect) {
|
||||
/**
|
||||
* AVR has no hardware interrupt preemption, so emulate priorization
|
||||
* and preemption of this ISR by all others by disabling the timer
|
||||
* interrupt generation capability and reenabling global interrupts.
|
||||
* Any interrupt can then interrupt this handler and preempt it.
|
||||
* This ISR becomes the lowest priority one so the UART, Endstops
|
||||
* and Stepper ISRs can all preempt it.
|
||||
*/
|
||||
DISABLE_TEMPERATURE_INTERRUPT();
|
||||
sei();
|
||||
HAL_TEMP_TIMER_ISR {
|
||||
HAL_timer_isr_prologue(TEMP_TIMER_NUM);
|
||||
|
||||
Temperature::isr();
|
||||
|
||||
// Disable global interrupts and reenable this ISR
|
||||
cli();
|
||||
ENABLE_TEMPERATURE_INTERRUPT();
|
||||
HAL_timer_isr_epilogue(TEMP_TIMER_NUM);
|
||||
}
|
||||
|
||||
void Temperature::isr() {
|
||||
@ -2107,13 +2084,6 @@ void Temperature::isr() {
|
||||
* This gives each ADC 0.9765ms to charge up.
|
||||
*/
|
||||
|
||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
|
||||
#ifdef MUX5
|
||||
#define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#else
|
||||
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#endif
|
||||
|
||||
switch (adc_sensor_state) {
|
||||
|
||||
case SensorsReady: {
|
||||
@ -2133,25 +2103,25 @@ void Temperature::isr() {
|
||||
|
||||
#if HAS_TEMP_ADC_0
|
||||
case PrepareTemp_0:
|
||||
START_ADC(TEMP_0_PIN);
|
||||
HAL_START_ADC(TEMP_0_PIN);
|
||||
break;
|
||||
case MeasureTemp_0:
|
||||
raw_temp_value[0] += ADC;
|
||||
raw_temp_value[0] += HAL_READ_ADC;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_HEATED_BED
|
||||
case PrepareTemp_BED:
|
||||
START_ADC(TEMP_BED_PIN);
|
||||
HAL_START_ADC(TEMP_BED_PIN);
|
||||
break;
|
||||
case MeasureTemp_BED:
|
||||
raw_temp_bed_value += ADC;
|
||||
raw_temp_bed_value += HAL_READ_ADC;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_TEMP_CHAMBER
|
||||
case PrepareTemp_CHAMBER:
|
||||
START_ADC(TEMP_CHAMBER_PIN);
|
||||
HAL_START_ADC(TEMP_CHAMBER_PIN);
|
||||
break;
|
||||
case MeasureTemp_CHAMBER:
|
||||
raw_temp_chamber_value += ADC;
|
||||
@ -2160,55 +2130,55 @@ void Temperature::isr() {
|
||||
|
||||
#if HAS_TEMP_ADC_1
|
||||
case PrepareTemp_1:
|
||||
START_ADC(TEMP_1_PIN);
|
||||
HAL_START_ADC(TEMP_1_PIN);
|
||||
break;
|
||||
case MeasureTemp_1:
|
||||
raw_temp_value[1] += ADC;
|
||||
raw_temp_value[1] += HAL_READ_ADC;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_TEMP_ADC_2
|
||||
case PrepareTemp_2:
|
||||
START_ADC(TEMP_2_PIN);
|
||||
HAL_START_ADC(TEMP_2_PIN);
|
||||
break;
|
||||
case MeasureTemp_2:
|
||||
raw_temp_value[2] += ADC;
|
||||
raw_temp_value[2] += HAL_READ_ADC;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_TEMP_ADC_3
|
||||
case PrepareTemp_3:
|
||||
START_ADC(TEMP_3_PIN);
|
||||
HAL_START_ADC(TEMP_3_PIN);
|
||||
break;
|
||||
case MeasureTemp_3:
|
||||
raw_temp_value[3] += ADC;
|
||||
raw_temp_value[3] += HAL_READ_ADC;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_TEMP_ADC_4
|
||||
case PrepareTemp_4:
|
||||
START_ADC(TEMP_4_PIN);
|
||||
HAL_START_ADC(TEMP_4_PIN);
|
||||
break;
|
||||
case MeasureTemp_4:
|
||||
raw_temp_value[4] += ADC;
|
||||
raw_temp_value[4] += HAL_READ_ADC;
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||
case Prepare_FILWIDTH:
|
||||
START_ADC(FILWIDTH_PIN);
|
||||
HAL_START_ADC(FILWIDTH_PIN);
|
||||
break;
|
||||
case Measure_FILWIDTH:
|
||||
if (ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
|
||||
if (HAL_READ_ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
|
||||
raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
|
||||
raw_filwidth_value += ((unsigned long)ADC << 7); // Add new ADC reading, scaled by 128
|
||||
raw_filwidth_value += ((unsigned long)HAL_READ_ADC << 7); // Add new ADC reading, scaled by 128
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(ADC_KEYPAD)
|
||||
case Prepare_ADC_KEY:
|
||||
START_ADC(ADC_KEYPAD_PIN);
|
||||
HAL_START_ADC(ADC_KEYPAD_PIN);
|
||||
break;
|
||||
case Measure_ADC_KEY:
|
||||
if (ADCKey_count < 16) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user