More data in UBL class, make it a static class

- Make all `unified_bed_leveling` data/methods static
- Move some UBL-related variables into the class
- Replace `map_[xy]_index_to_bed_location` with `mesh_index_to_[xy]pos`
This commit is contained in:
Scott Lahteine 2017-03-31 00:15:32 -05:00
parent edbc024d76
commit 4902fd4e95
7 changed files with 279 additions and 279 deletions

View File

@ -265,8 +265,8 @@
location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now. location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
circle_x = ubl.map_x_index_to_bed_location(location.x_index); circle_x = ubl.mesh_index_to_xpos[location.x_index];
circle_y = ubl.map_y_index_to_bed_location(location.y_index); circle_y = ubl.mesh_index_to_ypos[location.y_index];
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA #ifdef DELTA
@ -415,8 +415,8 @@
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!is_bit_set(circle_flags, i, j)) { if (!is_bit_set(circle_flags, i, j)) {
mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed mx = ubl.mesh_index_to_xpos[i]; // We found a circle that needs to be printed
my = ubl.map_y_index_to_bed_location(j); my = ubl.mesh_index_to_ypos[j];
dx = X - mx; // Get the distance to this intersection dx = X - mx; // Get the distance to this intersection
dy = Y - my; dy = Y - my;
@ -461,11 +461,11 @@
// We found two circles that need a horizontal line to connect them // We found two circles that need a horizontal line to connect them
// Print it! // Print it!
// //
sx = ubl.map_x_index_to_bed_location(i); sx = ubl.mesh_index_to_xpos[i];
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
sy = ubl.map_y_index_to_bed_location(j); sy = ubl.mesh_index_to_ypos[j];
ex = ubl.map_x_index_to_bed_location(i + 1); ex = ubl.mesh_index_to_xpos[i + 1];
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
ey = sy; ey = sy;
@ -498,12 +498,12 @@
// We found two circles that need a vertical line to connect them // We found two circles that need a vertical line to connect them
// Print it! // Print it!
// //
sx = ubl.map_x_index_to_bed_location(i); sx = ubl.mesh_index_to_xpos[i];
sy = ubl.map_y_index_to_bed_location(j); sy = ubl.mesh_index_to_ypos[j];
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
ex = sx; ex = sx;
ey = ubl.map_y_index_to_bed_location(j + 1); ey = ubl.mesh_index_to_ypos[j + 1];
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops

View File

@ -430,4 +430,8 @@ void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0); void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0); void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
bool axis_unhomed_error(const bool x, const bool y, const bool z);
#endif
#endif //MARLIN_H #endif //MARLIN_H

View File

@ -3221,7 +3221,7 @@ inline void gcode_G4() {
*/ */
inline void gcode_G12() { inline void gcode_G12() {
// Don't allow nozzle cleaning without homing first // Don't allow nozzle cleaning without homing first
if (axis_unhomed_error(true, true, true)) { return; } if (axis_unhomed_error(true, true, true)) return;
const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0, const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES, strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,

View File

@ -39,7 +39,6 @@
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
bool axis_unhomed_error(bool, bool, bool);
void dump(char * const str, const float &f); void dump(char * const str, const float &f);
bool ubl_lcd_clicked(); bool ubl_lcd_clicked();
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
@ -78,275 +77,273 @@
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 }; enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0)) #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0)) #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the typedef struct {
extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell bool active = false;
float z_offset = 0.0;
int8_t eeprom_storage_slot = -1,
n_x = UBL_MESH_NUM_X_POINTS,
n_y = UBL_MESH_NUM_Y_POINTS;
float mesh_x_min = UBL_MESH_MIN_X,
mesh_y_min = UBL_MESH_MIN_Y,
mesh_x_max = UBL_MESH_MAX_X,
mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
// so keep this value and its reciprocal.
#else
const float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0;
#endif
// If you change this struct, adjust TOTAL_STRUCT_SIZE
#define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
// padding provides space to add state variables without
// changing the location of data structures in the EEPROM.
// This is for compatibility with future versions to keep
// users from having to regenerate their mesh data.
unsigned char padding[64 - TOTAL_STRUCT_SIZE];
} ubl_state;
class unified_bed_leveling { class unified_bed_leveling {
private: private:
float last_specified_z, static float last_specified_z,
fade_scaling_factor_for_current_height; fade_scaling_factor_for_current_height;
public: public:
float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; static ubl_state state, pre_initialized;
bool g26_debug_flag = false, static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
has_control_of_lcd_panel = false; mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
int8_t eeprom_start = -1; static bool g26_debug_flag,
has_control_of_lcd_panel;
volatile int encoder_diff; // Volatile because it's changed at interrupt time. static int8_t eeprom_start;
struct ubl_state { static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
bool active = false;
float z_offset = 0.0;
int8_t eeprom_storage_slot = -1,
n_x = UBL_MESH_NUM_X_POINTS,
n_y = UBL_MESH_NUM_Y_POINTS;
float mesh_x_min = UBL_MESH_MIN_X, unified_bed_leveling();
mesh_y_min = UBL_MESH_MIN_Y,
mesh_x_max = UBL_MESH_MAX_X,
mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) static void display_map(const int);
float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
// so keep this value and its reciprocal.
#else
const float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0;
#endif
// If you change this struct, adjust TOTAL_STRUCT_SIZE static void reset();
static void invalidate();
#define TOTAL_STRUCT_SIZE 43 // Total size of the above fields static void store_state();
static void load_state();
static void store_mesh(const int16_t);
static void load_mesh(const int16_t);
// padding provides space to add state variables without static bool sanity_check();
// changing the location of data structures in the EEPROM.
// This is for compatibility with future versions to keep
// users from having to regenerate their mesh data.
unsigned char padding[64 - TOTAL_STRUCT_SIZE];
} state, pre_initialized; static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
unified_bed_leveling(); static int8_t get_cell_index_x(const float &x) {
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
void display_map(const int); static int8_t find_closest_x_index(const float &x) {
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
void reset(); return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
void invalidate();
void store_state();
void load_state();
void store_mesh(const int16_t);
void load_mesh(const int16_t);
bool sanity_check();
FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
static int8_t get_cell_index_x(const float &x) {
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t find_closest_x_index(const float &x) {
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
}
static int8_t find_closest_y_index(const float &y) {
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
}
/**
* z2 --|
* z0 | |
* | | + (z2-z1)
* z1 | | |
* ---+-------------+--------+-- --|
* a1 a0 a2
* |<---delta_a---------->|
*
* calc_z0 is the basis for all the Mesh Based correction. It is used to
* find the expected Z Height at a position between two known Z-Height locations.
*
* It is fairly expensive with its 4 floating point additions and 2 floating point
* multiplications.
*/
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
const float delta_z = (z2 - z1),
delta_a = (a0 - a1) / (a2 - a1);
return z1 + delta_a * delta_z;
}
/**
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
* the X index of the x0 intersection available and we don't want to perform any extra floating
* point operations.
*/
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
} }
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)), static int8_t find_closest_y_index(const float &y) {
z1 = z_values[x1_i][yi], const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
z2 = z_values[x1_i + 1][yi], return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
dz = (z2 - z1);
return z1 + xratio * dz;
}
//
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
//
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
} }
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)), /**
z1 = z_values[xi][y1_i], * z2 --|
z2 = z_values[xi][y1_i + 1], * z0 | |
dz = (z2 - z1); * | | + (z2-z1)
* z1 | | |
return z1 + yratio * dz; * ---+-------------+--------+-- --|
} * a1 a0 a2
* |<---delta_a---------->|
/** *
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first * calc_z0 is the basis for all the Mesh Based correction. It is used to
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the * find the expected Z Height at a position between two known Z-Height locations.
* Z-Height at both ends. Then it does a linear interpolation of these heights based *
* on the Y position within the cell. * It is fairly expensive with its 4 floating point additions and 2 floating point
*/ * multiplications.
float get_z_correction(const float &x0, const float &y0) const { */
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
cy = get_cell_index_y(RAW_Y_POSITION(y0)); const float delta_z = (z2 - z1),
delta_a = (a0 - a1) / (a2 - a1);
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { return z1 + delta_a * delta_z;
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
SERIAL_ECHOPAIR(", y0=", y0);
SERIAL_CHAR(')');
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return 0.0; // this used to return state.z_offset
} }
const float z1 = calc_z0(RAW_X_POSITION(x0), /**
map_x_index_to_bed_location(cx), z_values[cx][cy], * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]), * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
z2 = calc_z0(RAW_X_POSITION(x0), * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
map_x_index_to_bed_location(cx), z_values[cx][cy + 1], * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]); * the X index of the x0 intersection available and we don't want to perform any extra floating
float z0 = calc_z0(RAW_Y_POSITION(y0), * point operations.
map_y_index_to_bed_location(cy), z1, */
map_y_index_to_bed_location(cy + 1), z2); static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
#if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(" raw get_z_correction(", x0); SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(',') SERIAL_CHAR(')');
SERIAL_ECHO(y0);
SERIAL_ECHOPGM(") = ");
SERIAL_ECHO_F(z0, 6);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> ");
SERIAL_ECHO_F(z0, 6);
SERIAL_EOL; SERIAL_EOL;
return NAN;
} }
#endif
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
z0 = 0.0; // in ubl.z_values[][] and propagate through the z1 = z_values[x1_i][yi],
// calculations. If our correction is NAN, we throw it out z2 = z_values[x1_i + 1][yi],
// because part of the Mesh is undefined and we don't have the dz = (z2 - z1);
// information we need to complete the height correction.
return z1 + xratio * dz;
}
//
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
//
static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i],
z2 = z_values[xi][y1_i + 1],
dz = (z2 - z1);
return z1 + yratio * dz;
}
/**
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
static float get_z_correction(const float &x0, const float &y0) {
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
cy = get_cell_index_y(RAW_Y_POSITION(y0));
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
SERIAL_ECHOPAIR(", y0=", y0);
SERIAL_CHAR(')');
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return 0.0; // this used to return state.z_offset
}
const float z1 = calc_z0(RAW_X_POSITION(x0),
mesh_index_to_xpos[cx], z_values[cx][cy],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
z2 = calc_z0(RAW_X_POSITION(x0),
mesh_index_to_xpos[cx], z_values[cx][cy + 1],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
float z0 = calc_z0(RAW_Y_POSITION(y0),
mesh_index_to_ypos[cy], z1,
mesh_index_to_ypos[cy + 1], z2);
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) { if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0); SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
SERIAL_CHAR(','); SERIAL_CHAR(',')
SERIAL_ECHO(y0); SERIAL_ECHO(y0);
SERIAL_CHAR(')'); SERIAL_ECHOPGM(") = ");
SERIAL_ECHO_F(z0, 6);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> ");
SERIAL_ECHO_F(z0, 6);
SERIAL_EOL; SERIAL_EOL;
} }
#endif #endif
}
return z0; // there used to be a +state.z_offset on this line
}
/** if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
* This routine is used to scale the Z correction depending upon the current nozzle height. It is z0 = 0.0; // in ubl.z_values[][] and propagate through the
* optimized for speed. It avoids floating point operations by checking if the requested scaling // calculations. If our correction is NAN, we throw it out
* factor is going to be the same as the last time the function calculated a value. If so, it just // because part of the Mesh is undefined and we don't have the
* returns it. // information we need to complete the height correction.
*
* It returns a scaling factor of 1.0 if UBL is inactive.
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { #if ENABLED(DEBUG_LEVELING_FEATURE)
const float rz = RAW_Z_POSITION(lz); if (DEBUGGING(MESH_ADJUST)) {
if (last_specified_z != rz) { SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
last_specified_z = rz; SERIAL_CHAR(',');
fade_scaling_factor_for_current_height = SERIAL_ECHO(y0);
state.active && rz < state.g29_correction_fade_height SERIAL_CHAR(')');
? 1.0 - (rz * state.g29_fade_height_multiplier) SERIAL_EOL;
: 0.0; }
#endif
} }
return fade_scaling_factor_for_current_height; return z0; // there used to be a +state.z_offset on this line
} }
#else /**
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
* optimized for speed. It avoids floating point operations by checking if the requested scaling
* factor is going to be the same as the last time the function calculated a value. If so, it just
* returns it.
*
* It returns a scaling factor of 1.0 if UBL is inactive.
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; } FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
const float rz = RAW_Z_POSITION(lz);
if (last_specified_z != rz) {
last_specified_z = rz;
fade_scaling_factor_for_current_height =
state.active && rz < state.g29_correction_fade_height
? 1.0 - (rz * state.g29_fade_height_multiplier)
: 0.0;
}
return fade_scaling_factor_for_current_height;
}
#endif #else
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
#endif
}; // class unified_bed_leveling }; // class unified_bed_leveling
@ -355,5 +352,4 @@
#define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state)) #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H #endif // UNIFIED_BED_LEVELING_H

View File

@ -57,23 +57,26 @@
} }
} }
/** ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;
* These variables used to be declared inside the unified_bed_leveling class. We are going to
* still declare them within the .cpp file for bed leveling. But there is only one instance of float unified_bed_leveling::z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
* the bed leveling object and we can get rid of a level of inderection by not making them unified_bed_leveling::last_specified_z,
* 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be unified_bed_leveling::fade_scaling_factor_for_current_height,
* moved back inside the bed leveling class. unified_bed_leveling::mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
*/ unified_bed_leveling::mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false;
int8_t unified_bed_leveling::eeprom_start = -1;
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() { unified_bed_leveling::unified_bed_leveling() {
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i); mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
reset(); reset();
} }
@ -161,9 +164,6 @@
} }
void unified_bed_leveling::invalidate() { void unified_bed_leveling::invalidate() {
print_hex_word((uint16_t)this);
SERIAL_EOL;
state.active = false; state.active = false;
state.z_offset = 0; state.z_offset = 0;
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)

View File

@ -750,8 +750,8 @@
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.mesh_index_to_xpos[location.x_index],
rawy = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
@ -900,8 +900,8 @@
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue; if (location.x_index < 0 && location.y_index < 0) continue;
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.mesh_index_to_xpos[location.x_index],
rawy = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
@ -1137,7 +1137,7 @@
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1); SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1145,7 +1145,7 @@
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1); SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1283,8 +1283,8 @@
// We only get here if we found a Mesh Point of the specified type // We only get here if we found a Mesh Point of the specified type
const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
rawy = ubl.map_y_index_to_bed_location(j); rawy = ubl.mesh_index_to_ypos[j];
// If using the probe as the reference there are some unreachable locations. // If using the probe as the reference there are some unreachable locations.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing). // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
@ -1350,8 +1350,8 @@
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop // different location the next time through the loop
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.mesh_index_to_xpos[location.x_index],
rawy = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check. if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.

View File

@ -167,16 +167,16 @@
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/ */
const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio * z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]), (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]); (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
float z0 = z1 + (z2 - z1) * yratio; float z0 = z1 + (z2 - z1) * yratio;
@ -274,7 +274,7 @@
current_yi += down_flag; // Line is heading down, we just want to go to the bottom current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) { while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi; current_yi += dyi;
const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
/** /**
* inf_m_flag? the slope of the line is infinite, we won't do the calculations * inf_m_flag? the slope of the line is infinite, we won't do the calculations
@ -316,7 +316,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -365,7 +365,7 @@
// edge of this cell for the first move. // edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) { while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi; current_xi += dxi;
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]), const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
@ -401,7 +401,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]); const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]);
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -451,8 +451,8 @@
while (xi_cnt > 0 || yi_cnt > 0) { while (xi_cnt > 0 || yi_cnt > 0) {
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]), const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]), next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
// about m being equal to 0.0 If this was the case, we would have // about m being equal to 0.0 If this was the case, we would have