Merge pull request #8556 from LVD-AC/1.1.x]-probe-errors

[1.1.x] G33 probe error handing
This commit is contained in:
Scott Lahteine 2017-11-25 15:51:55 -06:00 committed by GitHub
commit 4c93153194
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -2386,7 +2386,7 @@ static void clean_up_after_endstop_or_probe_move() {
}
#endif
return current_position[Z_AXIS] + zprobe_zoffset;
return current_position[Z_AXIS];
}
/**
@ -2398,7 +2398,7 @@ static void clean_up_after_endstop_or_probe_move() {
* - Raise to the BETWEEN height
* - Return the probed Z position
*/
float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool printable=true) {
float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool probe_relative=true) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
@ -2409,12 +2409,14 @@ static void clean_up_after_endstop_or_probe_move() {
}
#endif
const float nx = rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ry - (Y_PROBE_OFFSET_FROM_EXTRUDER);
if (!printable
? !position_is_reachable(nx, ny)
: !position_is_reachable_by_probe(rx, ry)
) return NAN;
// TODO: Adapt for SCARA, where the offset rotates
float nx = rx, ny = ry;
if (probe_relative) {
if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
}
else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
const float nz =
#if ENABLED(DELTA)
@ -2433,7 +2435,7 @@ static void clean_up_after_endstop_or_probe_move() {
float measured_z = NAN;
if (!DEPLOY_PROBE()) {
measured_z = run_z_probe();
measured_z = run_z_probe() + zprobe_zoffset;
if (!stow)
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
@ -5541,6 +5543,16 @@ void home_all_axes() { gcode_G28(true); }
#endif
}
inline float calibration_probe(const float nx, const float ny, const bool stow) {
return
#if HAS_BED_PROBE
probe_pt(nx, ny, stow, 0, false)
#else
lcd_probe_pt(nx, ny)
#endif
;
}
static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1,
@ -5559,23 +5571,13 @@ void home_all_axes() { gcode_G28(true); }
_7p_6_centre = probe_points >= 5 && probe_points <= 7,
_7p_9_centre = probe_points >= 8;
#if HAS_BED_PROBE
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
#endif
LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
if (!_0p_calibration) {
if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
z_at_pt[CEN] +=
#if HAS_BED_PROBE
probe_pt(dx, dy, stow_after_each, 1, false)
#else
lcd_probe_pt(0, 0)
#endif
;
z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each);
if (isnan(z_at_pt[CEN])) return NAN;
}
if (_7p_calibration) { // probe extra center points
@ -5584,13 +5586,8 @@ void home_all_axes() { gcode_G28(true); }
I_LOOP_CAL_PT(axis, start, steps) {
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * 0.1;
z_at_pt[CEN] +=
#if HAS_BED_PROBE
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
#else
lcd_probe_pt(cos(a) * r, sin(a) * r)
#endif
;
z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
if (isnan(z_at_pt[CEN])) return NAN;
}
z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
}
@ -5613,13 +5610,8 @@ void home_all_axes() { gcode_G28(true); }
const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
interpol = fmod(axis, 1);
const float z_temp =
#if HAS_BED_PROBE
probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1, false)
#else
lcd_probe_pt(cos(a) * r, sin(a) * r)
#endif
;
const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
if (isnan(z_temp)) return NAN;
// split probe point to neighbouring calibration points
z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
@ -5649,7 +5641,7 @@ void home_all_axes() { gcode_G28(true); }
#if HAS_BED_PROBE
static void G33_auto_tune() {
static bool G33_auto_tune() {
float z_at_pt[NPP + 1] = { 0.0 },
z_at_pt_base[NPP + 1] = { 0.0 },
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
@ -5663,7 +5655,7 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
SERIAL_EOL();
probe_G33_points(z_at_pt_base, 3, true, false);
if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false;
print_G33_results(z_at_pt_base, true, true);
LOOP_XYZ(axis) {
@ -5678,7 +5670,7 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_endstop_adj[axis] += 1.0;
@ -5709,7 +5701,7 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_PROTOCOLPGM("Tuning R");
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
delta_radius -= 1.0 * zig_zag;
@ -5736,7 +5728,7 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
print_G33_results(z_at_pt, true, true);
@ -5771,6 +5763,7 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_EOL();
SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
SERIAL_EOL();
return true;
}
#endif // HAS_BED_PROBE
@ -5798,8 +5791,9 @@ void home_all_axes() { gcode_G28(true); }
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report settings
* V2 Report settings and probe results
* V1 Report start and end settings only
* V2 Report settings at each iteration
* V3 Report settings and probe results
*
* E Engage the probe for each point
*/
@ -5812,12 +5806,12 @@ void home_all_axes() { gcode_G28(true); }
}
const int8_t verbose_level = parser.byteval('V', 1);
if (!WITHIN(verbose_level, 0, 2)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
if (!WITHIN(verbose_level, 0, 3)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
return;
}
const float calibration_precision = parser.floatval('C');
const float calibration_precision = parser.floatval('C', 0.0);
if (calibration_precision < 0) {
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
return;
@ -5925,6 +5919,11 @@ void home_all_axes() { gcode_G28(true); }
// Probe the points
zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
if (isnan(zero_std_dev)) {
SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z");
SERIAL_EOL();
return G33_CLEANUP();
}
// Solve matrices
@ -6038,7 +6037,7 @@ void home_all_axes() { gcode_G28(true); }
// print report
if (verbose_level != 1)
if (verbose_level > 2)
print_G33_results(z_at_pt, _tower_results, _opposite_results);
if (verbose_level != 0) { // !dry run
@ -6078,6 +6077,7 @@ void home_all_axes() { gcode_G28(true); }
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
lcd_setstatus(mess);
if (verbose_level > 1)
print_G33_settings(_endstop_results, _angle_results);
}
}
@ -8981,10 +8981,7 @@ inline void gcode_M205() {
* Z = Rotate A and B by this angle
*/
inline void gcode_M665() {
if (parser.seen('H')) {
delta_height = parser.value_linear_units();
update_software_endstops(Z_AXIS);
}
if (parser.seen('H')) delta_height = parser.value_linear_units();
if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
if (parser.seen('R')) delta_radius = parser.value_linear_units();
if (parser.seen('S')) delta_segments_per_second = parser.value_float();