From 3b431f2f726960b912462b8d1943b16d9a68d6b0 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Thu, 23 Nov 2017 18:13:17 -0600 Subject: [PATCH] Arrange G26 functions in dependency order --- Marlin/G26_Mesh_Validation_Tool.cpp | 1050 +++++++++++++-------------- Marlin/ubl.h | 1 - Marlin/ubl_G29.cpp | 28 +- Marlin/ultralcd.cpp | 9 +- Marlin/ultralcd.h | 7 + 5 files changed, 536 insertions(+), 559 deletions(-) diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp index 6d3e94970..23dc19faf 100644 --- a/Marlin/G26_Mesh_Validation_Tool.cpp +++ b/Marlin/G26_Mesh_Validation_Tool.cpp @@ -55,7 +55,7 @@ #endif #define G26_OK false - #define G26_ERROR true + #define G26_ERR true /** * G26 Mesh Validation Tool @@ -142,10 +142,6 @@ void prepare_move_to_destination(); inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } inline void set_current_from_destination() { COPY(current_position, destination); } - #if ENABLED(NEWPANEL) - void lcd_setstatusPGM(const char* const message, const int8_t level); - void chirp_at_user(); - #endif // Private functions @@ -155,49 +151,24 @@ static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched // retracts/recovers won't result in a bad state. - float valid_trig_angle(float); - void G26_line_to_destination(const float &feed_rate) { - const float save_feedrate = feedrate_mm_s; - feedrate_mm_s = feed_rate; // use specified feed rate - prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian for UBL or ubl.prepare_linear_move_to for UBL_DELTA - feedrate_mm_s = save_feedrate; // restore global feed rate - } - static bool exit_from_g26(); - static bool parse_G26_parameters(); - static mesh_index_pair find_closest_circle_to_print(const float&, const float&); - static bool look_for_lines_to_connect(); - static bool turn_on_heaters(); - static bool prime_nozzle(); - static void retract_filament(const float where[XYZE]); - static void recover_filament(const float where[XYZE]); - static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); - static void move_to(const float&, const float&, const float&, const float&); - #if ENABLED(NEWPANEL) - extern bool ubl_lcd_clicked(); - #endif - static void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); } + static float g26_extrusion_multiplier, + g26_retraction_multiplier, + g26_layer_height, + g26_prime_length, + g26_x_pos, g26_y_pos; - static float g26_extrusion_multiplier, - g26_retraction_multiplier, - g26_nozzle, - g26_filament_diameter, - g26_prime_length, - g26_x_pos, g26_y_pos, - g26_ooze_amount, - g26_layer_height; static int16_t g26_bed_temp, - g26_hotend_temp, - g26_repeats; - static int8_t g26_prime_flag; - static bool g26_continue_with_closest, g26_keep_heaters_on; + g26_hotend_temp; + + static int8_t g26_prime_flag; #if ENABLED(NEWPANEL) /** - * Detect ubl_lcd_clicked, debounce it, and return true for cancel + * Detect is_lcd_clicked, debounce it, and return true for cancel */ bool user_canceled() { - if (!ubl_lcd_clicked()) return false; + if (!is_lcd_clicked()) return false; safe_delay(10); // Wait for click to settle #if ENABLED(ULTRA_LCD) @@ -205,18 +176,385 @@ lcd_quick_feedback(); #endif - while (!ubl_lcd_clicked()) idle(); // Wait for button release + while (!is_lcd_clicked()) idle(); // Wait for button release // If the button is suddenly pressed again, // ask the user to resolve the issue lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear... - while (ubl_lcd_clicked()) idle(); // unless this loop happens + while (is_lcd_clicked()) idle(); // unless this loop happens lcd_reset_status(); return true; } #endif + #if ENABLED(NEWPANEL) + bool exit_from_g26() { + lcd_setstatusPGM(PSTR("Leaving G26"), -1); + while (is_lcd_clicked()) idle(); + return G26_ERR; + } + #endif + + void G26_line_to_destination(const float &feed_rate) { + const float save_feedrate = feedrate_mm_s; + feedrate_mm_s = feed_rate; // use specified feed rate + prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian for UBL or ubl.prepare_linear_move_to for UBL_DELTA + feedrate_mm_s = save_feedrate; // restore global feed rate + } + + void move_to(const float &x, const float &y, const float &z, const float &e_delta) { + float feed_value; + static float last_z = -999.99; + + bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. + + if (z != last_z) { + last_z = z; + feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate + + destination[X_AXIS] = current_position[X_AXIS]; + destination[Y_AXIS] = current_position[Y_AXIS]; + destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. + destination[E_AXIS] = current_position[E_AXIS]; + + G26_line_to_destination(feed_value); + + stepper.synchronize(); + set_destination_from_current(); + } + + // Check if X or Y is involved in the movement. + // Yes: a 'normal' movement. No: a retract() or recover() + feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; + + if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); + + destination[X_AXIS] = x; + destination[Y_AXIS] = y; + destination[E_AXIS] += e_delta; + + G26_line_to_destination(feed_value); + + stepper.synchronize(); + set_destination_from_current(); + } + + FORCE_INLINE void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); } + + void retract_filament(const float where[XYZE]) { + if (!g26_retracted) { // Only retract if we are not already retracted! + g26_retracted = true; + move_to(where, -1.0 * g26_retraction_multiplier); + } + } + + void recover_filament(const float where[XYZE]) { + if (g26_retracted) { // Only un-retract if we are retracted. + move_to(where, 1.2 * g26_retraction_multiplier); + g26_retracted = false; + } + } + + /** + * Prime the nozzle if needed. Return true on error. + */ + inline bool prime_nozzle() { + + #if ENABLED(NEWPANEL) + float Total_Prime = 0.0; + + if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged + + lcd_external_control = true; + lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99); + lcd_chirp(); + + set_destination_from_current(); + + recover_filament(destination); // Make sure G26 doesn't think the filament is retracted(). + + while (!is_lcd_clicked()) { + lcd_chirp(); + destination[E_AXIS] += 0.25; + #ifdef PREVENT_LENGTHY_EXTRUDE + Total_Prime += 0.25; + if (Total_Prime >= EXTRUDE_MAXLENGTH) return G26_ERR; + #endif + G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); + + stepper.synchronize(); // Without this synchronize, the purge is more consistent, + // but because the planner has a buffer, we won't be able + // to stop as quickly. So we put up with the less smooth + // action to give the user a more responsive 'Stop'. + set_destination_from_current(); + idle(); + } + + while (is_lcd_clicked()) idle(); // Debounce Encoder Wheel + + #if ENABLED(ULTRA_LCD) + strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue; + // So... We cheat to get a message up. + lcd_setstatusPGM(PSTR("Done Priming"), 99); + lcd_quick_feedback(); + lcd_external_control = false; + #endif + } + else + #endif + { + #if ENABLED(ULTRA_LCD) + lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99); + lcd_quick_feedback(); + #endif + set_destination_from_current(); + destination[E_AXIS] += g26_prime_length; + G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); + stepper.synchronize(); + set_destination_from_current(); + retract_filament(destination); + } + + return G26_OK; + } + + mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) { + float closest = 99999.99; + mesh_index_pair return_val; + + return_val.x_index = return_val.y_index = -1; + + for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { + for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { + if (!is_bit_set(circle_flags, i, j)) { + const float mx = _GET_MESH_X(i), // We found a circle that needs to be printed + my = _GET_MESH_Y(j); + + // Get the distance to this intersection + float f = HYPOT(X - mx, Y - my); + + // It is possible that we are being called with the values + // to let us find the closest circle to the start position. + // But if this is not the case, add a small weighting to the + // distance calculation to help it choose a better place to continue. + f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0; + + // Add in the specified amount of Random Noise to our search + if (random_deviation > 1.0) + f += random(0.0, random_deviation); + + if (f < closest) { + closest = f; // We found a closer location that is still + return_val.x_index = i; // un-printed --- save the data for it + return_val.y_index = j; + return_val.distance = closest; + } + } + } + } + bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done. + return return_val; + } + + /** + * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one + * to the other. But there are really three sets of coordinates involved. The first coordinate + * is the present location of the nozzle. We don't necessarily want to print from this location. + * We first need to move the nozzle to the start of line segment where we want to print. Once + * there, we can use the two coordinates supplied to draw the line. + * + * Note: Although we assume the first set of coordinates is the start of the line and the second + * set of coordinates is the end of the line, it does not always work out that way. This function + * optimizes the movement to minimize the travel distance before it can start printing. This saves + * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does + * cause a lot of very little short retracement of th nozzle when it draws the very first line + * segment of a 'circle'. The time this requires is very short and is easily saved by the other + * cases where the optimization comes into play. + */ + void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { + const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment + dy_s = current_position[Y_AXIS] - sy, + dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 + // to save computation time + dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment + dy_e = current_position[Y_AXIS] - ey, + dist_end = HYPOT2(dx_e, dy_e), + + line_length = HYPOT(ex - sx, ey - sy); + + // If the end point of the line is closer to the nozzle, flip the direction, + // moving from the end to the start. On very small lines the optimization isn't worth it. + if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) + return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); + + // Decide whether to retract & bump + + if (dist_start > 2.0) { + retract_filament(destination); + //todo: parameterize the bump height with a define + move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping + move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped + } + + move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump + + const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier; + + recover_filament(destination); + move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion + } + + inline bool look_for_lines_to_connect() { + float sx, sy, ex, ey; + + for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { + for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { + + #if ENABLED(NEWPANEL) + if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation + #endif + + if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X. + // This is already a half circle because we are at the edge of the bed. + + if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left + if (!is_bit_set(horizontal_mesh_line_flags, i, j)) { + + // + // We found two circles that need a horizontal line to connect them + // Print it! + // + sx = _GET_MESH_X( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge + ex = _GET_MESH_X(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge + + sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); + sy = ey = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1); + ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); + + if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) { + + if (g26_debug_flag) { + SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); + SERIAL_ECHOPAIR(", sy=", sy); + SERIAL_ECHOPAIR(") -> (ex=", ex); + SERIAL_ECHOPAIR(", ey=", ey); + SERIAL_CHAR(')'); + SERIAL_EOL(); + //debug_current_and_destination(PSTR("Connecting horizontal line.")); + } + print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height); + } + bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it + } + } + + if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y. + // This is already a half circle because we are at the edge of the bed. + + if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down + if (!is_bit_set( vertical_mesh_line_flags, i, j)) { + // + // We found two circles that need a vertical line to connect them + // Print it! + // + sy = _GET_MESH_Y( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge + ey = _GET_MESH_Y(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge + + sx = ex = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1); + sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); + ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); + + if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) { + + if (g26_debug_flag) { + SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); + SERIAL_ECHOPAIR(", sy=", sy); + SERIAL_ECHOPAIR(") -> (ex=", ex); + SERIAL_ECHOPAIR(", ey=", ey); + SERIAL_CHAR(')'); + SERIAL_EOL(); + + #if ENABLED(AUTO_BED_LEVELING_UBL) + debug_current_and_destination(PSTR("Connecting vertical line.")); + #endif + } + print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height); + } + bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped + } + } + } + } + } + } + return false; + } + + float valid_trig_angle(float d) { + while (d > 360.0) d -= 360.0; + while (d < 0.0) d += 360.0; + return d; + } + + /** + * Turn on the bed and nozzle heat and + * wait for them to get up to temperature. + */ + bool turn_on_heaters() { + millis_t next = millis() + 5000UL; + #if HAS_TEMP_BED + #if ENABLED(ULTRA_LCD) + if (g26_bed_temp > 25) { + lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99); + lcd_quick_feedback(); + lcd_external_control = true; + #endif + thermalManager.setTargetBed(g26_bed_temp); + while (abs(thermalManager.degBed() - g26_bed_temp) > 3) { + + #if ENABLED(NEWPANEL) + if (is_lcd_clicked()) return exit_from_g26(); + #endif + + if (ELAPSED(millis(), next)) { + next = millis() + 5000UL; + print_heaterstates(); + SERIAL_EOL(); + } + idle(); + } + #if ENABLED(ULTRA_LCD) + } + lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99); + lcd_quick_feedback(); + #endif + #endif + + // Start heating the nozzle and wait for it to reach temperature. + thermalManager.setTargetHotend(g26_hotend_temp, 0); + while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) { + + #if ENABLED(NEWPANEL) + if (is_lcd_clicked()) return exit_from_g26(); + #endif + + if (ELAPSED(millis(), next)) { + next = millis() + 5000UL; + print_heaterstates(); + SERIAL_EOL(); + } + idle(); + } + + #if ENABLED(ULTRA_LCD) + lcd_reset_status(); + lcd_quick_feedback(); + #endif + + return G26_OK; + } + /** * G26: Mesh Validation Pattern generation. * @@ -231,7 +569,134 @@ // Don't allow Mesh Validation without homing first, // or if the parameter parsing did not go OK, abort - if (axis_unhomed_error() || parse_G26_parameters()) return; + if (axis_unhomed_error()) return; + + g26_extrusion_multiplier = EXTRUSION_MULTIPLIER; + g26_retraction_multiplier = RETRACTION_MULTIPLIER; + g26_layer_height = MESH_TEST_LAYER_HEIGHT; + g26_prime_length = PRIME_LENGTH; + g26_bed_temp = MESH_TEST_BED_TEMP; + g26_hotend_temp = MESH_TEST_HOTEND_TEMP; + g26_prime_flag = 0; + + float g26_nozzle = MESH_TEST_NOZZLE_SIZE, + g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA, + g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT); + + bool g26_continue_with_closest = parser.boolval('C'), + g26_keep_heaters_on = parser.boolval('K'); + + if (parser.seenval('B')) { + g26_bed_temp = parser.value_celsius(); + if (!WITHIN(g26_bed_temp, 15, 140)) { + SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); + return G26_ERR; + } + } + + if (parser.seenval('L')) { + g26_layer_height = parser.value_linear_units(); + if (!WITHIN(g26_layer_height, 0.0, 2.0)) { + SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); + return G26_ERR; + } + } + + if (parser.seen('Q')) { + if (parser.has_value()) { + g26_retraction_multiplier = parser.value_float(); + if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) { + SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); + return G26_ERR; + } + } + else { + SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified."); + return G26_ERR; + } + } + + if (parser.seenval('S')) { + g26_nozzle = parser.value_float(); + if (!WITHIN(g26_nozzle, 0.1, 1.0)) { + SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); + return G26_ERR; + } + } + + if (parser.seen('P')) { + if (!parser.has_value()) { + #if ENABLED(NEWPANEL) + g26_prime_flag = -1; + #else + SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD."); + return G26_ERR; + #endif + } + else { + g26_prime_flag++; + g26_prime_length = parser.value_linear_units(); + if (!WITHIN(g26_prime_length, 0.0, 25.0)) { + SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); + return G26_ERR; + } + } + } + + if (parser.seenval('F')) { + g26_filament_diameter = parser.value_linear_units(); + if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) { + SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); + return G26_ERR; + } + } + g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to + // scale up or down the length needed to get the + // same volume of filament + + g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size + + if (parser.seenval('H')) { + g26_hotend_temp = parser.value_celsius(); + if (!WITHIN(g26_hotend_temp, 165, 280)) { + SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); + return G26_ERR; + } + } + + if (parser.seen('U')) { + randomSeed(millis()); + // This setting will persist for the next G26 + random_deviation = parser.has_value() ? parser.value_float() : 50.0; + } + + int16_t g26_repeats; + #if ENABLED(NEWPANEL) + g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1); + #else + if (!parser.seen('R')) { + SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD."); + return G26_ERR; + } + else + g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1; + #endif + if (g26_repeats < 1) { + SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1."); + return G26_ERR; + } + + g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS]; + g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS]; + if (!position_is_reachable(g26_x_pos, g26_y_pos)) { + SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds."); + return G26_ERR; + } + + /** + * Wait until all parameters are verified before altering the state! + */ + set_bed_leveling_enabled(!parser.seen('D')); if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); @@ -385,9 +850,9 @@ move_to(destination, 0); // Raise the nozzle //debug_current_and_destination(PSTR("done doing Z-Raise.")); - destination[X_AXIS] = g26_x_pos; // Move back to the starting position + destination[X_AXIS] = g26_x_pos; // Move back to the starting position destination[Y_AXIS] = g26_y_pos; - //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is + //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is move_to(destination, 0); // Move back to the starting position //debug_current_and_destination(PSTR("done doing X/Y move.")); @@ -404,499 +869,4 @@ } } - float valid_trig_angle(float d) { - while (d > 360.0) d -= 360.0; - while (d < 0.0) d += 360.0; - return d; - } - - mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) { - float closest = 99999.99; - mesh_index_pair return_val; - - return_val.x_index = return_val.y_index = -1; - - for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { - for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { - if (!is_bit_set(circle_flags, i, j)) { - const float mx = _GET_MESH_X(i), // We found a circle that needs to be printed - my = _GET_MESH_Y(j); - - // Get the distance to this intersection - float f = HYPOT(X - mx, Y - my); - - // It is possible that we are being called with the values - // to let us find the closest circle to the start position. - // But if this is not the case, add a small weighting to the - // distance calculation to help it choose a better place to continue. - f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0; - - // Add in the specified amount of Random Noise to our search - if (random_deviation > 1.0) - f += random(0.0, random_deviation); - - if (f < closest) { - closest = f; // We found a closer location that is still - return_val.x_index = i; // un-printed --- save the data for it - return_val.y_index = j; - return_val.distance = closest; - } - } - } - } - bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done. - return return_val; - } - - bool look_for_lines_to_connect() { - float sx, sy, ex, ey; - - for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { - for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { - - #if ENABLED(NEWPANEL) - if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation - #endif - - if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X. - // This is already a half circle because we are at the edge of the bed. - - if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left - if (!is_bit_set(horizontal_mesh_line_flags, i, j)) { - - // - // We found two circles that need a horizontal line to connect them - // Print it! - // - sx = _GET_MESH_X( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge - ex = _GET_MESH_X(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge - - sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); - sy = ey = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1); - ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); - - if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) { - - if (g26_debug_flag) { - SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); - SERIAL_ECHOPAIR(", sy=", sy); - SERIAL_ECHOPAIR(") -> (ex=", ex); - SERIAL_ECHOPAIR(", ey=", ey); - SERIAL_CHAR(')'); - SERIAL_EOL(); - //debug_current_and_destination(PSTR("Connecting horizontal line.")); - } - print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height); - } - bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it - } - } - - if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y. - // This is already a half circle because we are at the edge of the bed. - - if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down - if (!is_bit_set( vertical_mesh_line_flags, i, j)) { - // - // We found two circles that need a vertical line to connect them - // Print it! - // - sy = _GET_MESH_Y( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge - ey = _GET_MESH_Y(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge - - sx = ex = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1); - sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); - ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); - - if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) { - - if (g26_debug_flag) { - SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); - SERIAL_ECHOPAIR(", sy=", sy); - SERIAL_ECHOPAIR(") -> (ex=", ex); - SERIAL_ECHOPAIR(", ey=", ey); - SERIAL_CHAR(')'); - SERIAL_EOL(); - - #if ENABLED(AUTO_BED_LEVELING_UBL) - debug_current_and_destination(PSTR("Connecting vertical line.")); - #endif - } - print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height); - } - bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped - } - } - } - } - } - } - return false; - } - - void move_to(const float &x, const float &y, const float &z, const float &e_delta) { - float feed_value; - static float last_z = -999.99; - - bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. - - if (z != last_z) { - last_z = z; - feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate - - destination[X_AXIS] = current_position[X_AXIS]; - destination[Y_AXIS] = current_position[Y_AXIS]; - destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. - destination[E_AXIS] = current_position[E_AXIS]; - - G26_line_to_destination(feed_value); - - stepper.synchronize(); - set_destination_from_current(); - } - - // Check if X or Y is involved in the movement. - // Yes: a 'normal' movement. No: a retract() or recover() - feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; - - if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); - - destination[X_AXIS] = x; - destination[Y_AXIS] = y; - destination[E_AXIS] += e_delta; - - G26_line_to_destination(feed_value); - - stepper.synchronize(); - set_destination_from_current(); - - } - - void retract_filament(const float where[XYZE]) { - if (!g26_retracted) { // Only retract if we are not already retracted! - g26_retracted = true; - move_to(where, -1.0 * g26_retraction_multiplier); - } - } - - void recover_filament(const float where[XYZE]) { - if (g26_retracted) { // Only un-retract if we are retracted. - move_to(where, 1.2 * g26_retraction_multiplier); - g26_retracted = false; - } - } - - /** - * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one - * to the other. But there are really three sets of coordinates involved. The first coordinate - * is the present location of the nozzle. We don't necessarily want to print from this location. - * We first need to move the nozzle to the start of line segment where we want to print. Once - * there, we can use the two coordinates supplied to draw the line. - * - * Note: Although we assume the first set of coordinates is the start of the line and the second - * set of coordinates is the end of the line, it does not always work out that way. This function - * optimizes the movement to minimize the travel distance before it can start printing. This saves - * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does - * cause a lot of very little short retracement of th nozzle when it draws the very first line - * segment of a 'circle'. The time this requires is very short and is easily saved by the other - * cases where the optimization comes into play. - */ - void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { - const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment - dy_s = current_position[Y_AXIS] - sy, - dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 - // to save computation time - dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment - dy_e = current_position[Y_AXIS] - ey, - dist_end = HYPOT2(dx_e, dy_e), - - line_length = HYPOT(ex - sx, ey - sy); - - // If the end point of the line is closer to the nozzle, flip the direction, - // moving from the end to the start. On very small lines the optimization isn't worth it. - if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) - return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); - - // Decide whether to retract & bump - - if (dist_start > 2.0) { - retract_filament(destination); - //todo: parameterize the bump height with a define - move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping - move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped - } - - move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump - - const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier; - - recover_filament(destination); - move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion - } - - /** - * This function used to be inline code in G26. But there are so many - * parameters it made sense to turn them into static globals and get - * this code out of sight of the main routine. - */ - bool parse_G26_parameters() { - - g26_extrusion_multiplier = EXTRUSION_MULTIPLIER; - g26_retraction_multiplier = RETRACTION_MULTIPLIER; - g26_nozzle = MESH_TEST_NOZZLE_SIZE; - g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA; - g26_layer_height = MESH_TEST_LAYER_HEIGHT; - g26_prime_length = PRIME_LENGTH; - g26_bed_temp = MESH_TEST_BED_TEMP; - g26_hotend_temp = MESH_TEST_HOTEND_TEMP; - g26_prime_flag = 0; - - g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT); - g26_keep_heaters_on = parser.boolval('K'); - g26_continue_with_closest = parser.boolval('C'); - - if (parser.seenval('B')) { - g26_bed_temp = parser.value_celsius(); - if (!WITHIN(g26_bed_temp, 15, 140)) { - SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); - return G26_ERROR; - } - } - - if (parser.seenval('L')) { - g26_layer_height = parser.value_linear_units(); - if (!WITHIN(g26_layer_height, 0.0, 2.0)) { - SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); - return G26_ERROR; - } - } - - if (parser.seen('Q')) { - if (parser.has_value()) { - g26_retraction_multiplier = parser.value_float(); - if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) { - SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); - return G26_ERROR; - } - } - else { - SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified."); - return G26_ERROR; - } - } - - if (parser.seenval('S')) { - g26_nozzle = parser.value_float(); - if (!WITHIN(g26_nozzle, 0.1, 1.0)) { - SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); - return G26_ERROR; - } - } - - if (parser.seen('P')) { - if (!parser.has_value()) { - #if ENABLED(NEWPANEL) - g26_prime_flag = -1; - #else - SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD."); - return G26_ERROR; - #endif - } - else { - g26_prime_flag++; - g26_prime_length = parser.value_linear_units(); - if (!WITHIN(g26_prime_length, 0.0, 25.0)) { - SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); - return G26_ERROR; - } - } - } - - if (parser.seenval('F')) { - g26_filament_diameter = parser.value_linear_units(); - if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) { - SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); - return G26_ERROR; - } - } - g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to - // scale up or down the length needed to get the - // same volume of filament - - g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size - - if (parser.seenval('H')) { - g26_hotend_temp = parser.value_celsius(); - if (!WITHIN(g26_hotend_temp, 165, 280)) { - SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); - return G26_ERROR; - } - } - - if (parser.seen('U')) { - randomSeed(millis()); - // This setting will persist for the next G26 - random_deviation = parser.has_value() ? parser.value_float() : 50.0; - } - - #if ENABLED(NEWPANEL) - g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1); - #else - if (!parser.seen('R')) { - SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD."); - return G26_ERROR; - } - else - g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1; - #endif - if (g26_repeats < 1) { - SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1."); - return G26_ERROR; - } - - g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS]; - g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS]; - if (!position_is_reachable(g26_x_pos, g26_y_pos)) { - SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds."); - return G26_ERROR; - } - - /** - * Wait until all parameters are verified before altering the state! - */ - set_bed_leveling_enabled(!parser.seen('D')); - - return G26_OK; - } - - #if ENABLED(NEWPANEL) - bool exit_from_g26() { - lcd_setstatusPGM(PSTR("Leaving G26"), -1); - while (ubl_lcd_clicked()) idle(); - return G26_ERROR; - } - #endif - - /** - * Turn on the bed and nozzle heat and - * wait for them to get up to temperature. - */ - bool turn_on_heaters() { - millis_t next = millis() + 5000UL; - #if HAS_TEMP_BED - #if ENABLED(ULTRA_LCD) - if (g26_bed_temp > 25) { - lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99); - lcd_quick_feedback(); - lcd_external_control = true; - #endif - thermalManager.setTargetBed(g26_bed_temp); - while (abs(thermalManager.degBed() - g26_bed_temp) > 3) { - - #if ENABLED(NEWPANEL) - if (ubl_lcd_clicked()) return exit_from_g26(); - #endif - - if (ELAPSED(millis(), next)) { - next = millis() + 5000UL; - print_heaterstates(); - SERIAL_EOL(); - } - idle(); - } - #if ENABLED(ULTRA_LCD) - } - lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99); - lcd_quick_feedback(); - #endif - #endif - - // Start heating the nozzle and wait for it to reach temperature. - thermalManager.setTargetHotend(g26_hotend_temp, 0); - while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) { - - #if ENABLED(NEWPANEL) - if (ubl_lcd_clicked()) return exit_from_g26(); - #endif - - if (ELAPSED(millis(), next)) { - next = millis() + 5000UL; - print_heaterstates(); - SERIAL_EOL(); - } - idle(); - } - - #if ENABLED(ULTRA_LCD) - lcd_reset_status(); - lcd_quick_feedback(); - #endif - - return G26_OK; - } - - /** - * Prime the nozzle if needed. Return true on error. - */ - bool prime_nozzle() { - - #if ENABLED(NEWPANEL) - float Total_Prime = 0.0; - - if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged - - lcd_external_control = true; - lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99); - chirp_at_user(); - - set_destination_from_current(); - - recover_filament(destination); // Make sure G26 doesn't think the filament is retracted(). - - while (!ubl_lcd_clicked()) { - chirp_at_user(); - destination[E_AXIS] += 0.25; - #ifdef PREVENT_LENGTHY_EXTRUDE - Total_Prime += 0.25; - if (Total_Prime >= EXTRUDE_MAXLENGTH) return G26_ERROR; - #endif - G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); - - stepper.synchronize(); // Without this synchronize, the purge is more consistent, - // but because the planner has a buffer, we won't be able - // to stop as quickly. So we put up with the less smooth - // action to give the user a more responsive 'Stop'. - set_destination_from_current(); - idle(); - } - - while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel - - #if ENABLED(ULTRA_LCD) - strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue; - // So... We cheat to get a message up. - lcd_setstatusPGM(PSTR("Done Priming"), 99); - lcd_quick_feedback(); - lcd_external_control = false; - #endif - } - else { - #else - { - #endif - #if ENABLED(ULTRA_LCD) - lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99); - lcd_quick_feedback(); - #endif - set_destination_from_current(); - destination[E_AXIS] += g26_prime_length; - G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); - stepper.synchronize(); - set_destination_from_current(); - retract_filament(destination); - } - - return G26_OK; - } - #endif // G26_MESH_VALIDATION diff --git a/Marlin/ubl.h b/Marlin/ubl.h index 24bcfb0a8..2b73d3cfd 100644 --- a/Marlin/ubl.h +++ b/Marlin/ubl.h @@ -50,7 +50,6 @@ // External references char *ftostr43sign(const float&, char); - bool ubl_lcd_clicked(); void home_all_axes(); extern uint8_t ubl_cnt; diff --git a/Marlin/ubl_G29.cpp b/Marlin/ubl_G29.cpp index 43c187ca3..930665931 100644 --- a/Marlin/ubl_G29.cpp +++ b/Marlin/ubl_G29.cpp @@ -47,7 +47,6 @@ float lcd_mesh_edit(); void lcd_z_offset_edit_setup(float); extern void _lcd_ubl_output_map_lcd(); - extern bool ubl_lcd_clicked(); float lcd_z_offset_edit(); #endif @@ -750,11 +749,11 @@ if (do_ubl_mesh_map) display_map(g29_map_type); #if ENABLED(NEWPANEL) - if (ubl_lcd_clicked()) { + if (is_lcd_clicked()) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n"); lcd_quick_feedback(); STOW_PROBE(); - while (ubl_lcd_clicked()) idle(); + while (is_lcd_clicked()) idle(); lcd_external_control = false; restore_ubl_active_state_and_leave(); safe_delay(50); // Debounce the Encoder wheel @@ -893,13 +892,14 @@ #endif // HAS_BED_PROBE #if ENABLED(NEWPANEL) + float unified_bed_leveling::measure_point_with_encoder() { - while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel + while (is_lcd_clicked()) delay(50); // wait for user to release encoder wheel delay(50); // debounce KEEPALIVE_STATE(PAUSED_FOR_USER); - while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! + while (!is_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (encoder_diff) { do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff)); @@ -989,9 +989,9 @@ const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step //const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click - while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel + while (is_lcd_clicked()) delay(50); // wait for user to release encoder wheel delay(50); // debounce - while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! + while (!is_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (encoder_diff) { do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step); @@ -999,11 +999,11 @@ } } - // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is + // this sequence to detect an is_lcd_clicked() debounce it and leave if it is // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This // should be redone and compressed. const millis_t nxt = millis() + 1500L; - while (ubl_lcd_clicked()) { // debounce and watch for abort + while (is_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); @@ -1011,7 +1011,7 @@ #if ENABLED(NEWPANEL) lcd_quick_feedback(); - while (ubl_lcd_clicked()) idle(); + while (is_lcd_clicked()) idle(); lcd_external_control = false; #endif @@ -1528,7 +1528,7 @@ do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited #endif idle(); - } while (!ubl_lcd_clicked()); + } while (!is_lcd_clicked()); if (!lcd_map_control) lcd_return_to_status(); @@ -1537,18 +1537,18 @@ // Let's work on specifying a proper API for the LCD ASAP, OK? lcd_external_control = true; - // this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is + // this sequence to detect an is_lcd_clicked() debounce it and leave if it is // a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This // should be redone and compressed. const millis_t nxt = millis() + 1500UL; - while (ubl_lcd_clicked()) { // debounce and watch for abort + while (is_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { lcd_return_to_status(); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); LCD_MESSAGEPGM(MSG_EDITING_STOPPED); - while (ubl_lcd_clicked()) idle(); + while (is_lcd_clicked()) idle(); goto FINE_TUNE_EXIT; } diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index ed03be7ec..f16796be2 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -5091,17 +5091,18 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; } bool lcd_detected() { return true; } #endif - #if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION) - void chirp_at_user() { + #if ENABLED(G26_MESH_VALIDATION) + void lcd_chirp() { #if ENABLED(LCD_USE_I2C_BUZZER) lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); #elif PIN_EXISTS(BEEPER) buzzer.tone(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ); #endif } + #endif - bool ubl_lcd_clicked() { return LCD_CLICKED; } - + #if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION) + bool is_lcd_clicked() { return LCD_CLICKED; } #endif #endif // ULTIPANEL diff --git a/Marlin/ultralcd.h b/Marlin/ultralcd.h index 3281b5e5a..69a536a8f 100644 --- a/Marlin/ultralcd.h +++ b/Marlin/ultralcd.h @@ -29,6 +29,9 @@ #if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION) extern bool lcd_external_control; + #if ENABLED(G26_MESH_VALIDATION) + void lcd_chirp(); + #endif #endif #define BUTTON_EXISTS(BN) (defined(BTN_## BN) && BTN_## BN >= 0) @@ -171,6 +174,10 @@ #define LCD_CLICKED false #endif + #if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION) + bool is_lcd_clicked(); + #endif + #if ENABLED(LCD_SET_PROGRESS_MANUALLY) && (ENABLED(LCD_PROGRESS_BAR) || ENABLED(DOGLCD)) extern uint8_t progress_bar_percent; #endif