From 8f26c3a6d37ca7284f11112c9f9c12595218176e Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Sun, 20 May 2018 08:19:11 -0500 Subject: [PATCH] Refactor and optimize Stepper/Planner --- Marlin/Marlin_main.cpp | 45 +-- Marlin/cardreader.cpp | 2 +- Marlin/endstops.cpp | 12 +- Marlin/planner.cpp | 599 ++++++++++++++++++++++----------- Marlin/planner.h | 238 ++++++++----- Marlin/planner_bezier.cpp | 10 +- Marlin/stepper.cpp | 690 +++++++++++++++++++------------------- Marlin/stepper.h | 148 +++----- Marlin/temperature.cpp | 20 +- Marlin/ubl_motion.cpp | 13 +- Marlin/ultralcd.cpp | 6 +- 11 files changed, 991 insertions(+), 792 deletions(-) diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index cdaf65376..054ffa00b 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -8474,7 +8474,7 @@ inline void gcode_M111() { */ inline void gcode_M81() { thermalManager.disable_all_heaters(); - stepper.finish_and_disable(); + planner.finish_and_disable(); #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; @@ -8517,7 +8517,7 @@ inline void gcode_M18_M84() { else { bool all_axis = !(parser.seen('X') || parser.seen('Y') || parser.seen('Z') || parser.seen('E')); if (all_axis) { - stepper.finish_and_disable(); + planner.finish_and_disable(); } else { planner.synchronize(); @@ -9963,7 +9963,7 @@ inline void gcode_M400() { planner.synchronize(); } #endif // FILAMENT_WIDTH_SENSOR void quickstop_stepper() { - stepper.quick_stop(); + planner.quick_stop(); planner.synchronize(); set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); @@ -10342,7 +10342,7 @@ inline void gcode_M502() { * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>) */ inline void gcode_M540() { - if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool(); + if (parser.seen('S')) planner.abort_on_endstop_hit = parser.value_bool(); } #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED @@ -12995,7 +12995,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { idle(); } LOOP_XYZE(i) raw[i] += segment_distance[i]; - planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm); + if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm)) + break; } // Since segment_distance is only approximate, @@ -13281,7 +13282,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { #if ENABLED(SCARA_FEEDRATE_SCALING) // For SCARA scale the feed rate from mm/s to degrees/s // i.e., Complete the angular vector in the given time. - planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); + if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder)) + break; /* SERIAL_ECHO(segments); SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]); @@ -13291,7 +13293,8 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { //*/ oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; #else - planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm); + if (!planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm)) + break; #endif } @@ -13385,14 +13388,14 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { } // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower for (uint8_t i = 0; i < 3; i++) - planner.buffer_line( + if (!planner.buffer_line( i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS], i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS], i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS], current_position[E_AXIS], i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS], - active_extruder - ); + active_extruder) + ) break; delayed_move_time = 0; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -13409,17 +13412,12 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { } #endif // move duplicate extruder into correct duplication position. - planner.set_position_mm( - inactive_extruder_x_pos, - current_position[Y_AXIS], - current_position[Z_AXIS], - current_position[E_AXIS] - ); - planner.buffer_line( + planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); + if (!planner.buffer_line( current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], - planner.max_feedrate_mm_s[X_AXIS], 1 - ); + planner.max_feedrate_mm_s[X_AXIS], 1) + ) break; planner.synchronize(); SYNC_PLAN_POSITION_KINEMATIC(); extruder_duplication_enabled = true; @@ -13652,14 +13650,17 @@ void prepare_move_to_destination() { // i.e., Complete the angular vector in the given time. inverse_kinematics(raw); ADJUST_DELTA(raw); - planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); + if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder)) + break; oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; #elif HAS_UBL_AND_CURVES float pos[XYZ] = { raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] }; planner.apply_leveling(pos); - planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_AXIS], fr_mm_s, active_extruder); + if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_AXIS], fr_mm_s, active_extruder)) + break; #else - planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder); + if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder)) + break; #endif } diff --git a/Marlin/cardreader.cpp b/Marlin/cardreader.cpp index 109ab428b..28fdf1152 100644 --- a/Marlin/cardreader.cpp +++ b/Marlin/cardreader.cpp @@ -941,7 +941,7 @@ void CardReader::printingHasFinished() { #endif #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND) - stepper.cleaning_buffer_counter = 1; // The command will fire from the Stepper ISR + planner.finish_and_disable(); #endif print_job_timer.stop(); if (print_job_timer.duration() > 60) diff --git a/Marlin/endstops.cpp b/Marlin/endstops.cpp index 93fbd9a5a..15b601c52 100644 --- a/Marlin/endstops.cpp +++ b/Marlin/endstops.cpp @@ -181,7 +181,7 @@ void Endstops::report_state() { #endif #define _ENDSTOP_HIT_ECHO(A,C) do{ \ - SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(_AXIS(A))); \ + SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); \ _SET_STOP_CHAR(A,C); }while(0) #define _ENDSTOP_HIT_TEST(A,C) \ @@ -211,7 +211,7 @@ void Endstops::report_state() { hit_on_purpose(); #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) - if (stepper.abort_on_endstop_hit) { + if (planner.abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); quickstop_stepper(); @@ -322,7 +322,7 @@ void Endstops::update() { UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \ if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX))) { \ _ENDSTOP_HIT(AXIS, MINMAX); \ - stepper.endstop_triggered(_AXIS(AXIS)); \ + planner.endstop_triggered(_AXIS(AXIS)); \ } \ }while(0) @@ -331,9 +331,9 @@ void Endstops::update() { if (G38_move) { UPDATE_ENDSTOP_BIT(Z, MIN_PROBE); if (TEST_ENDSTOP(_ENDSTOP(Z, MIN_PROBE))) { - if (stepper.current_block->steps[_AXIS(X)] > 0) { _ENDSTOP_HIT(X, MIN); stepper.endstop_triggered(_AXIS(X)); } - else if (stepper.current_block->steps[_AXIS(Y)] > 0) { _ENDSTOP_HIT(Y, MIN); stepper.endstop_triggered(_AXIS(Y)); } - else if (stepper.current_block->steps[_AXIS(Z)] > 0) { _ENDSTOP_HIT(Z, MIN); stepper.endstop_triggered(_AXIS(Z)); } + if (stepper.current_block->steps[_AXIS(X)] > 0) { _ENDSTOP_HIT(X, MIN); planner.endstop_triggered(_AXIS(X)); } + else if (stepper.current_block->steps[_AXIS(Y)] > 0) { _ENDSTOP_HIT(Y, MIN); planner.endstop_triggered(_AXIS(Y)); } + else if (stepper.current_block->steps[_AXIS(Z)] > 0) { _ENDSTOP_HIT(Z, MIN); planner.endstop_triggered(_AXIS(Z)); } G38_endstop_hit = true; } } diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 4d4b92e9d..3818570b4 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -56,6 +56,10 @@ * * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) * + * -- + * + * The fast inverse function needed for Bézier interpolation for AVR + * was designed, written and tested by Eduardo José Tagle on April/2018 */ #include "planner.h" @@ -85,13 +89,18 @@ Planner planner; * A ring buffer of moves described in steps */ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE]; -volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed - Planner::block_buffer_tail; +volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed + Planner::block_buffer_tail; // Index of the busy block, if any +uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks -float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second +float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second Planner::axis_steps_per_mm[XYZE_N], Planner::steps_to_mm[XYZE_N]; +#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) + bool Planner::abort_on_endstop_hit = false; +#endif + #if ENABLED(DISTINCT_E_FACTORS) uint8_t Planner::last_extruder = 0; // Respond to extruder change #endif @@ -160,7 +169,7 @@ int32_t Planner::position[NUM_AXIS] = { 0 }; uint32_t Planner::cutoff_long; float Planner::previous_speed[NUM_AXIS], - Planner::previous_nominal_speed; + Planner::previous_nominal_speed_sqr; #if ENABLED(DISABLE_INACTIVE_EXTRUDER) uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 }; @@ -197,7 +206,7 @@ void Planner::init() { ZERO(position_float); #endif ZERO(previous_speed); - previous_nominal_speed = 0.0; + previous_nominal_speed_sqr = 0.0; #if ABL_PLANAR bed_level_matrix.set_to_identity(); #endif @@ -347,7 +356,7 @@ void Planner::init() { // static uint32_t get_period_inverse(uint32_t d) { - static const uint8_t inv_tab[256] PROGMEM = { + static const uint8_t inv_tab[256] PROGMEM = { 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227, 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200, 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176, @@ -520,7 +529,7 @@ void Planner::init() { A("rjmp 6f") // No, skip it A("mov %14,%15") A("clr %15") - L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d) + L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough @@ -709,7 +718,6 @@ void Planner::init() { // Return the result return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16); } - #endif // BEZIER_JERK_CONTROL #define MINIMAL_STEP_RATE 120 @@ -719,12 +727,13 @@ void Planner::init() { * by the provided factors. */ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) { + uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor), final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second) // Limit minimal step rate (Otherwise the timer will overflow.) - NOLESS(initial_rate, MINIMAL_STEP_RATE); - NOLESS(final_rate, MINIMAL_STEP_RATE); + NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE)); + NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE)); #if ENABLED(BEZIER_JERK_CONTROL) uint32_t cruise_rate = initial_rate; @@ -733,19 +742,18 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e const int32_t accel = block->acceleration_steps_per_s2; // Steps required for acceleration, deceleration to/from nominal rate - int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), - decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)), + uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), + decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)); // Steps between acceleration and deceleration, if any - plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; + int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Does accelerate_steps + decelerate_steps exceed step_event_count? // Then we can't possibly reach the nominal rate, there will be no cruising. // Use intersection_distance() to calculate accel / braking time in order to // reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { - accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); - NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off - accelerate_steps = MIN((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) + const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); + accelerate_steps = MIN(uint32_t(MAX(accelerate_steps_float, 0)), block->step_event_count); plateau_steps = 0; #if ENABLED(BEZIER_JERK_CONTROL) @@ -772,8 +780,12 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e #endif - CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section - if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy. + // Fill variables used by the stepper in a critical section + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + // Don't update variables if block is busy: It is being interpreted by the planner + if (!TEST(block->flag, BLOCK_BIT_BUSY)) { block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps + plateau_steps; block->initial_rate = initial_rate; @@ -786,32 +798,35 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e #endif block->final_rate = final_rate; } - CRITICAL_SECTION_END; + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } -// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. -// This method will calculate the junction jerk as the euclidean distance between the nominal -// velocities of the respective blocks. -//inline float junction_jerk(block_t *before, block_t *after) { -// return SQRT( -// POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2)); -//} - // The kernel called by recalculate() when scanning the plan from last to first entry. -void Planner::reverse_pass_kernel(block_t* const current, const block_t* const next) { - if (current && next) { - // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. - // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and - // check for maximum allowable speed reductions to ensure maximum possible planned speed. - const float max_entry_speed = current->max_entry_speed; - if (current->entry_speed != max_entry_speed || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { - // If nominal length true, max junction speed is guaranteed to be reached. Only compute - // for max allowable speed if block is decelerating and nominal length is false. - const float new_entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed) - ? max_entry_speed - : MIN(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); - if (new_entry_speed != current->entry_speed) { - current->entry_speed = new_entry_speed; +void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) { + if (current) { + // If entry speed is already at the maximum entry speed, and there was no change of speed + // in the next block, there is no need to recheck. Block is cruising and there is no need to + // compute anything for this block, + // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed. + const float max_entry_speed_sqr = current->max_entry_speed_sqr; + + // Compute maximum entry speed decelerating over the current block from its exit speed. + // If not at the maximum entry speed, or the previous block entry speed changed + if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) { + + // If nominal length true, max junction speed is guaranteed to be reached. + // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then + // the current block and next block junction speeds are guaranteed to always be at their maximum + // junction speeds in deceleration and acceleration, respectively. This is due to how the current + // block nominal speed limits both the current and next maximum junction speeds. Hence, in both + // the reverse and forward planners, the corresponding block junction speed will always be at the + // the maximum junction speed and may always be ignored for any speed reduction checks. + + const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) + ? max_entry_speed_sqr + : MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(MINIMUM_PLANNER_SPEED), current->millimeters)); + if (current->entry_speed_sqr != new_entry_speed_sqr) { + current->entry_speed_sqr = new_entry_speed_sqr; SBI(current->flag, BLOCK_BIT_RECALCULATE); } } @@ -826,44 +841,37 @@ void Planner::reverse_pass() { if (movesplanned() > 2) { const uint8_t endnr = next_block_index(block_buffer_tail); // tail is running. tail+1 shouldn't be altered because it's connected to the running block. uint8_t blocknr = prev_block_index(block_buffer_head); - block_t* current = &block_buffer[blocknr]; - // Last/newest block in buffer: - const float max_entry_speed = current->max_entry_speed; - if (current->entry_speed != max_entry_speed) { - // If nominal length true, max junction speed is guaranteed to be reached. Only compute - // for max allowable speed if block is decelerating and nominal length is false. - const float new_entry_speed = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) - ? max_entry_speed - : MIN(max_entry_speed, max_allowable_speed(-current->acceleration, MINIMUM_PLANNER_SPEED, current->millimeters)); - if (current->entry_speed != new_entry_speed) { - current->entry_speed = new_entry_speed; - SBI(current->flag, BLOCK_BIT_RECALCULATE); - } - } - - do { - const block_t * const next = current; - blocknr = prev_block_index(blocknr); + // Perform the reverse pass + block_t *current, *next = NULL; + while (blocknr != endnr) { + // Perform the reverse pass - Only consider non sync blocks current = &block_buffer[blocknr]; - reverse_pass_kernel(current, next); - } while (blocknr != endnr); + if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) { + reverse_pass_kernel(current, next); + next = current; + } + // Advance to the next + blocknr = prev_block_index(blocknr); + } } } // The kernel called by recalculate() when scanning the plan from first to last entry. -void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current) { +void Planner::forward_pass_kernel(const block_t * const previous, block_t* const current) { if (previous) { // If the previous block is an acceleration block, too short to complete the full speed // change, adjust the entry speed accordingly. Entry speeds have already been reset, // maximized, and reverse-planned. If nominal length is set, max junction speed is // guaranteed to be reached. No need to recheck. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) { - if (previous->entry_speed < current->entry_speed) { - const float new_entry_speed = MIN(current->entry_speed, max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); - // Check for junction speed change - if (current->entry_speed != new_entry_speed) { - current->entry_speed = new_entry_speed; + if (previous->entry_speed_sqr < current->entry_speed_sqr) { + // Compute the maximum allowable speed + const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters); + // If true, current block is full-acceleration + if (current->entry_speed_sqr > new_entry_speed_sqr) { + // Always <= max_entry_speed_sqr. Backward pass sets this. + current->entry_speed_sqr = new_entry_speed_sqr; SBI(current->flag, BLOCK_BIT_RECALCULATE); } } @@ -876,15 +884,21 @@ void Planner::forward_pass_kernel(const block_t* const previous, block_t* const * Once in reverse and once forward. This implements the forward pass. */ void Planner::forward_pass() { - block_t* block[3] = { NULL, NULL, NULL }; + const uint8_t endnr = block_buffer_head; + uint8_t blocknr = block_buffer_tail; - for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { - block[0] = block[1]; - block[1] = block[2]; - block[2] = &block_buffer[b]; - forward_pass_kernel(block[0], block[1]); + // Perform the forward pass + block_t *current, *previous = NULL; + while (blocknr != endnr) { + // Perform the forward pass - Only consider non-sync blocks + current = &block_buffer[blocknr]; + if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) { + forward_pass_kernel(previous, current); + previous = current; + } + // Advance to the previous + blocknr = next_block_index(blocknr); } - forward_pass_kernel(block[1], block[2]); } /** @@ -893,38 +907,72 @@ void Planner::forward_pass() { * recalculate() after updating the blocks. */ void Planner::recalculate_trapezoids() { - int8_t block_index = block_buffer_tail; - block_t *current, *next = NULL; + uint8_t block_index = block_buffer_tail; + + // As there could be a sync block in the head of the queue, and the next loop must not + // recalculate the head block (as it needs to be specially handled), scan backwards until + // we find the first non SYNC block + uint8_t head_block_index = block_buffer_head; + while (head_block_index != block_index) { + + // Go back (head always point to the first free block) + uint8_t prev_index = prev_block_index(head_block_index); + + // Get the pointer to the block + block_t *prev = &block_buffer[prev_index]; + + // If not dealing with a sync block, we are done. The last block is not a SYNC block + if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break; + + // Examine the previous block. This and all following are SYNC blocks + head_block_index = prev_index; + }; + + // Go from the tail (currently executed block) to the first block, without including it) + block_t *current = NULL, *next = NULL; + float current_entry_speed = 0.0, next_entry_speed = 0.0; + while (block_index != head_block_index) { - while (block_index != block_buffer_head) { - current = next; next = &block_buffer[block_index]; - if (current) { - // Recalculate if current block entry or exit junction speed has changed. - if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { - // NOTE: Entry and exit factors always > 0 by all previous logic operations. - const float nomr = 1.0 / current->nominal_speed; - calculate_trapezoid_for_block(current, current->entry_speed * nomr, next->entry_speed * nomr); - #if ENABLED(LIN_ADVANCE) - if (current->use_advance_lead) { - const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; - current->max_adv_steps = current->nominal_speed * comp; - current->final_adv_steps = next->entry_speed * comp; - } - #endif - CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed + + // Skip sync blocks + if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION)) { + next_entry_speed = SQRT(next->entry_speed_sqr); + + if (current) { + // Recalculate if current block entry or exit junction speed has changed. + if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { + // NOTE: Entry and exit factors always > 0 by all previous logic operations. + const float current_nominal_speed = SQRT(current->nominal_speed_sqr), + nomr = 1.0 / current_nominal_speed; + calculate_trapezoid_for_block(current, current_entry_speed * nomr, next_entry_speed * nomr); + #if ENABLED(LIN_ADVANCE) + if (current->use_advance_lead) { + const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; + current->max_adv_steps = current_nominal_speed * comp; + current->final_adv_steps = next_entry_speed * comp; + } + #endif + CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed + } } + + current = next; + current_entry_speed = next_entry_speed; } + block_index = next_block_index(block_index); } + // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if (next) { - const float nomr = 1.0 / next->nominal_speed; - calculate_trapezoid_for_block(next, next->entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr); + const float next_nominal_speed = SQRT(next->nominal_speed_sqr), + nomr = 1.0 / next_nominal_speed; + calculate_trapezoid_for_block(next, next_entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr); #if ENABLED(LIN_ADVANCE) if (next->use_advance_lead) { const float comp = next->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; - next->max_adv_steps = next->nominal_speed * comp; + next->max_adv_steps = next_nominal_speed * comp; next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp; } #endif @@ -974,7 +1022,7 @@ void Planner::recalculate() { for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block_t* block = &block_buffer[b]; if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { - float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; + const float se = (float)block->steps[E_AXIS] / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec; NOLESS(high, se); } } @@ -1275,6 +1323,59 @@ void Planner::check_axes_activity() { #endif // PLANNER_LEVELING +void Planner::quick_stop() { + // Remove all the queued blocks. Note that this function is NOT + // called from the Stepper ISR, so we must consider tail as readonly! + // that is why we set head to tail! + block_buffer_head = block_buffer_tail; + + #if ENABLED(ULTRA_LCD) + // Clear the accumulated runtime + clear_block_buffer_runtime(); + #endif + + // Make sure to drop any attempt of queuing moves for at least 1 second + cleaning_buffer_counter = 1000; + + // And stop the stepper ISR + stepper.quick_stop(); +} + +void Planner::endstop_triggered(const AxisEnum axis) { + + /*NB: This will be called via endstops.update() + and endstops.update() can be called from the temperature + ISR. So Stepper interrupts are enabled */ + + // Disable stepper ISR + bool stepper_isr_enabled = STEPPER_ISR_ENABLED(); + DISABLE_STEPPER_DRIVER_INTERRUPT(); + + // Record stepper position + stepper.endstop_triggered(axis); + + // Discard the active block that led to the trigger + discard_current_block(); + + // Discard the CONTINUED block, if any. Note the planner can only queue 1 continued + // block after a previous non continued block, as the condition to queue them + // is that there are no queued blocks at the time a new block is queued. + const bool discard = has_blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED); + if (discard) discard_current_block(); + + // Reenable stepper ISR if it was enabled + if (stepper_isr_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); +} + +float Planner::triggered_position_mm(const AxisEnum axis) { + return stepper.triggered_position(axis) * steps_to_mm[axis]; +} + +void Planner::finish_and_disable() { + while (has_blocks_queued() || cleaning_buffer_counter) idle(); + disable_all_steppers(); +} + /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. @@ -1287,7 +1388,7 @@ float Planner::get_axis_position_mm(const AxisEnum axis) { // Protect the access to the position. const bool was_enabled = STEPPER_ISR_ENABLED(); - DISABLE_STEPPER_DRIVER_INTERRUPT(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1 // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2 @@ -1309,18 +1410,69 @@ float Planner::get_axis_position_mm(const AxisEnum axis) { /** * Block until all buffered steps are executed / cleaned */ -void Planner::synchronize() { while (has_blocks_queued() || stepper.cleaning_buffer_counter) idle(); } +void Planner::synchronize() { while (has_blocks_queued() || cleaning_buffer_counter) idle(); } /** * Planner::_buffer_steps * - * Add a new linear movement to the buffer (in terms of steps). + * Add a new linear movement to the planner queue (in terms of steps). * * target - target position in steps units * fr_mm_s - (target) speed of the move * extruder - target extruder + * millimeters - the length of the movement, if known + * + * Returns true if movement was properly queued, false otherwise */ -void Planner::_buffer_steps(const int32_t (&target)[XYZE] +bool Planner::_buffer_steps(const int32_t (&target)[XYZE] + #if HAS_POSITION_FLOAT + , const float (&target_float)[XYZE] + #endif + , float fr_mm_s, const uint8_t extruder, const float &millimeters +) { + + // If we are cleaning, do not accept queuing of movements + if (cleaning_buffer_counter) return false; + + // Wait for the next available block + uint8_t next_buffer_head; + block_t * const block = get_next_free_block(next_buffer_head); + + // Fill the block with the specified movement + if (!_populate_block(block, false, target + #if HAS_POSITION_FLOAT + , target_float + #endif + , fr_mm_s, extruder, millimeters + )) { + // Movement was not queued, probably because it was too short. + // Simply accept that as movement queued and done + return true; + } + + // Move buffer head + block_buffer_head = next_buffer_head; + + // Recalculate and optimize trapezoidal speed profiles + recalculate(); + + // Movement successfully queued! + return true; +} + +/** + * Planner::_populate_block + * + * Fills a new linear movement in the block (in terms of steps). + * + * target - target position in steps units + * fr_mm_s - (target) speed of the move + * extruder - target extruder + * + * Returns true is movement is acceptable, false otherwise + */ +bool Planner::_populate_block(block_t * const block, bool split_move, + const int32_t (&target)[XYZE] #if HAS_POSITION_FLOAT , const float (&target_float)[XYZE] #endif @@ -1334,7 +1486,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] int32_t de = target[E_AXIS] - position[E_AXIS]; /* <-- add a slash to enable - SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s); + SERIAL_ECHOPAIR(" _populate_block FR:", fr_mm_s); SERIAL_ECHOPAIR(" A:", target[A_AXIS]); SERIAL_ECHOPAIR(" (", da); SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); @@ -1401,11 +1553,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] if (de < 0) SBI(dm, E_AXIS); const float esteps_float = de * e_factor[extruder]; - const int32_t esteps = ABS(esteps_float) + 0.5; - - // Wait for the next available block - uint8_t next_buffer_head; - block_t * const block = get_next_free_block(next_buffer_head); + const uint32_t esteps = ABS(esteps_float) + 0.5; // Clear all flags, including the "busy" bit block->flag = 0x00; @@ -1442,7 +1590,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] block->step_event_count = MAX4(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], esteps); // Bail if this is a zero-length block - if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return; + if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false; // For a mixing extruder, get a magnified step_event_count for each #if ENABLED(MIXING_EXTRUDER) @@ -1682,12 +1830,16 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] #endif #if ENABLED(ULTRA_LCD) - CRITICAL_SECTION_START - block_buffer_runtime_us += segment_time_us; - CRITICAL_SECTION_END + // Protect the access to the position. + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + block_buffer_runtime_us += segment_time_us; + + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); #endif - block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0 + block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0 block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0 #if ENABLED(FILAMENT_WIDTH_SENSOR) @@ -1775,8 +1927,8 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // Correct the speed if (speed_factor < 1.0) { LOOP_XYZE(i) current_speed[i] *= speed_factor; - block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; + block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor); } // Compute and limit the acceleration rate for the trapezoid generator. @@ -1871,13 +2023,13 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] block->acceleration_steps_per_s2 = accel; block->acceleration = accel / steps_per_mm; #if DISABLED(BEZIER_JERK_CONTROL) - block->acceleration_rate = (long)(accel * (4096.0 * 4096.0 / (HAL_STEPPER_TIMER_RATE))); // * 8.388608 + block->acceleration_rate = (uint32_t)(accel * (4096.0 * 4096.0 / (HAL_STEPPER_TIMER_RATE))); #endif #if ENABLED(LIN_ADVANCE) if (block->use_advance_lead) { block->advance_speed = (HAL_STEPPER_TIMER_RATE) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS_N]); #if ENABLED(LA_DEBUG) - if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio) + if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio) SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed."); if (block->advance_speed < 200) SERIAL_ECHOLNPGM("eISR running at > 10kHz."); @@ -1885,7 +2037,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] } #endif - float vmax_junction; // Initial limit on the segment entry velocity + float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2 #if ENABLED(JUNCTION_DEVIATION) @@ -1911,7 +2063,17 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] * changed dynamically during operation nor can the line move geometry. This must be kept in * memory in the event of a feedrate override changing the nominal speeds of blocks, which can * change the overall maximum entry speed conditions of all blocks. - */ + * + * ####### + * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754 + * + * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin: + Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm + on then on anything with less sides than an octagon. With this, and the + reverse pass actually recalculating things, a corner acceleration value + of 1000 junction deviation of .05 are pretty reasonable. If the cycles + can be spared, a better acos could be used. For all I know, it may be + already calculated in a different place. */ // Unit vector of previous path line segment static float previous_unit_vec[ @@ -1932,7 +2094,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] }; // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. - if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { + if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. float junction_cos_theta = -previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] @@ -1946,21 +2108,33 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta). if (junction_cos_theta > 0.999999) { // For a 0 degree acute junction, just set minimum junction speed. - vmax_junction = MINIMUM_PLANNER_SPEED; + vmax_junction_sqr = sq(MINIMUM_PLANNER_SPEED); } else { - junction_cos_theta = MAX(junction_cos_theta, -0.999999); // Check for numerical round-off to avoid divide by zero. + NOLESS(junction_cos_theta, -0.999999); // Check for numerical round-off to avoid divide by zero. const float sin_theta_d2 = SQRT(0.5 * (1.0 - junction_cos_theta)); // Trig half angle identity. Always positive. // TODO: Technically, the acceleration used in calculation needs to be limited by the minimum of the // two junctions. However, this shouldn't be a significant problem except in extreme circumstances. - vmax_junction = SQRT((block->acceleration * JUNCTION_DEVIATION_FACTOR * sin_theta_d2) / (1.0 - sin_theta_d2)); + vmax_junction_sqr = (JUNCTION_ACCELERATION_FACTOR * JUNCTION_DEVIATION_FACTOR * sin_theta_d2) / (1.0 - sin_theta_d2); + if (block->millimeters < 1.0) { + + // Fast acos approximation, minus the error bar to be safe + const float junction_theta = (RADIANS(-40) * sq(junction_cos_theta) - RADIANS(50)) * junction_cos_theta + RADIANS(90) - 0.18; + + // If angle is greater than 135 degrees (octagon), find speed for approximate arc + if (junction_theta > RADIANS(135)) { + const float limit_sqr = block->millimeters / (RADIANS(180) - junction_theta) * JUNCTION_ACCELERATION_FACTOR; + NOMORE(vmax_junction_sqr, limit_sqr); + } + } } - vmax_junction = MIN3(vmax_junction, block->nominal_speed, previous_nominal_speed); + // Get the lowest speed + vmax_junction_sqr = MIN3(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr); } else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later. - vmax_junction = 0.0; + vmax_junction_sqr = 0.0; COPY(previous_unit_vec, unit_vec); @@ -1976,13 +2150,15 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // Exit speed limited by a jerk to full halt of a previous last segment static float previous_safe_speed; - float safe_speed = block->nominal_speed; + const float nominal_speed = SQRT(block->nominal_speed_sqr); + float safe_speed = nominal_speed; + uint8_t limited = 0; LOOP_XYZE(i) { const float jerk = ABS(current_speed[i]), maxj = max_jerk[i]; if (jerk > maxj) { if (limited) { - const float mjerk = maxj * block->nominal_speed; + const float mjerk = maxj * nominal_speed; if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; } else { @@ -1992,19 +2168,21 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] } } - if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { + float vmax_junction; + if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { // Estimate a maximum velocity allowed at a joint of two successive segments. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // then the machine is not coasting anymore and the safe entry / exit velocities shall be used. - // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. - // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. - vmax_junction = MIN(block->nominal_speed, previous_nominal_speed); - // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. float v_factor = 1; limited = 0; + // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. + // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. + const float previous_nominal_speed = SQRT(previous_nominal_speed_sqr); + vmax_junction = MIN(nominal_speed, previous_nominal_speed); + // Now limit the jerk in all axes. const float smaller_speed_factor = vmax_junction / previous_nominal_speed; LOOP_XYZE(axis) { @@ -2039,16 +2217,19 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] vmax_junction = safe_speed; previous_safe_speed = safe_speed; + vmax_junction_sqr = sq(vmax_junction); + #endif // Classic Jerk Limiting // Max entry speed of this block equals the max exit speed of the previous block. - block->max_entry_speed = vmax_junction; + block->max_entry_speed_sqr = vmax_junction_sqr; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. - const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); - // If stepper ISR is disabled, this indicates buffer_segment wants to add a split block. - // In this case start with the max. allowed speed to avoid an interrupted first move. - block->entry_speed = STEPPER_ISR_ENABLED() ? MINIMUM_PLANNER_SPEED : MIN(vmax_junction, v_allowable); + const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(MINIMUM_PLANNER_SPEED), block->millimeters); + + // If we are trying to add a split block, start with the + // max. allowed speed to avoid an interrupted first move. + block->entry_speed_sqr = !split_move ? sq(MINIMUM_PLANNER_SPEED) : MIN(vmax_junction_sqr, v_allowable_sqr); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. @@ -2058,25 +2239,22 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. - block->flag |= block->nominal_speed <= v_allowable ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE; + block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE; // Update previous path unit_vector and nominal speed COPY(previous_speed, current_speed); - previous_nominal_speed = block->nominal_speed; + previous_nominal_speed_sqr = block->nominal_speed_sqr; - // Move buffer head - block_buffer_head = next_buffer_head; - - // Update the position (only when a move was queued) + // Update the position static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!"); COPY(position, target); #if HAS_POSITION_FLOAT COPY(position_float, target_float); #endif - recalculate(); - -} // _buffer_steps() + // Movement was accepted + return true; +} // _populate_block() /** * Planner::buffer_sync_block @@ -2087,29 +2265,15 @@ void Planner::buffer_sync_block() { uint8_t next_buffer_head; block_t * const block = get_next_free_block(next_buffer_head); + // Clear block + memset(block, 0, sizeof(block_t)); + block->flag = BLOCK_FLAG_SYNC_POSITION; - block->steps[A_AXIS] = position[A_AXIS]; - block->steps[B_AXIS] = position[B_AXIS]; - block->steps[C_AXIS] = position[C_AXIS]; - block->steps[E_AXIS] = position[E_AXIS]; - - #if ENABLED(LIN_ADVANCE) - block->use_advance_lead = false; - #endif - - block->nominal_speed = - block->entry_speed = - block->max_entry_speed = - block->millimeters = - block->acceleration = 0; - - block->step_event_count = - block->nominal_rate = - block->initial_rate = - block->final_rate = - block->acceleration_steps_per_s2 = - block->segment_time_us = 0; + block->position[A_AXIS] = position[A_AXIS]; + block->position[B_AXIS] = position[B_AXIS]; + block->position[C_AXIS] = position[C_AXIS]; + block->position[E_AXIS] = position[E_AXIS]; block_buffer_head = next_buffer_head; stepper.wake_up(); @@ -2127,7 +2291,11 @@ void Planner::buffer_sync_block() { * extruder - target extruder * millimeters - the length of the movement, if known */ -void Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/) { +bool Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/) { + + // If we are cleaning, do not accept queuing of movements + if (cleaning_buffer_counter) return false; + // When changing extruders recalculate steps corresponding to the E position #if ENABLED(DISTINCT_E_FACTORS) if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { @@ -2196,37 +2364,80 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con const float between_float[ABCE] = { _BETWEEN_F(A), _BETWEEN_F(B), _BETWEEN_F(C), _BETWEEN_F(E) }; #endif - DISABLE_STEPPER_DRIVER_INTERRUPT(); + // The new head value is not assigned yet + uint8_t buffer_head = 0; + bool added = false; - _buffer_steps(between + uint8_t next_buffer_head; + block_t *block = get_next_free_block(next_buffer_head, 2); + + // Fill the block with the specified movement + if ( + _populate_block(block, true, between + #if HAS_POSITION_FLOAT + , between_float + #endif + , fr_mm_s, extruder, millimeters * 0.5 + ) + ) { + // Movement accepted - Point to the next reserved block + block = &block_buffer[next_buffer_head]; + + // Store into the new to be stored head + buffer_head = next_buffer_head; + added = true; + + // And advance the pointer to the next unused slot + next_buffer_head = next_block_index(next_buffer_head); + } + + // Fill the second part of the block with the 2nd part of the movement + if ( + _populate_block(block, true, target + #if HAS_POSITION_FLOAT + , target_float + #endif + , fr_mm_s, extruder, millimeters * 0.5 + ) + ) { + // Movement accepted - If this block is a continuation + // of the previous one, mark it as such + if (added) SBI(block->flag, BLOCK_BIT_CONTINUED); + + // Store into the new to be stored head + buffer_head = next_buffer_head; + added = true; + } + + // If any of the movements was added + if (added) { + + // Move buffer head and add all the blocks that were filled + // successfully to the movement queue. + block_buffer_head = buffer_head; + + // Update the position (only when a move was queued) + static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!"); + COPY(position, target); #if HAS_POSITION_FLOAT - , between_float + COPY(position_float, target_float); #endif - , fr_mm_s, extruder, millimeters * 0.5 - ); - const uint8_t next = block_buffer_head; - - _buffer_steps(target - #if HAS_POSITION_FLOAT - , target_float - #endif - , fr_mm_s, extruder, millimeters * 0.5 - ); - - SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED); - ENABLE_STEPPER_DRIVER_INTERRUPT(); + // Recalculate and optimize trapezoidal speed profiles + recalculate(); + } } - else - _buffer_steps(target + else if ( + !_buffer_steps(target #if HAS_POSITION_FLOAT , target_float #endif , fr_mm_s, extruder, millimeters - ); + ) + ) return false; stepper.wake_up(); - + return true; } // buffer_segment() /** @@ -2253,7 +2464,7 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c position_float[C_AXIS] = c; position_float[E_AXIS] = e; #endif - previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. + previous_nominal_speed_sqr = 0.0; // Resets planner junction speeds. Assumes start from rest. ZERO(previous_speed); buffer_sync_block(); } @@ -2273,22 +2484,6 @@ void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) { #endif } -/** - * Sync from the stepper positions. (e.g., after an interrupted move) - */ -void Planner::sync_from_steppers() { - LOOP_XYZE(i) { - position[i] = stepper.position((AxisEnum)i); - #if HAS_POSITION_FLOAT - position_float[i] = position[i] * steps_to_mm[i - #if ENABLED(DISTINCT_E_FACTORS) - + (i == E_AXIS ? active_extruder : 0) - #endif - ]; - #endif - } -} - /** * Setters for planner position (also setting stepper position). */ diff --git a/Marlin/planner.h b/Marlin/planner.h index 35ce6c280..d022eca08 100644 --- a/Marlin/planner.h +++ b/Marlin/planner.h @@ -49,7 +49,7 @@ enum BlockFlagBit : char { // from a safe speed (in consideration of jerking from zero speed). BLOCK_BIT_NOMINAL_LENGTH, - // The block is busy + // The block is busy, being interpreted by the stepper ISR BLOCK_BIT_BUSY, // The block is segment 2+ of a longer move @@ -80,24 +80,35 @@ typedef struct { uint8_t flag; // Block flags (See BlockFlag enum above) - unsigned char active_extruder; // The extruder to move (if E move) + // Fields used by the motion planner to manage acceleration + float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2 + entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2 + max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2 + millimeters, // The total travel of this block in mm + acceleration; // acceleration mm/sec^2 - // Fields used by the Bresenham algorithm for tracing the line - int32_t steps[NUM_AXIS]; // Step count along each axis + union { + // Data used by all move blocks + struct { + // Fields used by the Bresenham algorithm for tracing the line + uint32_t steps[NUM_AXIS]; // Step count along each axis + }; + // Data used by all sync blocks + struct { + int32_t position[NUM_AXIS]; // New position to force when this sync block is executed + }; + }; uint32_t step_event_count; // The number of step events required to complete this block + uint8_t active_extruder; // The extruder to move (if E move) + #if ENABLED(MIXING_EXTRUDER) uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers #endif // Settings for the trapezoid generator - int32_t accelerate_until, // The index of the step event on which to stop acceleration - decelerate_after; // The index of the step event on which to start decelerating - - uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec - initial_rate, // The jerk-adjusted step rate at start of block - final_rate, // The minimal rate at exit - acceleration_steps_per_s2; // acceleration steps/sec^2 + uint32_t accelerate_until, // The index of the step event on which to stop acceleration + decelerate_after; // The index of the step event on which to start decelerating #if ENABLED(BEZIER_JERK_CONTROL) uint32_t cruise_rate; // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase @@ -106,7 +117,7 @@ typedef struct { uint32_t acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used deceleration_time_inverse; #else - int32_t acceleration_rate; // The acceleration rate used for acceleration calculation + uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation #endif uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) @@ -120,12 +131,10 @@ typedef struct { float e_D_ratio; #endif - // Fields used by the motion planner to manage acceleration - float nominal_speed, // The nominal speed for this block in mm/sec - entry_speed, // Entry speed at previous-current junction in mm/sec - max_entry_speed, // Maximum allowable junction entry speed in mm/sec - millimeters, // The total travel of this block in mm - acceleration; // acceleration mm/sec^2 + uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec + initial_rate, // The jerk-adjusted step rate at start of block + final_rate, // The minimal rate at exit + acceleration_steps_per_s2; // acceleration steps/sec^2 #if FAN_COUNT > 0 uint16_t fan_speed[FAN_COUNT]; @@ -162,6 +171,7 @@ class Planner { static block_t block_buffer[BLOCK_BUFFER_SIZE]; static volatile uint8_t block_buffer_head, // Index of the next block to be pushed block_buffer_tail; // Index of the busy block, if any + static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks #if ENABLED(DISTINCT_E_FACTORS) static uint8_t last_extruder; // Respond to extruder change @@ -229,6 +239,10 @@ class Planner { #endif #endif + #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) + static bool abort_on_endstop_hit; + #endif + private: /** @@ -243,9 +257,9 @@ class Planner { static float previous_speed[NUM_AXIS]; /** - * Nominal speed of previous path line segment + * Nominal speed of previous path line segment (mm/s)^2 */ - static float previous_nominal_speed; + static float previous_nominal_speed_sqr; /** * Limit where 64bit math is necessary for acceleration calculation @@ -304,15 +318,6 @@ class Planner { // Manage fans, paste pressure, etc. static void check_axes_activity(); - /** - * Number of moves currently in the planner - */ - FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); } - - FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; } - - FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); } - // Update multipliers based on new diameter measurements static void calculate_volumetric_multipliers(); @@ -420,16 +425,32 @@ class Planner { #define ARG_Z const float &rz #endif + // Number of moves currently in the planner + FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); } + + // Remove all blocks from the buffer + FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; } + + // Check if movement queue is full + FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); } + + // Get count of movement slots free + FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); } + /** * Planner::get_next_free_block * - * - Get the next head index (passed by reference) - * - Wait for a space to open up in the planner - * - Return the head block + * - Get the next head indices (passed by reference) + * - Wait for the number of spaces to open up in the planner + * - Return the first head block */ - FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head) { + FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) { + + // Wait until there are enough slots free + while (moves_free() < count) { idle(); } + + // Return the first available block next_buffer_head = next_block_index(block_buffer_head); - while (block_buffer_tail == next_buffer_head) idle(); // while (is_full) return &block_buffer[block_buffer_head]; } @@ -442,8 +463,30 @@ class Planner { * fr_mm_s - (target) speed of the move * extruder - target extruder * millimeters - the length of the movement, if known + * + * Returns true if movement was buffered, false otherwise */ - static void _buffer_steps(const int32_t (&target)[XYZE] + static bool _buffer_steps(const int32_t (&target)[XYZE] + #if HAS_POSITION_FLOAT + , const float (&target_float)[XYZE] + #endif + , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0 + ); + + /** + * Planner::_populate_block + * + * Fills a new linear movement in the block (in terms of steps). + * + * target - target position in steps units + * fr_mm_s - (target) speed of the move + * extruder - target extruder + * millimeters - the length of the movement, if known + * + * Returns true is movement is acceptable, false otherwise + */ + static bool _populate_block(block_t * const block, bool split_move, + const int32_t (&target)[XYZE] #if HAS_POSITION_FLOAT , const float (&target_float)[XYZE] #endif @@ -468,7 +511,7 @@ class Planner { * extruder - target extruder * millimeters - the length of the movement, if known */ - static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0); + static bool buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0); static void _set_position_mm(const float &a, const float &b, const float &c, const float &e); @@ -485,11 +528,11 @@ class Planner { * extruder - target extruder * millimeters - the length of the movement, if known */ - FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { + FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { #if PLANNER_LEVELING && IS_CARTESIAN apply_leveling(rx, ry, rz); #endif - buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters); + return buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters); } /** @@ -502,7 +545,7 @@ class Planner { * extruder - target extruder * millimeters - the length of the movement, if known */ - FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { + FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { #if PLANNER_LEVELING float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] }; apply_leveling(raw); @@ -511,9 +554,9 @@ class Planner { #endif #if IS_KINEMATIC inverse_kinematics(raw); - buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); + return buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); #else - buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); + return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); #endif } @@ -537,11 +580,6 @@ class Planner { FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); } FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); } - /** - * Sync from the stepper positions. (e.g., after an interrupted move) - */ - static void sync_from_steppers(); - /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. @@ -553,35 +591,38 @@ class Planner { FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); } #endif + // Called to force a quick stop of the machine (for example, when an emergency + // stop is required, or when endstops are hit) + static void quick_stop(); + + // Called when an endstop is triggered. Causes the machine to stop inmediately + static void endstop_triggered(const AxisEnum axis); + + // Triggered position of an axis in mm (not core-savvy) + static float triggered_position_mm(const AxisEnum axis); + + // Block until all buffered steps are executed / cleaned + static void synchronize(); + + // Wait for moves to finish and disable all steppers + static void finish_and_disable(); + + // Periodic tick to handle cleaning timeouts + // Called from the Temperature ISR at ~1kHz + static void tick() { + if (cleaning_buffer_counter) { + --cleaning_buffer_counter; + #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND) + if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); + #endif + } + } + /** * Does the buffer have any blocks queued? */ FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); } - // - // Block until all buffered steps are executed - // - static void synchronize(); - - /** - * "Discard" the block and "release" the memory. - * Called when the current block is no longer needed. - */ - FORCE_INLINE static void discard_current_block() { - if (has_blocks_queued()) - block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1); - } - - /** - * "Discard" the next block if it's continued. - * Called after an interrupted move to throw away the rest of the move. - */ - FORCE_INLINE static bool discard_continued_block() { - const bool discard = has_blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED); - if (discard) discard_current_block(); - return discard; - } - /** * The current block. NULL if the buffer is empty. * This also marks the block as busy. @@ -603,23 +644,42 @@ class Planner { #if ENABLED(ULTRA_LCD) block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it. #endif + + // Mark the block as busy, so the planner does not attempt to replan it SBI(block->flag, BLOCK_BIT_BUSY); return block; } - else { - #if ENABLED(ULTRA_LCD) - clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero. - #endif - return NULL; - } + + // The queue became empty + #if ENABLED(ULTRA_LCD) + clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero. + #endif + + return NULL; + } + + /** + * "Discard" the block and "release" the memory. + * Called when the current block is no longer needed. + * NB: There MUST be a current block to call this function!! + */ + FORCE_INLINE static void discard_current_block() { + block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1); } #if ENABLED(ULTRA_LCD) static uint16_t block_buffer_runtime() { - CRITICAL_SECTION_START - millis_t bbru = block_buffer_runtime_us; - CRITICAL_SECTION_END + // Protect the access to the variable. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + millis_t bbru = block_buffer_runtime_us; + + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + // To translate µs to ms a division by 1000 would be required. // We introduce 2.4% error here by dividing by 1024. // Doesn't matter because block_buffer_runtime_us is already too small an estimation. @@ -630,9 +690,15 @@ class Planner { } static void clear_block_buffer_runtime() { - CRITICAL_SECTION_START - block_buffer_runtime_us = 0; - CRITICAL_SECTION_END + // Protect the access to the variable. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + block_buffer_runtime_us = 0; + + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } #endif @@ -675,12 +741,12 @@ class Planner { } /** - * Calculate the maximum allowable speed at this point, in order - * to reach 'target_velocity' using 'acceleration' within a given + * Calculate the maximum allowable speed squared at this point, in order + * to reach 'target_velocity_sqr' using 'acceleration' within a given * 'distance'. */ - static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) { - return SQRT(sq(target_velocity) - 2 * accel * distance); + static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) { + return target_velocity_sqr - 2 * accel * distance; } #if ENABLED(BEZIER_JERK_CONTROL) diff --git a/Marlin/planner_bezier.cpp b/Marlin/planner_bezier.cpp index 6fc80c9ad..5ed7c043c 100644 --- a/Marlin/planner_bezier.cpp +++ b/Marlin/planner_bezier.cpp @@ -41,8 +41,7 @@ #define MAX_STEP 0.1 #define SIGMA 0.1 -/* Compute the linear interpolation between to real numbers. -*/ +// Compute the linear interpolation between two real numbers. inline static float interp(float a, float b, float t) { return (1.0 - t) * a + t * b; } /** @@ -188,12 +187,15 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS] bez_target[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t); bez_target[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t); clamp_to_software_endstops(bez_target); + #if HAS_UBL_AND_CURVES float pos[XYZ] = { bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS] }; planner.apply_leveling(pos); - planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], bez_target[E_AXIS], fr_mm_s, active_extruder); + if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], bez_target[E_AXIS], fr_mm_s, active_extruder)) + break; #else - planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder); + if (!planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder)) + break; #endif } } diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 1a2eefe3b..63bbdd132 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -75,10 +75,6 @@ Stepper stepper; // Singleton block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced -#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - bool Stepper::abort_on_endstop_hit = false; -#endif - #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) bool Stepper::performing_homing = false; #endif @@ -90,7 +86,6 @@ block_t* Stepper::current_block = NULL; // A pointer to the block currently bei // private: uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output -int16_t Stepper::cleaning_buffer_counter = 0; #if ENABLED(X_DUAL_ENDSTOPS) bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false; @@ -107,7 +102,7 @@ int32_t Stepper::counter_X = 0, Stepper::counter_Z = 0, Stepper::counter_E = 0; -volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block +uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block #if ENABLED(BEZIER_JERK_CONTROL) int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler @@ -119,16 +114,17 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not #endif +uint32_t Stepper::nextMainISR = 0; +bool Stepper::all_steps_done = false; + #if ENABLED(LIN_ADVANCE) uint32_t Stepper::LA_decelerate_after; - constexpr uint16_t ADV_NEVER = 65535; - - uint16_t Stepper::nextMainISR = 0, - Stepper::nextAdvanceISR = ADV_NEVER, - Stepper::eISR_Rate = ADV_NEVER, - Stepper::current_adv_steps = 0, + constexpr uint32_t ADV_NEVER = 0xFFFFFFFF; + uint32_t Stepper::nextAdvanceISR = ADV_NEVER, + Stepper::eISR_Rate = ADV_NEVER; + uint16_t Stepper::current_adv_steps = 0, Stepper::final_adv_steps, Stepper::max_adv_steps; @@ -144,7 +140,7 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even #endif // LIN_ADVANCE -int32_t Stepper::acceleration_time, Stepper::deceleration_time; +uint32_t Stepper::acceleration_time, Stepper::deceleration_time; volatile int32_t Stepper::count_position[NUM_AXIS] = { 0 }; volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; @@ -153,11 +149,11 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; int32_t Stepper::counter_m[MIXING_STEPPERS]; #endif +uint32_t Stepper::ticks_nominal; uint8_t Stepper::step_loops, Stepper::step_loops_nominal; -uint16_t Stepper::OCR1A_nominal; #if DISABLED(BEZIER_JERK_CONTROL) - uint16_t Stepper::acc_step_rate; // needed for deceleration start point + uint32_t Stepper::acc_step_rate; // needed for deceleration start point #endif volatile int32_t Stepper::endstops_trigsteps[XYZ]; @@ -1112,201 +1108,95 @@ void Stepper::set_directions() { * 2000 1 KHz - sleep rate * 4000 500 Hz - init rate */ -ISR(TIMER1_COMPA_vect) { - /** - * On AVR there is no hardware prioritization and preemption of - * interrupts, so this emulates it. The UART has first priority - * (otherwise, characters will be lost due to UART overflow). - * Then: Stepper, Endstops, Temperature, and -finally- all others. - * - * This ISR needs to run with as little preemption as possible, so - * the Temperature ISR is disabled here. Now only the UART, Endstops, - * and Arduino-defined interrupts can preempt. - */ - const bool temp_isr_was_enabled = TEMPERATURE_ISR_ENABLED(); - DISABLE_TEMPERATURE_INTERRUPT(); - DISABLE_STEPPER_DRIVER_INTERRUPT(); - sei(); - #if ENABLED(LIN_ADVANCE) - Stepper::advance_isr_scheduler(); - #else - Stepper::isr(); - #endif +HAL_STEP_TIMER_ISR { + HAL_timer_isr_prologue(STEP_TIMER_NUM); - // Disable global interrupts and reenable this ISR - cli(); - ENABLE_STEPPER_DRIVER_INTERRUPT(); - // Reenable the temperature ISR (if it was enabled) - if (temp_isr_was_enabled) ENABLE_TEMPERATURE_INTERRUPT(); + // Program timer compare for the maximum period, so it does NOT + // flag an interrupt while this ISR is running - So changes from small + // periods to big periods are respected and the timer does not reset to 0 + HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX); + + // Call the ISR scheduler + hal_timer_t ticks = Stepper::isr_scheduler(); + + // Now 'ticks' contains the period to the next Stepper ISR. + // Potential problem: Since the timer continues to run, the requested + // compare value may already have passed. + // + // Assuming at least 6µs between calls to this ISR... + // On AVR the ISR epilogue is estimated at 40 instructions - close to 2.5µS. + // On ARM the ISR epilogue is estimated at 10 instructions - close to 200nS. + // In either case leave at least 4µS for other tasks to execute. + const hal_timer_t minticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((HAL_TICKS_PER_US) * 4); // ISR never takes more than 1ms, so this shouldn't cause trouble + NOLESS(ticks, MAX(minticks, hal_timer_t((STEP_TIMER_MIN_INTERVAL) * (HAL_TICKS_PER_US)))); + + // Set the next ISR to fire at the proper time + HAL_timer_set_compare(STEP_TIMER_NUM, ticks); + + HAL_timer_isr_epilogue(STEP_TIMER_NUM); } -void Stepper::isr() { +#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B) - uint16_t ocr_val; +hal_timer_t Stepper::isr_scheduler() { + uint32_t interval; - #define ENDSTOP_NOMINAL_OCR_VAL 3000 // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch - #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms + // Run main stepping pulse phase ISR if we have to + if (!nextMainISR) Stepper::stepper_pulse_phase_isr(); - #define _SPLIT(L) (ocr_val = (uint16_t)L) - #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - - #define SPLIT(L) _SPLIT(L) - - #else // !ENDSTOP_INTERRUPTS_FEATURE : Sample endstops between stepping ISRs - - static uint32_t step_remaining = 0; - - #define SPLIT(L) do { \ - _SPLIT(L); \ - if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \ - const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \ - ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \ - step_remaining = (uint16_t)L - ocr_val; \ - } \ - }while(0) - - if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step - endstops.update(); - - // Next ISR either for endstops or stepping - ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL; - step_remaining -= ocr_val; - _NEXT_ISR(ocr_val); - NOLESS(OCR1A, TCNT1 + 16); - return; - } - - #endif // !ENDSTOP_INTERRUPTS_FEATURE - - // - // When cleaning, discard the current block and run fast - // - if (cleaning_buffer_counter) { - if (cleaning_buffer_counter < 0) { // Count up for endstop hit - if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger - if (!planner.discard_continued_block()) // Discard next CONTINUED block - cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED - } - else { - planner.discard_current_block(); - --cleaning_buffer_counter; // Count down for abort print - #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND) - if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); - #endif - } - current_block = NULL; // Prep to get a new block after cleaning - _NEXT_ISR(200); // Run at max speed - 10 KHz - return; - } - - // If there is no current block, attempt to pop one from the buffer - if (!current_block) { - - // Anything in the buffer? - if ((current_block = planner.get_current_block())) { - - // Sync block? Sync the stepper counts and return - while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) { - _set_position( - current_block->steps[A_AXIS], current_block->steps[B_AXIS], - current_block->steps[C_AXIS], current_block->steps[E_AXIS] - ); - planner.discard_current_block(); - if (!(current_block = planner.get_current_block())) return; - } - - // Initialize the trapezoid generator from the current block. - static int8_t last_extruder = -1; - - #if ENABLED(LIN_ADVANCE) - #if E_STEPPERS > 1 - if (current_block->active_extruder != last_extruder) { - current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone. - LA_active_extruder = current_block->active_extruder; - } - #endif - - if ((use_advance_lead = current_block->use_advance_lead)) { - LA_decelerate_after = current_block->decelerate_after; - final_adv_steps = current_block->final_adv_steps; - max_adv_steps = current_block->max_adv_steps; - } - #endif - - if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) { - last_direction_bits = current_block->direction_bits; - last_extruder = current_block->active_extruder; - set_directions(); - } - - // No acceleration / deceleration time elapsed so far - acceleration_time = deceleration_time = 0; - - // No step events completed so far - step_events_completed = 0; - - // step_rate to timer interval - OCR1A_nominal = calc_timer_interval(current_block->nominal_rate); - - // make a note of the number of step loops required at nominal speed - step_loops_nominal = step_loops; - - #if DISABLED(BEZIER_JERK_CONTROL) - // Set as deceleration point the initial rate of the block - acc_step_rate = current_block->initial_rate; - #endif - - #if ENABLED(BEZIER_JERK_CONTROL) - // Initialize the Bézier speed curve - _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse); - - // We have not started the 2nd half of the trapezoid - bezier_2nd_half = false; - #endif - - // Initialize Bresenham counters to 1/2 the ceiling - counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1); - #if ENABLED(MIXING_EXTRUDER) - MIXING_STEPPERS_LOOP(i) - counter_m[i] = -(current_block->mix_event_count[i] >> 1); - #endif - - // No step events completed so far - step_events_completed = 0; - - #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins. - // No 'change' can be detected. - #endif - - #if ENABLED(Z_LATE_ENABLE) - // If delayed Z enable, postpone move for 1mS - if (current_block->steps[Z_AXIS] > 0) { - enable_Z(); - _NEXT_ISR(2000); // Run at slow speed - 1 KHz - return; - } - #endif - } - else { - _NEXT_ISR(2000); // Run at slow speed - 1 KHz - return; - } - } - - // Update endstops state, if enabled - #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - if (e_hit && ENDSTOPS_ENABLED) { - endstops.update(); - e_hit--; - } - #else - if (ENDSTOPS_ENABLED) endstops.update(); + #if ENABLED(LIN_ADVANCE) + // Run linear advance stepper ISR if we have to + if (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr(); #endif + // ^== Time critical. NOTHING besides pulse generation should be above here!!! + + // Run main stepping block processing ISR if we have to + if (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr(); + + #if ENABLED(LIN_ADVANCE) + // Select the closest interval in time + interval = (nextAdvanceISR <= nextMainISR) + ? nextAdvanceISR + : nextMainISR; + + #else // !ENABLED(LIN_ADVANCE) + + // The interval is just the remaining time to the stepper ISR + interval = nextMainISR; + #endif + + // Limit the value to the maximum possible value of the timer + if (interval > HAL_TIMER_TYPE_MAX) + interval = HAL_TIMER_TYPE_MAX; + + // Compute the time remaining for the main isr + nextMainISR -= interval; + + #if ENABLED(LIN_ADVANCE) + // Compute the time remaining for the advance isr + if (nextAdvanceISR != ADV_NEVER) + nextAdvanceISR -= interval; + #endif + + return (hal_timer_t)interval; +} + +// This part of the ISR should ONLY create the pulses for the steppers +// -- Nothing more, nothing less -- We want to avoid jitter from where +// the pulses should be generated (when the interrupt triggers) to the +// time pulses are actually created. So, PLEASE DO NOT PLACE ANY CODE +// above this line that can conditionally change that time (we are trying +// to keep the delay between the interrupt triggering and pulse generation +// as constant as possible!!!! +void Stepper::stepper_pulse_phase_isr() { + + // If there is no current block, do nothing + if (!current_block) return; + // Take multiple steps per interrupt (For high speed moves) - bool all_steps_done = false; + all_steps_done = false; for (uint8_t i = step_loops; i--;) { #define _COUNTER(AXIS) counter_## AXIS @@ -1501,114 +1391,208 @@ void Stepper::isr() { #endif } // steps_loop +} - // Calculate new timer value - if (step_events_completed <= (uint32_t)current_block->accelerate_until) { +// This is the last half of the stepper interrupt: This one processes and +// properly schedules blocks from the planner. This is executed after creating +// the step pulses, so it is not time critical, as pulses are already done. - #if ENABLED(BEZIER_JERK_CONTROL) - // Get the next speed to use (Jerk limited!) - uint16_t acc_step_rate = - acceleration_time < current_block->acceleration_time - ? _eval_bezier_curve(acceleration_time) - : current_block->cruise_rate; - #else - acc_step_rate = MultiU24X32toH16(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate; - NOMORE(acc_step_rate, current_block->nominal_rate); - #endif +uint32_t Stepper::stepper_block_phase_isr() { - // step_rate to timer interval - const uint16_t interval = calc_timer_interval(acc_step_rate); + // If no queued movements, just wait 1ms for the next move + uint32_t interval = (HAL_STEPPER_TIMER_RATE / 1000); - SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL - _NEXT_ISR(ocr_val); + // If there is a current block + if (current_block) { - acceleration_time += interval; + // Calculate new timer value + if (step_events_completed <= current_block->accelerate_until) { - #if ENABLED(LIN_ADVANCE) - if (current_block->use_advance_lead) { - if (step_events_completed == step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { - nextAdvanceISR = 0; // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached - eISR_Rate = current_block->advance_speed; + #if ENABLED(BEZIER_JERK_CONTROL) + // Get the next speed to use (Jerk limited!) + uint32_t acc_step_rate = + acceleration_time < current_block->acceleration_time + ? _eval_bezier_curve(acceleration_time) + : current_block->cruise_rate; + #else + acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate; + NOMORE(acc_step_rate, current_block->nominal_rate); + #endif + + // step_rate to timer interval + interval = calc_timer_interval(acc_step_rate); + acceleration_time += interval; + + #if ENABLED(LIN_ADVANCE) + if (current_block->use_advance_lead) { + if (step_events_completed == step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { + nextAdvanceISR = 0; // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached + eISR_Rate = current_block->advance_speed; + } } - } - else { - eISR_Rate = ADV_NEVER; - if (e_steps) nextAdvanceISR = 0; - } - #endif // LIN_ADVANCE - } - else if (step_events_completed > (uint32_t)current_block->decelerate_after) { - uint16_t step_rate; + else { + eISR_Rate = ADV_NEVER; + if (e_steps) nextAdvanceISR = 0; + } + #endif // LIN_ADVANCE + } + else if (step_events_completed > current_block->decelerate_after) { + uint32_t step_rate; - #if ENABLED(BEZIER_JERK_CONTROL) - // If this is the 1st time we process the 2nd half of the trapezoid... - if (!bezier_2nd_half) { + #if ENABLED(BEZIER_JERK_CONTROL) + // If this is the 1st time we process the 2nd half of the trapezoid... + if (!bezier_2nd_half) { + // Initialize the Bézier speed curve + _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse); + bezier_2nd_half = true; + } + + // Calculate the next speed to use + step_rate = deceleration_time < current_block->deceleration_time + ? _eval_bezier_curve(deceleration_time) + : current_block->final_rate; + #else + + // Using the old trapezoidal control + step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate); + if (step_rate < acc_step_rate) { // Still decelerating? + step_rate = acc_step_rate - step_rate; + NOLESS(step_rate, current_block->final_rate); + } + else + step_rate = current_block->final_rate; + #endif + + // step_rate to timer interval + interval = calc_timer_interval(step_rate); + deceleration_time += interval; + + #if ENABLED(LIN_ADVANCE) + if (current_block->use_advance_lead) { + if (step_events_completed <= current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { + nextAdvanceISR = 0; // Wake up eISR on first deceleration loop + eISR_Rate = current_block->advance_speed; + } + } + else { + eISR_Rate = ADV_NEVER; + if (e_steps) nextAdvanceISR = 0; + } + #endif // LIN_ADVANCE + } + else { + + #if ENABLED(LIN_ADVANCE) + // If there are any esteps, fire the next advance_isr "now" + if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0; + #endif + + // The timer interval is just the nominal value for the nominal speed + interval = ticks_nominal; + + // Ensure this runs at the correct step rate, even if it just came off an acceleration + step_loops = step_loops_nominal; + } + + // If current block is finished, reset pointer + if (all_steps_done) { + current_block = NULL; + planner.discard_current_block(); + } + } + + // If there is no current block at this point, attempt to pop one from the buffer + // and prepare its movement + if (!current_block) { + + // Anything in the buffer? + if ((current_block = planner.get_current_block())) { + + // Sync block? Sync the stepper counts and return + while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) { + _set_position( + current_block->position[A_AXIS], current_block->position[B_AXIS], + current_block->position[C_AXIS], current_block->position[E_AXIS] + ); + planner.discard_current_block(); + + // Try to get a new block + if (!(current_block = planner.get_current_block())) + return interval; // No more queued movements! + } + + // Initialize the trapezoid generator from the current block. + static int8_t last_extruder = -1; + + #if ENABLED(LIN_ADVANCE) + #if E_STEPPERS > 1 + if (current_block->active_extruder != last_extruder) { + current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone. + LA_active_extruder = current_block->active_extruder; + } + #endif + + if ((use_advance_lead = current_block->use_advance_lead)) { + LA_decelerate_after = current_block->decelerate_after; + final_adv_steps = current_block->final_adv_steps; + max_adv_steps = current_block->max_adv_steps; + } + #endif + + if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) { + last_direction_bits = current_block->direction_bits; + last_extruder = current_block->active_extruder; + set_directions(); + } + + // No acceleration / deceleration time elapsed so far + acceleration_time = deceleration_time = 0; + + // No step events completed so far + step_events_completed = 0; + + // step_rate to timer interval for the nominal speed + ticks_nominal = calc_timer_interval(current_block->nominal_rate); + + // make a note of the number of step loops required at nominal speed + step_loops_nominal = step_loops; + + #if DISABLED(BEZIER_JERK_CONTROL) + // Set as deceleration point the initial rate of the block + acc_step_rate = current_block->initial_rate; + #endif + + #if ENABLED(BEZIER_JERK_CONTROL) // Initialize the Bézier speed curve - _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse); - bezier_2nd_half = true; - } + _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse); - // Calculate the next speed to use - step_rate = deceleration_time < current_block->deceleration_time - ? _eval_bezier_curve(deceleration_time) - : current_block->final_rate; - #else + // We have not started the 2nd half of the trapezoid + bezier_2nd_half = false; + #endif - // Using the old trapezoidal control - step_rate = MultiU24X32toH16(deceleration_time, current_block->acceleration_rate); - if (step_rate < acc_step_rate) { // Still decelerating? - step_rate = acc_step_rate - step_rate; - NOLESS(step_rate, current_block->final_rate); - } - else - step_rate = current_block->final_rate; + // Initialize Bresenham counters to 1/2 the ceiling + counter_X = counter_Y = counter_Z = counter_E = -((int32_t)(current_block->step_event_count >> 1)); + #if ENABLED(MIXING_EXTRUDER) + MIXING_STEPPERS_LOOP(i) + counter_m[i] = -(current_block->mix_event_count[i] >> 1); + #endif - #endif + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins. + // No 'change' can be detected. + #endif - // step_rate to timer interval - const uint16_t interval = calc_timer_interval(step_rate); - - SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL - _NEXT_ISR(ocr_val); - - deceleration_time += interval; - - #if ENABLED(LIN_ADVANCE) - if (current_block->use_advance_lead) { - if (step_events_completed <= (uint32_t)current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { - nextAdvanceISR = 0; // Wake up eISR on first deceleration loop - eISR_Rate = current_block->advance_speed; - } - } - else { - eISR_Rate = ADV_NEVER; - if (e_steps) nextAdvanceISR = 0; - } - #endif // LIN_ADVANCE - } - else { - - #if ENABLED(LIN_ADVANCE) - // If we have esteps to execute, fire the next advance_isr "now" - if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0; - #endif - - SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL - _NEXT_ISR(ocr_val); - - // ensure we're running at the correct step rate, even if we just came off an acceleration - step_loops = step_loops_nominal; + #if ENABLED(Z_LATE_ENABLE) + // If delayed Z enable, enable it now. This option will severely interfere with + // timing between pulses when chaining motion between blocks, and it could lead + // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!! + if (current_block->steps[Z_AXIS]) enable_Z(); + #endif + } } - #if DISABLED(LIN_ADVANCE) - NOLESS(OCR1A, TCNT1 + 16); - #endif - - // If current block is finished, reset pointer - if (all_steps_done) { - current_block = NULL; - planner.discard_current_block(); - } + // Return the interval to wait + return interval; } #if ENABLED(LIN_ADVANCE) @@ -1617,8 +1601,8 @@ void Stepper::isr() { #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E)) // Timer interrupt for E. e_steps is set in the main routine; - - void Stepper::advance_isr() { + uint32_t Stepper::advance_isr() { + uint32_t interval; #if ENABLED(MK2_MULTIPLEXER) // For SNMM even-numbered steppers are reversed #define SET_E_STEP_DIR(INDEX) do{ if (e_steps) E0_DIR_WRITE(e_steps < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0)); }while(0) @@ -1679,21 +1663,21 @@ void Stepper::isr() { if (step_events_completed > LA_decelerate_after && current_adv_steps > final_adv_steps) { e_steps--; current_adv_steps--; - nextAdvanceISR = eISR_Rate; + interval = eISR_Rate; } else if (step_events_completed < LA_decelerate_after && current_adv_steps < max_adv_steps) { //step_events_completed <= (uint32_t)current_block->accelerate_until) { e_steps++; current_adv_steps++; - nextAdvanceISR = eISR_Rate; + interval = eISR_Rate; } else { - nextAdvanceISR = ADV_NEVER; + interval = ADV_NEVER; eISR_Rate = ADV_NEVER; } } else - nextAdvanceISR = ADV_NEVER; + interval = ADV_NEVER; switch (LA_active_extruder) { case 0: SET_E_STEP_DIR(0); break; @@ -1715,7 +1699,7 @@ void Stepper::isr() { while (e_steps) { #if EXTRA_CYCLES_E > 20 - uint32_t pulse_start = TCNT0; + hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM); #endif switch (LA_active_extruder) { @@ -1766,39 +1750,9 @@ void Stepper::isr() { #endif } // e_steps + + return interval; } - - void Stepper::advance_isr_scheduler() { - - // Run main stepping ISR if flagged - if (!nextMainISR) isr(); - - // Run Advance stepping ISR if flagged - if (!nextAdvanceISR) advance_isr(); - - // Is the next advance ISR scheduled before the next main ISR? - if (nextAdvanceISR <= nextMainISR) { - // Set up the next interrupt - OCR1A = nextAdvanceISR; - // New interval for the next main ISR - if (nextMainISR) nextMainISR -= nextAdvanceISR; - // Will call Stepper::advance_isr on the next interrupt - nextAdvanceISR = 0; - } - else { - // The next main ISR comes first - OCR1A = nextMainISR; - // New interval for the next advance ISR, if any - if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER) - nextAdvanceISR -= nextMainISR; - // Will call Stepper::isr on the next interrupt - nextMainISR = 0; - } - - // Don't run the ISR faster than possible - NOLESS(OCR1A, TCNT1 + 16); - } - #endif // LIN_ADVANCE void Stepper::init() { @@ -2013,30 +1967,43 @@ void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c * Get a stepper's position in steps. */ int32_t Stepper::position(const AxisEnum axis) { - CRITICAL_SECTION_START; - const int32_t count_pos = count_position[axis]; - CRITICAL_SECTION_END; - return count_pos; -} + // Protect the access to the position. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); -void Stepper::finish_and_disable() { - planner.synchronize(); - disable_all_steppers(); + const int32_t v = count_position[axis]; + + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + return v; } void Stepper::quick_stop() { + const bool was_enabled = STEPPER_ISR_ENABLED(); DISABLE_STEPPER_DRIVER_INTERRUPT(); - kill_current_block(); - current_block = NULL; - cleaning_buffer_counter = 5000; - planner.clear_block_buffer(); - ENABLE_STEPPER_DRIVER_INTERRUPT(); - #if ENABLED(ULTRA_LCD) - planner.clear_block_buffer_runtime(); - #endif + + if (current_block) { + step_events_completed = current_block->step_event_count; + current_block = NULL; + } + + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); +} + +void Stepper::kill_current_block() { + const bool was_enabled = STEPPER_ISR_ENABLED(); + DISABLE_STEPPER_DRIVER_INTERRUPT(); + + if (current_block) + step_events_completed = current_block->step_event_count; + + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } void Stepper::endstop_triggered(const AxisEnum axis) { + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); #if IS_CORE @@ -2051,8 +2018,31 @@ void Stepper::endstop_triggered(const AxisEnum axis) { #endif // !COREXY && !COREXZ && !COREYZ - kill_current_block(); - cleaning_buffer_counter = -1; // Discard the rest of the move + // Discard the rest of the move if there is a current block + if (current_block) { + + // Kill the current block being executed + step_events_completed = current_block->step_event_count; + + // Prep to get a new block after cleaning + current_block = NULL; + } + + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); +} + +int32_t Stepper::triggered_position(const AxisEnum axis) { + // Protect the access to the position. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + const int32_t v = endstops_trigsteps[axis]; + + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + + return v; } void Stepper::report_positions() { diff --git a/Marlin/stepper.h b/Marlin/stepper.h index 198da72dd..df640a058 100644 --- a/Marlin/stepper.h +++ b/Marlin/stepper.h @@ -85,10 +85,6 @@ class Stepper { static block_t* current_block; // A pointer to the block currently being traced - #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - static bool abort_on_endstop_hit; - #endif - #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) static bool performing_homing; #endif @@ -100,8 +96,6 @@ class Stepper { static uint32_t motor_current_setting[3]; #endif - static int16_t cleaning_buffer_counter; - private: static uint8_t last_direction_bits; // The next stepping-bits to be output @@ -118,7 +112,7 @@ class Stepper { // Counter variables for the Bresenham line tracer static int32_t counter_X, counter_Y, counter_Z, counter_E; - static volatile uint32_t step_events_completed; // The number of step events executed in the current block + static uint32_t step_events_completed; // The number of step events executed in the current block #if ENABLED(BEZIER_JERK_CONTROL) static int32_t bezier_A, // A coefficient in Bézier speed curve @@ -130,12 +124,14 @@ class Stepper { bezier_2nd_half; // If Bézier curve has been initialized or not #endif + static uint32_t nextMainISR; // time remaining for the next Step ISR + static bool all_steps_done; // all steps done + #if ENABLED(LIN_ADVANCE) static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early". - static uint16_t nextMainISR, nextAdvanceISR, eISR_Rate, current_adv_steps, - final_adv_steps, max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early". - #define _NEXT_ISR(T) nextMainISR = T + static uint32_t nextAdvanceISR, eISR_Rate; + static uint16_t current_adv_steps, final_adv_steps, max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early". static int8_t e_steps; static bool use_advance_lead; #if E_STEPPERS > 1 @@ -144,18 +140,14 @@ class Stepper { static constexpr int8_t LA_active_extruder = 0; #endif - #else // !LIN_ADVANCE + #endif // LIN_ADVANCE - #define _NEXT_ISR(T) OCR1A = T - - #endif // !LIN_ADVANCE - - static int32_t acceleration_time, deceleration_time; + static uint32_t acceleration_time, deceleration_time; static uint8_t step_loops, step_loops_nominal; - static uint16_t OCR1A_nominal; + static uint32_t ticks_nominal; #if DISABLED(BEZIER_JERK_CONTROL) - static uint16_t acc_step_rate; // needed for deceleration start point + static uint32_t acc_step_rate; // needed for deceleration start point #endif static volatile int32_t endstops_trigsteps[XYZ]; @@ -188,88 +180,50 @@ class Stepper { // Stepper() { }; - // // Initialize stepper hardware - // static void init(); - // // Interrupt Service Routines - // - static void isr(); + // The ISR scheduler + static hal_timer_t isr_scheduler(); + + // The stepper pulse phase ISR + static void stepper_pulse_phase_isr(); + + // The stepper block processing phase ISR + static uint32_t stepper_block_phase_isr(); #if ENABLED(LIN_ADVANCE) - static void advance_isr(); - static void advance_isr_scheduler(); + // The Linear advance stepper ISR + static uint32_t advance_isr(); #endif - // - // Set the current position in steps - // - static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e); - - FORCE_INLINE static void _set_position(const AxisEnum a, const int32_t &v) { count_position[a] = v; } - - FORCE_INLINE static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { - planner.synchronize(); - CRITICAL_SECTION_START; - _set_position(a, b, c, e); - CRITICAL_SECTION_END; - } - - static void set_position(const AxisEnum a, const int32_t &v) { - planner.synchronize(); - CRITICAL_SECTION_START; - count_position[a] = v; - CRITICAL_SECTION_END; - } - - FORCE_INLINE static void _set_e_position(const int32_t &e) { count_position[E_AXIS] = e; } - - static void set_e_position(const int32_t &e) { - planner.synchronize(); - CRITICAL_SECTION_START; - count_position[E_AXIS] = e; - CRITICAL_SECTION_END; - } - - // - // Set direction bits for all steppers - // - static void set_directions(); - - // // Get the position of a stepper, in steps - // static int32_t position(const AxisEnum axis); - // // Report the positions of the steppers, in steps - // static void report_positions(); - // // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. - // static void wake_up(); - // - // Wait for moves to finish and disable all steppers - // - static void finish_and_disable(); - - // - // Quickly stop all steppers and clear the blocks queue - // + // Quickly stop all steppers static void quick_stop(); - // // The direction of a single motor - // FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); } + // Kill current block + static void kill_current_block(); + + // Handle a triggered endstop + static void endstop_triggered(const AxisEnum axis); + + // Triggered position of an axis in steps + static int32_t triggered_position(const AxisEnum axis); + #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digitalPotWrite(const int16_t address, const int16_t value); static void digipot_current(const uint8_t driver, const int16_t current); @@ -301,32 +255,22 @@ class Stepper { static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif - static inline void kill_current_block() { - step_events_completed = current_block->step_event_count; - } - - // - // Handle a triggered endstop - // - static void endstop_triggered(const AxisEnum axis); - - // - // Triggered position of an axis in mm (not core-savvy) - // - FORCE_INLINE static float triggered_position_mm(const AxisEnum axis) { - return endstops_trigsteps[axis] * planner.steps_to_mm[axis]; - } - #if HAS_MOTOR_CURRENT_PWM static void refresh_motor_power(); #endif private: - FORCE_INLINE static uint16_t calc_timer_interval(uint16_t step_rate) { - uint16_t timer; + // Set the current position in steps + static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e); - NOMORE(step_rate, MAX_STEP_FREQUENCY); + // Set direction bits for all steppers + static void set_directions(); + + FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate) { + uint32_t timer; + + NOMORE(step_rate, uint32_t(MAX_STEP_FREQUENCY)); if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times step_rate >>= 2; @@ -340,12 +284,14 @@ class Stepper { step_loops = 1; } - NOLESS(step_rate, F_CPU / 500000); + NOLESS(step_rate, uint32_t(F_CPU / 500000U)); step_rate -= F_CPU / 500000; // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate - uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0], - gain = (uint16_t)pgm_read_word_near(table_address + 2); - timer = (uint16_t)pgm_read_word_near(table_address) - MultiU16X8toH16(step_rate & 0x00FF, gain); + const uint8_t tmp_step_rate = (step_rate & 0x00FF); + const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0], + gain = (uint16_t)pgm_read_word_near(table_address + 2); + timer = MultiU16X8toH16(tmp_step_rate, gain); + timer = (uint16_t)pgm_read_word_near(table_address) - timer; } else { // lower step rates uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0]; @@ -355,9 +301,9 @@ class Stepper { } if (timer < 100) { // (20kHz - this should never happen) timer = 100; - SERIAL_PROTOCOL(MSG_STEPPER_TOO_HIGH); - SERIAL_PROTOCOLLN(step_rate); + SERIAL_ECHOLNPAIR(MSG_STEPPER_TOO_HIGH, step_rate); } + return timer; } diff --git a/Marlin/temperature.cpp b/Marlin/temperature.cpp index ca344aab1..38fdb00bc 100644 --- a/Marlin/temperature.cpp +++ b/Marlin/temperature.cpp @@ -1780,6 +1780,7 @@ void Temperature::set_current_temp_raw() { * - Step the babysteps value for each axis towards 0 * - For PINS_DEBUGGING, monitor and report endstop pins * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged + * - Call planner.tick to count down its "ignore" time */ HAL_TEMP_TIMER_ISR { HAL_timer_isr_prologue(TEMP_TIMER_NUM); @@ -2301,25 +2302,22 @@ void Temperature::isr() { #endif // BABYSTEPPING #if ENABLED(PINS_DEBUGGING) - extern bool endstop_monitor_flag; - // run the endstop monitor at 15Hz - static uint8_t endstop_monitor_count = 16; // offset this check from the others - if (endstop_monitor_flag) { - endstop_monitor_count += _BV(1); // 15 Hz - endstop_monitor_count &= 0x7F; - if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status - } + endstops.run_monitor(); // report changes in endstop status #endif + // Update endstops state, if enabled #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - extern volatile uint8_t e_hit; - if (e_hit && ENDSTOPS_ENABLED) { - endstops.update(); // call endstop update routine + endstops.update(); e_hit--; } + #else + if (ENDSTOPS_ENABLED) endstops.update(); #endif + + // Periodically call the planner timer + planner.tick(); } #if HAS_TEMP_SENSOR diff --git a/Marlin/ubl_motion.cpp b/Marlin/ubl_motion.cpp index 9ffdff3bb..0e8e7b909 100644 --- a/Marlin/ubl_motion.cpp +++ b/Marlin/ubl_motion.cpp @@ -257,7 +257,8 @@ z_position = end[Z_AXIS]; } - planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder); + if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder)) + break; } //else printf("FIRST MOVE PRUNED "); } @@ -314,7 +315,8 @@ e_position = end[E_AXIS]; z_position = end[Z_AXIS]; } - planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder); + if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder)) + break; current_yi += dyi; yi_cnt--; } @@ -337,7 +339,8 @@ z_position = end[Z_AXIS]; } - planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder); + if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder)) + break; current_xi += dxi; xi_cnt--; } @@ -366,7 +369,7 @@ inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) { #if ENABLED(SKEW_CORRECTION) - float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS], in_raw[E_AXIS] }; + float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] }; planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); #else const float (&raw)[XYZE] = in_raw; @@ -438,7 +441,7 @@ uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length #endif - NOLESS(segments, 1); // must have at least one segment + NOLESS(segments, 1U); // must have at least one segment const float inv_segments = 1.0 / segments; // divide once, multiply thereafter #if IS_SCARA // scale the feed rate from mm/s to degrees/s diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 95bef8e11..2940cbc0d 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -2393,12 +2393,10 @@ void lcd_quick_feedback(const bool clear_buttons) { void _lcd_do_nothing() {} void _lcd_hard_stop() { - stepper.quick_stop(); const screenFunc_t old_screen = currentScreen; currentScreen = _lcd_do_nothing; - while (planner.movesplanned()) idle(); + planner.quick_stop(); currentScreen = old_screen; - stepper.cleaning_buffer_counter = 0; set_current_from_steppers_for_axis(ALL_AXES); sync_plan_position(); } @@ -3806,7 +3804,7 @@ void lcd_quick_feedback(const bool clear_buttons) { // M540 S - Abort on endstop hit when SD printing #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit); + MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &planner.abort_on_endstop_hit); #endif END_MENU();