Adding XON/XOFF and STATISTICS implementation

This commit is contained in:
etagle 2017-08-08 02:46:37 -03:00
parent 3e5485de92
commit 534bbb81ff
4 changed files with 239 additions and 23 deletions

View File

@ -107,8 +107,9 @@
*
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
* You may try up to 1000000 to speed up file transfer to the SD card
*
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000]
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
*/
#define BAUDRATE 250000

View File

@ -44,6 +44,17 @@
#endif
#endif
#if ENABLED(SERIAL_XON_XOFF)
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
uint8_t rx_dropped_bytes = 0;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
ring_buffer_pos_t rx_max_enqueued = 0;
#endif
#if ENABLED(EMERGENCY_PARSER)
#include "stepper.h"
@ -136,20 +147,94 @@
#endif // EMERGENCY_PARSER
FORCE_INLINE void store_char(unsigned char c) {
CRITICAL_SECTION_START;
const uint8_t h = rx_buffer.head,
i = (uint8_t)(h + 1) & (RX_BUFFER_SIZE - 1);
FORCE_INLINE void store_rxd_char() {
const ring_buffer_pos_t h = rx_buffer.head,
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// if we should be storing the received character into the location
// just before the tail (meaning that the head would advance to the
// current location of the tail), we're about to overflow the buffer
// and so we don't write the character or advance the head.
if (i != rx_buffer.tail) {
rx_buffer.buffer[h] = c;
rx_buffer.buffer[h] = M_UDRx;
rx_buffer.head = i;
}
CRITICAL_SECTION_END;
else {
(void)M_UDRx;
#if ENABLED(SERIAL_STATS_DROPPED_RX)
if (!++rx_dropped_bytes)
++rx_dropped_bytes;
#endif
}
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
{
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
if (rx_max_enqueued < rx_count)
rx_max_enqueued = rx_count;
}
#endif
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// if we are above 12.5% of RX buffer capacity, send XOFF before
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
// let the host react and stop sending bytes. This translates to 13mS
// propagation time.
if (rx_count >= (RX_BUFFER_SIZE/8)) {
// If TX interrupts are disabled and data register is empty,
// just write the byte to the data register and be done. This
// shortcut helps significantly improve the effective datarate
// at high (>500kbit/s) bitrates, where interrupt overhead
// becomes a slowdown.
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) {
// Send an XOFF character
M_UDRx = XOFF_CHAR;
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
SBI(M_UCSRxA, M_TXCx);
// And remember we already sent it
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
} else {
// TX interrupts disabled, but buffer still not empty ... or
// TX interrupts enabled. Reenable TX ints and schedule XOFF
// character to be sent
#if TX_BUFFER_SIZE > 0
SBI(M_UCSRxB, M_UDRIEx);
xon_xoff_state = XOFF_CHAR;
#else
// We are not using TX interrupts, we will have to send this manually
while (!TEST(M_UCSRxA, M_UDREx))
;
M_UDRx = XOFF_CHAR;
// And remember we already sent it
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
#endif
}
}
}
#endif
#if ENABLED(EMERGENCY_PARSER)
emergency_parser(c);
@ -160,13 +245,31 @@
FORCE_INLINE void _tx_udr_empty_irq(void) {
// If interrupts are enabled, there must be more data in the output
// buffer. Send the next byte
// buffer.
#if ENABLED(SERIAL_XON_XOFF)
// If we must do a priority insertion of an XON/XOFF char,
// do it now
uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
M_UDRx = state & XON_XOFF_CHAR_MASK;
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
} else {
#endif
// Send the next byte
const uint8_t t = tx_buffer.tail,
c = tx_buffer.buffer[t];
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
M_UDRx = c;
#if ENABLED(SERIAL_XON_XOFF)
}
#endif
// clear the TXC bit -- "can be cleared by writing a one to its bit
// location". This makes sure flush() won't return until the bytes
// actually got written
@ -188,8 +291,7 @@
#ifdef M_USARTx_RX_vect
ISR(M_USARTx_RX_vect) {
const unsigned char c = M_UDRx;
store_char(c);
store_rxd_char();
}
#endif
@ -237,8 +339,9 @@
void MarlinSerial::checkRx(void) {
if (TEST(M_UCSRxA, M_RXCx)) {
const uint8_t c = M_UDRx;
store_char(c);
CRITICAL_SECTION_START;
store_rxd_char();
CRITICAL_SECTION_END;
}
}
@ -252,23 +355,52 @@
int MarlinSerial::read(void) {
int v;
CRITICAL_SECTION_START;
const uint8_t t = rx_buffer.tail;
const ring_buffer_pos_t t = rx_buffer.tail;
if (rx_buffer.head == t)
v = -1;
else {
v = rx_buffer.buffer[t];
rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1);
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// if we are below 10% of RX buffer capacity, send XON before
// we run out of RX buffer bytes
if (rx_count < (RX_BUFFER_SIZE/10)) {
// Send an XON character
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
// End critical section
CRITICAL_SECTION_END;
// Transmit the XON character
writeNoHandshake(XON_CHAR);
// Done
return v;
}
}
#endif
}
CRITICAL_SECTION_END;
return v;
}
uint8_t MarlinSerial::available(void) {
ring_buffer_pos_t MarlinSerial::available(void) {
CRITICAL_SECTION_START;
const uint8_t h = rx_buffer.head,
const ring_buffer_pos_t h = rx_buffer.head,
t = rx_buffer.tail;
CRITICAL_SECTION_END;
return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
}
void MarlinSerial::flush(void) {
@ -281,6 +413,20 @@
CRITICAL_SECTION_START;
rx_buffer.head = rx_buffer.tail;
CRITICAL_SECTION_END;
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Send an XON character
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
// Transmit the XON character
writeNoHandshake(XON_CHAR);
}
#endif
}
#if TX_BUFFER_SIZE > 0
@ -293,10 +439,26 @@
}
void MarlinSerial::write(const uint8_t c) {
#if ENABLED(SERIAL_XON_XOFF)
uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
// 2 characters to send: The XON/XOFF character and the user
// specified char.
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
}
#endif
writeNoHandshake(c);
}
void MarlinSerial::writeNoHandshake(uint8_t c) {
_written = true;
CRITICAL_SECTION_START;
bool emty = (tx_buffer.head == tx_buffer.tail);
CRITICAL_SECTION_END;
// If the buffer and the data register is empty, just write the byte
// to the data register and be done. This shortcut helps
// significantly improve the effective datarate at high (>
@ -335,6 +497,7 @@
return;
}
void MarlinSerial::flushTX(void) {
// TX
// If we have never written a byte, no need to flush. This special
@ -357,6 +520,21 @@
#else
void MarlinSerial::write(uint8_t c) {
#if ENABLED(SERIAL_XON_XOFF)
// If we must do a priority insertion of an XON/XOFF char, do it now
uint8_t state = xon_xoff_state;
if (!(state & XON_XOFF_CHAR_SENT)) {
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
}
#endif
writeNoHandshake(c);
}
void MarlinSerial::writeNoHandshake(uint8_t c) {
while (!TEST(M_UCSRxA, M_UDREx))
;
M_UDRx = c;

View File

@ -90,17 +90,22 @@
#ifndef TX_BUFFER_SIZE
#define TX_BUFFER_SIZE 32
#endif
#if !((RX_BUFFER_SIZE == 256) ||(RX_BUFFER_SIZE == 128) ||(RX_BUFFER_SIZE == 64) ||(RX_BUFFER_SIZE == 32) ||(RX_BUFFER_SIZE == 16) ||(RX_BUFFER_SIZE == 8) ||(RX_BUFFER_SIZE == 4) ||(RX_BUFFER_SIZE == 2))
#if !IS_POWEROF2(RX_BUFFER_SIZE) || (RX_BUFFER_SIZE < 2)
#error "RX_BUFFER_SIZE has to be a power of 2 and >= 2"
#endif
#if !((TX_BUFFER_SIZE == 256) ||(TX_BUFFER_SIZE == 128) ||(TX_BUFFER_SIZE == 64) ||(TX_BUFFER_SIZE == 32) ||(TX_BUFFER_SIZE == 16) ||(TX_BUFFER_SIZE == 8) ||(TX_BUFFER_SIZE == 4) ||(TX_BUFFER_SIZE == 2) ||(TX_BUFFER_SIZE == 0))
#error TX_BUFFER_SIZE has to be a power of 2 or 0
#if TX_BUFFER_SIZE != 0 && (TX_BUFFER_SIZE < 2 || TX_BUFFER_SIZE > 256 || !IS_POWEROF2(TX_BUFFER_SIZE))
#error "TX_BUFFER_SIZE has to be a power of 2 or 0"
#endif
#if RX_BUFFER_SIZE > 256
typedef uint16_t ring_buffer_pos_t;
#else
typedef uint8_t ring_buffer_pos_t;
#endif
struct ring_buffer_r {
unsigned char buffer[RX_BUFFER_SIZE];
volatile uint8_t head;
volatile uint8_t tail;
volatile ring_buffer_pos_t head;
volatile ring_buffer_pos_t tail;
};
#if TX_BUFFER_SIZE > 0
@ -118,6 +123,24 @@
#endif
#endif
#if ENABLED(SERIAL_XON_XOFF)
#define XON_XOFF_CHAR_SENT (uint8_t)0x80 /* XON / XOFF Character was sent */
#define XON_XOFF_CHAR_MASK (uint8_t)0x1F /* XON / XOFF character to send */
extern uint8_t xon_xoff_state;
// XON / XOFF character definitions
#define XON_CHAR (uint8_t)17
#define XOFF_CHAR (uint8_t)19
#endif
#if ENABLED(SERIAL_STATS_DROPPED_RX)
extern uint8_t rx_dropped_bytes;
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
extern ring_buffer_pos_t rx_max_enqueued;
#endif
class MarlinSerial { //: public Stream
public:
@ -127,13 +150,21 @@
static int peek(void);
static int read(void);
static void flush(void);
static uint8_t available(void);
static ring_buffer_pos_t available(void);
static void checkRx(void);
static void write(const uint8_t c);
#if TX_BUFFER_SIZE > 0
static uint8_t availableForWrite(void);
static void flushTX(void);
#endif
static void writeNoHandshake(uint8_t c);
#if ENABLED(SERIAL_STATS_DROPPED_RX)
static uint32_t dropped() { return rx_dropped_bytes; }
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
static ring_buffer_pos_t rxMaxEnqueued() { return rx_max_enqueued; }
#endif
private:
static void printNumber(unsigned long, const uint8_t);

View File

@ -13329,6 +13329,12 @@ void loop() {
// M29 closes the file
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
#if ENABLED(SERIAL_STATS_DROPPED_RX)
SERIAL_ECHOLNPAIR("Dropped bytes: ", MarlinSerial::dropped());
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
SERIAL_ECHOLNPAIR("Max RX Queue Size: ", MarlinSerial::rxMaxEnqueued());
#endif
ok_to_send();
}
else {