From 7c24b9795867f08351bd5852a2aa3afddc824f36 Mon Sep 17 00:00:00 2001 From: maverikou Date: Sat, 7 Mar 2015 20:36:21 +0200 Subject: [PATCH] Ported over Johann Rocholl's improvements for delta printers: - Nonlinear auto bed leveling code (includes G29, G30, Z_RAISE_AFTER_PROBING). Cleaned it up to be a delta-specific AUTO_BED_LEVELING_GRID code path. - Allen key z-probe deployment and retraction code. Cleaned it up and added safety checks. --- Marlin/Marlin.h | 6 + Marlin/Marlin_main.cpp | 341 ++++++++++++++++-- .../delta/Configuration.h | 80 +++- .../delta/Configuration_adv.h | 20 +- Marlin/planner.cpp | 2 +- Marlin/planner.h | 6 +- 6 files changed, 425 insertions(+), 30 deletions(-) diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 2a54ac593..5cefc724b 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -189,12 +189,18 @@ void ClearToSend(); void get_coordinates(); #ifdef DELTA void calculate_delta(float cartesian[3]); + #ifdef ENABLE_AUTO_BED_LEVELING + extern int delta_grid_spacing[2]; + void adjust_delta(float cartesian[3]); + #endif extern float delta[3]; +void prepare_move_raw(); #endif #ifdef SCARA void calculate_delta(float cartesian[3]); void calculate_SCARA_forward_Transform(float f_scara[3]); #endif +void reset_bed_level(); void prepare_move(); void kill(); void Stop(); diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index b3c1702a5..06f02afcd 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -346,6 +346,9 @@ int fanSpeed = 0; float delta_diagonal_rod = DELTA_DIAGONAL_ROD; float delta_diagonal_rod_2 = sq(delta_diagonal_rod); float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; + #ifdef ENABLE_AUTO_BED_LEVELING + float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS]; + #endif #endif #ifdef SCARA @@ -1058,6 +1061,8 @@ static void axis_is_at_home(int axis) { #ifdef ENABLE_AUTO_BED_LEVELING #ifdef AUTO_BED_LEVELING_GRID + +#ifndef DELTA static void set_bed_level_equation_lsq(double *plane_equation_coefficients) { vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); @@ -1080,6 +1085,7 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients) plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } +#endif #else // not AUTO_BED_LEVELING_GRID @@ -1113,6 +1119,27 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float #endif // AUTO_BED_LEVELING_GRID static void run_z_probe() { + #ifdef DELTA + + float start_z = current_position[Z_AXIS]; + long start_steps = st_get_position(Z_AXIS); + + // move down slowly until you find the bed + feedrate = homing_feedrate[Z_AXIS] / 4; + destination[Z_AXIS] = -10; + prepare_move_raw(); + st_synchronize(); + endstops_hit_on_purpose(); + + // we have to let the planner know where we are right now as it is not where we said to go. + long stop_steps = st_get_position(Z_AXIS); + float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; + current_position[Z_AXIS] = mm; + calculate_delta(current_position); + plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); + + #else + plan_bed_level_matrix.set_to_identity(); feedrate = homing_feedrate[Z_AXIS]; @@ -1139,11 +1166,25 @@ static void run_z_probe() { current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); // make sure the planner knows where we are as it may be a bit different than we last said to move to plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + + #endif } static void do_blocking_move_to(float x, float y, float z) { float oldFeedRate = feedrate; +#ifdef DELTA + + feedrate = XY_TRAVEL_SPEED; + + destination[X_AXIS] = x; + destination[Y_AXIS] = y; + destination[Z_AXIS] = z; + prepare_move_raw(); + st_synchronize(); + +#else + feedrate = homing_feedrate[Z_AXIS]; current_position[Z_AXIS] = z; @@ -1157,6 +1198,8 @@ static void do_blocking_move_to(float x, float y, float z) { plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder); st_synchronize(); +#endif + feedrate = oldFeedRate; } @@ -1196,7 +1239,40 @@ static void engage_z_probe() { servos[servo_endstops[Z_AXIS]].detach(); #endif } + #elif defined(Z_PROBE_ALLEN_KEY) + feedrate = homing_feedrate[X_AXIS]; + + // Move to the start position to initiate deployment + destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X; + destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y; + destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z; + prepare_move_raw(); + + // Home X to touch the belt + feedrate = homing_feedrate[X_AXIS]/10; + destination[X_AXIS] = 0; + prepare_move_raw(); + + // Home Y for safety + feedrate = homing_feedrate[X_AXIS]/2; + destination[Y_AXIS] = 0; + prepare_move_raw(); + + st_synchronize(); + + bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); + if (z_min_endstop) + { + if (!Stopped) + { + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); + LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + } + Stop(); + } #endif + } static void retract_z_probe() { @@ -1212,7 +1288,49 @@ static void retract_z_probe() { servos[servo_endstops[Z_AXIS]].detach(); #endif } + #elif defined(Z_PROBE_ALLEN_KEY) + // Move up for safety + feedrate = homing_feedrate[X_AXIS]; + destination[Z_AXIS] = current_position[Z_AXIS] + 20; + prepare_move_raw(); + + // Move to the start position to initiate retraction + destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X; + destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y; + destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z; + prepare_move_raw(); + + // Move the nozzle down to push the probe into retracted position + feedrate = homing_feedrate[Z_AXIS]/10; + destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH; + prepare_move_raw(); + + // Move up for safety + feedrate = homing_feedrate[Z_AXIS]/2; + destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2; + prepare_move_raw(); + + // Home XY for safety + feedrate = homing_feedrate[X_AXIS]/2; + destination[X_AXIS] = 0; + destination[Y_AXIS] = 0; + prepare_move_raw(); + + st_synchronize(); + + bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); + if (!z_min_endstop) + { + if (!Stopped) + { + SERIAL_ERROR_START; + SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); + LCD_ALERTMESSAGEPGM("Err: ZPROBE"); + } + Stop(); + } #endif + } enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract }; @@ -1223,14 +1341,14 @@ static float probe_pt(float x, float y, float z_before, ProbeAction retract_acti do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); - #ifndef Z_PROBE_SLED + #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) if (retract_action & ProbeEngage) engage_z_probe(); #endif run_z_probe(); float measured_z = current_position[Z_AXIS]; - #ifndef Z_PROBE_SLED + #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY) if (retract_action & ProbeRetract) retract_z_probe(); #endif @@ -1247,6 +1365,62 @@ static float probe_pt(float x, float y, float z_before, ProbeAction retract_acti return measured_z; } +#ifdef DELTA +static void extrapolate_one_point(int x, int y, int xdir, int ydir) { + if (bed_level[x][y] != 0.0) { + return; // Don't overwrite good values. + } + float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right. + float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back. + float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal. + float median = c; // Median is robust (ignores outliers). + if (a < b) { + if (b < c) median = b; + if (c < a) median = a; + } else { // b <= a + if (c < b) median = b; + if (a < c) median = a; + } + bed_level[x][y] = median; +} + +// Fill in the unprobed points (corners of circular print surface) +// using linear extrapolation, away from the center. +static void extrapolate_unprobed_bed_level() { + int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2; + for (int y = 0; y <= half; y++) { + for (int x = 0; x <= half; x++) { + if (x + y < 3) continue; + extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0); + extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0); + extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0); + extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0); + } + } +} + +// Print calibration results for plotting or manual frame adjustment. +static void print_bed_level() { + for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { + for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { + SERIAL_PROTOCOL_F(bed_level[x][y], 2); + SERIAL_PROTOCOLPGM(" "); + } + SERIAL_ECHOLN(""); + } +} + +// Reset calibration results to zero. +void reset_bed_level() { + for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { + for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { + bed_level[x][y] = 0.0; + } + } +} + +#endif // DELTA + #endif // ENABLE_AUTO_BED_LEVELING static void homeaxis(int axis) { @@ -1523,7 +1697,11 @@ inline void gcode_G4() { */ inline void gcode_G28() { #ifdef ENABLE_AUTO_BED_LEVELING - plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) + #ifdef DELTA + reset_bed_level(); + #else + plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) + #endif #endif saved_feedrate = feedrate; @@ -1804,6 +1982,7 @@ inline void gcode_G28() { * Parameters With AUTO_BED_LEVELING_GRID: * * P Set the size of the grid that will be probed (P x P points). + * Not supported by non-linear delta printer bed leveling. * Example: "G29 P4" * * V Set the verbose level (0-4). Example: "G29 V3" @@ -1811,6 +1990,7 @@ inline void gcode_G28() { * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report. * This is useful for manual bed leveling and finding flaws in the bed (to * assist with part placement). + * Not supported by non-linear delta printer bed leveling. * * F Set the Front limit of the probing grid * B Set the Back limit of the probing grid @@ -1856,16 +2036,21 @@ inline void gcode_G28() { #ifdef AUTO_BED_LEVELING_GRID + #ifndef DELTA bool topo_flag = verbose_level > 2 || code_seen('T') || code_seen('t'); + #endif if (verbose_level > 0) SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n"); - int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS; - if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) { - SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n"); - return; - } + int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS; + #ifndef DELTA + if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long(); + if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) { + SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n"); + return; + } + #endif int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION, right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION, @@ -1905,20 +2090,27 @@ inline void gcode_G28() { #ifdef Z_PROBE_SLED dock_sled(false); // engage (un-dock) the probe + #elif not defined(SERVO_ENDSTOPS) + engage_z_probe(); #endif st_synchronize(); + #ifdef DELTA + reset_bed_level(); + #else // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly //vector_3 corrected_position = plan_get_position_mm(); //corrected_position.debug("position before G29"); plan_bed_level_matrix.set_to_identity(); vector_3 uncorrected_position = plan_get_position(); - //uncorrected_position.debug("position durring G29"); + //uncorrected_position.debug("position during G29"); current_position[X_AXIS] = uncorrected_position.x; current_position[Y_AXIS] = uncorrected_position.y; current_position[Z_AXIS] = uncorrected_position.z; plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + #endif + setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; @@ -1926,9 +2118,10 @@ inline void gcode_G28() { #ifdef AUTO_BED_LEVELING_GRID // probe at the points of a lattice grid - int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1); - int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1); + const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1); + const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1); + #ifndef DELTA // solve the plane equation ax + by + d = z // A is the matrix with rows [x y 1] for all the probed points // B is the vector of the Z positions @@ -1941,26 +2134,60 @@ inline void gcode_G28() { eqnBVector[abl2], // "B" vector of Z points mean = 0.0; + #else + delta_grid_spacing[0] = xGridSpacing; + delta_grid_spacing[1] = yGridSpacing; + + float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER; + if (code_seen(axis_codes[Z_AXIS])) { + z_offset += code_value(); + } + #endif + int probePointCounter = 0; bool zig = true; - for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) { - int xProbe, xInc; + for (int yCount=0; yCount < auto_bed_leveling_grid_points; yCount++) + { + double yProbe = front_probe_bed_position + yGridSpacing * yCount; + int xStart, xStop, xInc; if (zig) - xProbe = left_probe_bed_position, xInc = xGridSpacing; + { + xStart = 0; + xStop = auto_bed_leveling_grid_points; + xInc = 1; + zig = false; + } else - xProbe = right_probe_bed_position, xInc = -xGridSpacing; + { + xStart = auto_bed_leveling_grid_points - 1; + xStop = -1; + xInc = -1; + zig = true; + } + #ifndef DELTA // If topo_flag is set then don't zig-zag. Just scan in one direction. // This gets the probe points in more readable order. if (!topo_flag) zig = !zig; + #endif + + for (int xCount=xStart; xCount != xStop; xCount += xInc) + { + double xProbe = left_probe_bed_position + xGridSpacing * xCount; - for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) { // raise extruder float measured_z, z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS; + #ifdef DELTA + // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer. + float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe); + if (distance_from_center > DELTA_PROBABLE_RADIUS) + continue; + #endif //DELTA + // Enhanced G29 - Do not retract servo between probes ProbeAction act; if (enhanced_g29) { @@ -1976,22 +2203,24 @@ inline void gcode_G28() { measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level); + #ifndef DELTA mean += measured_z; eqnBVector[probePointCounter] = measured_z; eqnAMatrix[probePointCounter + 0 * abl2] = xProbe; eqnAMatrix[probePointCounter + 1 * abl2] = yProbe; eqnAMatrix[probePointCounter + 2 * abl2] = 1; + #else + bed_level[xCount][yCount] = measured_z + z_offset; + #endif probePointCounter++; - xProbe += xInc; - } //xProbe - } //yProbe clean_up_after_endstop_move(); + #ifndef DELTA // solve lsq problem double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector); @@ -2053,6 +2282,10 @@ inline void gcode_G28() { set_bed_level_equation_lsq(plane_equation_coefficients); free(plane_equation_coefficients); + #else + extrapolate_unprobed_bed_level(); + print_bed_level(); + #endif #else // !AUTO_BED_LEVELING_GRID @@ -2075,11 +2308,13 @@ inline void gcode_G28() { #endif // !AUTO_BED_LEVELING_GRID + do_blocking_move_to(MANUAL_X_HOME_POS, MANUAL_Y_HOME_POS, Z_RAISE_AFTER_PROBING); st_synchronize(); if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); + #ifndef DELTA // Correct the Z height difference from z-probe position and hotend tip position. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. // When the bed is uneven, this height must be corrected. @@ -2091,10 +2326,13 @@ inline void gcode_G28() { apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + #endif - #ifdef Z_PROBE_SLED - dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel - #endif + #ifdef Z_PROBE_SLED + dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel + #elif not defined(SERVO_ENDSTOPS) + retract_z_probe(); + #endif } #ifndef Z_PROBE_SLED @@ -4920,7 +5158,64 @@ void calculate_delta(float cartesian[3]) SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]); */ } -#endif + +#ifdef ENABLE_AUTO_BED_LEVELING +// Adjust print surface height by linear interpolation over the bed_level array. +int delta_grid_spacing[2] = { 0, 0 }; +void adjust_delta(float cartesian[3]) +{ + if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) + return; // G29 not done + + int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; + float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0])); + float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1])); + int floor_x = floor(grid_x); + int floor_y = floor(grid_y); + float ratio_x = grid_x - floor_x; + float ratio_y = grid_y - floor_y; + float z1 = bed_level[floor_x+half][floor_y+half]; + float z2 = bed_level[floor_x+half][floor_y+half+1]; + float z3 = bed_level[floor_x+half+1][floor_y+half]; + float z4 = bed_level[floor_x+half+1][floor_y+half+1]; + float left = (1-ratio_y)*z1 + ratio_y*z2; + float right = (1-ratio_y)*z3 + ratio_y*z4; + float offset = (1-ratio_x)*left + ratio_x*right; + + delta[X_AXIS] += offset; + delta[Y_AXIS] += offset; + delta[Z_AXIS] += offset; + + /* + SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x); + SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y); + SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x); + SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y); + SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x); + SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y); + SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1); + SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2); + SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3); + SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4); + SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left); + SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right); + SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset); + */ +} +#endif //ENABLE_AUTO_BED_LEVELING + +void prepare_move_raw() +{ + previous_millis_cmd = millis(); + calculate_delta(destination); + plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], + destination[E_AXIS], feedrate*feedmultiply/60/100.0, + active_extruder); + for(int8_t i=0; i < NUM_AXIS; i++) { + current_position[i] = destination[i]; + } +} +#endif //DELTA void prepare_move() { diff --git a/Marlin/example_configurations/delta/Configuration.h b/Marlin/example_configurations/delta/Configuration.h index 35f7e81b2..05e4b36a1 100644 --- a/Marlin/example_configurations/delta/Configuration.h +++ b/Marlin/example_configurations/delta/Configuration.h @@ -110,6 +110,9 @@ Here are some standard links for getting your machine calibrated: // Effective horizontal distance bridged by diagonal push rods. #define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET) +// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers). +#define DELTA_PRINTABLE_RADIUS 90 + //=========================================================================== //============================= Thermal Settings ============================ @@ -361,8 +364,7 @@ const bool X_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of const bool Y_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of the endstop. //#define DISABLE_MAX_ENDSTOPS -// Deltas never have min endstops -#define DISABLE_MIN_ENDSTOPS +#define DISABLE_MIN_ENDSTOPS // Deltas only use min endstops for probing // For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1 #define X_ENABLE_ON 0 @@ -413,8 +415,80 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of //============================= Bed Auto Leveling =========================== //=========================================================================== -//Bed Auto Leveling is still not compatible with Delta Kinematics +//#define ENABLE_AUTO_BED_LEVELING // Delete the comment to enable (remove // at the start of the line) +// Z-Probe Repeatability test is not supported in Deltas yet. +#ifdef ENABLE_AUTO_BED_LEVELING + + // Deltas only support grid mode + #define AUTO_BED_LEVELING_GRID + + #define DELTA_PROBABLE_RADIUS (DELTA_PRINTABLE_RADIUS - 10) + #define LEFT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS + #define RIGHT_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS + #define BACK_PROBE_BED_POSITION DELTA_PROBABLE_RADIUS + #define FRONT_PROBE_BED_POSITION -DELTA_PROBABLE_RADIUS + + // Non-linear bed leveling will be used. + // Compensate by interpolating between the nearest four Z probe values for each point. + // Useful for deltas where the print surface may appear like a bowl or dome shape. + // Works best with ACCURATE_BED_LEVELING_POINTS 5 or higher. + #define AUTO_BED_LEVELING_GRID_POINTS 9 + + // Offsets to the probe relative to the extruder tip (Hotend - Probe) + // X and Y offsets must be integers + #define X_PROBE_OFFSET_FROM_EXTRUDER 0 // -left +right + #define Y_PROBE_OFFSET_FROM_EXTRUDER -10 // -front +behind + #define Z_PROBE_OFFSET_FROM_EXTRUDER -3.5 // -below (always!) + + #define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance. + // Be sure you have this distance over your Z_MAX_POS in case + + #define XY_TRAVEL_SPEED 4000 // X and Y axis travel speed between probes, in mm/min + + #define Z_RAISE_BEFORE_PROBING 15 //How much the extruder will be raised before traveling to the first probing point. + #define Z_RAISE_BETWEEN_PROBINGS 5 //How much the extruder will be raised when traveling from between next probing points + #define Z_RAISE_AFTER_PROBING 50 //How much the extruder will be raised after the last probing point. + + // Allen key retractable z-probe as seen on many Kossel delta printers - http://reprap.org/wiki/Kossel#Automatic_bed_leveling_probe + // Deploys by touching z-axis belt. Retracts by pushing the probe down. Uses Z_MIN_PIN. + //#define Z_PROBE_ALLEN_KEY + #ifdef Z_PROBE_ALLEN_KEY + #define Z_PROBE_ALLEN_KEY_DEPLOY_X 30 + #define Z_PROBE_ALLEN_KEY_DEPLOY_Y DELTA_PRINTABLE_RADIUS + #define Z_PROBE_ALLEN_KEY_DEPLOY_Z 100 + + #define Z_PROBE_ALLEN_KEY_RETRACT_X -64 + #define Z_PROBE_ALLEN_KEY_RETRACT_Y 56 + #define Z_PROBE_ALLEN_KEY_RETRACT_Z 23 + #define Z_PROBE_ALLEN_KEY_RETRACT_DEPTH 20 + #endif + + //If defined, the Probe servo will be turned on only during movement and then turned off to avoid jerk + //The value is the delay to turn the servo off after powered on - depends on the servo speed; 300ms is good value, but you can try lower it. + // You MUST HAVE the SERVO_ENDSTOPS defined to use here a value higher than zero otherwise your code will not compile. + +// #define PROBE_SERVO_DEACTIVATION_DELAY 300 + + +//If you have enabled the Bed Auto Leveling and are using the same Z Probe for Z Homing, +//it is highly recommended you let this Z_SAFE_HOMING enabled!!! + + #define Z_SAFE_HOMING // This feature is meant to avoid Z homing with probe outside the bed area. + // When defined, it will: + // - Allow Z homing only after X and Y homing AND stepper drivers still enabled + // - If stepper drivers timeout, it will need X and Y homing again before Z homing + // - Position the probe in a defined XY point before Z Homing when homing all axis (G28) + // - Block Z homing only when the probe is outside bed area. + + #ifdef Z_SAFE_HOMING + + #define Z_SAFE_HOMING_X_POINT (X_MAX_LENGTH/2) // X point for Z homing when homing all axis (G28) + #define Z_SAFE_HOMING_Y_POINT (Y_MAX_LENGTH/2) // Y point for Z homing when homing all axis (G28) + + #endif + +#endif // ENABLE_AUTO_BED_LEVELING diff --git a/Marlin/example_configurations/delta/Configuration_adv.h b/Marlin/example_configurations/delta/Configuration_adv.h index 9b49bfe1e..91dfb9a06 100644 --- a/Marlin/example_configurations/delta/Configuration_adv.h +++ b/Marlin/example_configurations/delta/Configuration_adv.h @@ -455,9 +455,27 @@ const unsigned int dropsegments=5; //everything with less than this number of st //=========================================================================== #if defined (ENABLE_AUTO_BED_LEVELING) && defined (DELTA) - #error "Bed Auto Leveling is still not compatible with Delta Kinematics." + + #if not defined(AUTO_BED_LEVELING_GRID) + #error "Only Grid Bed Auto Leveling is supported on Deltas." + #endif + + #if defined(Z_PROBE_SLED) + #error "You cannot use Z_PROBE_SLED together with DELTA." + #endif + + #if defined(Z_PROBE_REPEATABILITY_TEST) + #error "Z-probe repeatability test is not supported on Deltas yet." + #endif + #endif +#if defined(Z_PROBE_ALLEN_KEY) + #if !defined(AUTO_BED_LEVELING_GRID) || !defined(DELTA) + #error "Invalid use of Z_PROBE_ALLEN_KEY." + #endif +#endif + #if EXTRUDERS > 1 && defined TEMP_SENSOR_1_AS_REDUNDANT #error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1" #endif diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index cee1981bc..351616c8e 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -1057,7 +1057,7 @@ Having the real displacement of the head, we can calculate the total movement le st_wake_up(); } -#ifdef ENABLE_AUTO_BED_LEVELING +#if defined(ENABLE_AUTO_BED_LEVELING) && not defined(DELTA) vector_3 plan_get_position() { vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS)); diff --git a/Marlin/planner.h b/Marlin/planner.h index 0952b9dd3..7670087ce 100644 --- a/Marlin/planner.h +++ b/Marlin/planner.h @@ -85,8 +85,10 @@ void plan_init(); #ifdef ENABLE_AUTO_BED_LEVELING void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder); -// Get the position applying the bed level matrix if enabled -vector_3 plan_get_position(); + #ifndef DELTA + // Get the position applying the bed level matrix if enabled + vector_3 plan_get_position(); + #endif #else void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder); #endif // ENABLE_AUTO_BED_LEVELING