G2/G3 Arcs for Delta

- Update prepare_move_delta to take a target argument
- Add Delta support to plan_arc
This commit is contained in:
Scott Lahteine 2015-07-19 10:48:20 -07:00 committed by Richard Wackerbarth
parent 39092efe88
commit 5c5936508d

View File

@ -410,6 +410,8 @@ bool target_direction;
void process_next_command(); void process_next_command();
void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
bool setTargetedHotend(int code); bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
@ -1895,9 +1897,9 @@ inline void gcode_G0_G1() {
* options for G2/G3 arc generation. In future these options may be GCode tunable. * options for G2/G3 arc generation. In future these options may be GCode tunable.
*/ */
void plan_arc( void plan_arc(
float *target, // Destination position float target[NUM_AXIS], // Destination position
float *offset, // Center of rotation relative to current_position float *offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise? uint8_t clockwise // Clockwise?
) { ) {
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
@ -1957,7 +1959,7 @@ void plan_arc(
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment; float sin_T = theta_per_segment;
float arc_target[4]; float arc_target[NUM_AXIS];
float sin_Ti; float sin_Ti;
float cos_Ti; float cos_Ti;
float r_axisi; float r_axisi;
@ -1998,10 +2000,28 @@ void plan_arc(
arc_target[E_AXIS] += extruder_per_segment; arc_target[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target); clamp_to_software_endstops(arc_target);
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
#if defined(DELTA) || defined(SCARA)
calculate_delta(arc_target);
#ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(arc_target);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
#else
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
#endif
} }
// Ensure last segment arrives at target location. // Ensure last segment arrives at target location.
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); #if defined(DELTA) || defined(SCARA)
calculate_delta(target);
#ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(target);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#else
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the // As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position // motion control system might still be processing the action and the real tool position
@ -6074,9 +6094,9 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
#if defined(DELTA) || defined(SCARA) #if defined(DELTA) || defined(SCARA)
inline bool prepare_move_delta() { inline bool prepare_move_delta(float target[NUM_AXIS]) {
float difference[NUM_AXIS]; float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i]; for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
@ -6093,22 +6113,22 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
float fraction = float(s) / float(steps); float fraction = float(s) / float(steps);
for (int8_t i = 0; i < NUM_AXIS; i++) for (int8_t i = 0; i < NUM_AXIS; i++)
destination[i] = current_position[i] + difference[i] * fraction; target[i] = current_position[i] + difference[i] * fraction;
calculate_delta(destination); calculate_delta(target);
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(destination); adjust_delta(target);
#endif #endif
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]); //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]); //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]); //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]); //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
} }
return true; return true;
} }
@ -6116,7 +6136,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
#endif // DELTA || SCARA #endif // DELTA || SCARA
#ifdef SCARA #ifdef SCARA
inline bool prepare_move_scara() { return prepare_move_delta(); } inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
#endif #endif
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
@ -6193,9 +6213,9 @@ void prepare_move() {
#endif #endif
#ifdef SCARA #ifdef SCARA
if (!prepare_move_scara()) return; if (!prepare_move_scara(destination)) return;
#elif defined(DELTA) #elif defined(DELTA)
if (!prepare_move_delta()) return; if (!prepare_move_delta(destination)) return;
#endif #endif
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE