Merge pull request #548 from buildrob101/MinimalDualXCarriage
Dual x-carriage support
This commit is contained in:
commit
96a773fa48
@ -146,6 +146,31 @@
|
|||||||
#define EXTRUDERS 1
|
#define EXTRUDERS 1
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// Enable this for dual x-carriage printers.
|
||||||
|
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
|
||||||
|
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
|
||||||
|
// allowing faster printing speeds.
|
||||||
|
#define DUAL_X_CARRIAGE
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
// Configuration for second X-carriage
|
||||||
|
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
|
||||||
|
// the second x-carriage always homes to the maximum endstop.
|
||||||
|
#define X2_MIN_POS 88 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
|
||||||
|
#define X2_MAX_POS 350.45 // set maximum to the distance between toolheads when both heads are homed
|
||||||
|
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
|
||||||
|
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
|
||||||
|
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
|
||||||
|
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
|
||||||
|
// without modifying the firmware (through the "M218 T1 X???" command).
|
||||||
|
// Remember: you should set the second extruder x-offset to 0 in your slicer.
|
||||||
|
|
||||||
|
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
|
||||||
|
#define X2_ENABLE_PIN 29
|
||||||
|
#define X2_STEP_PIN 25
|
||||||
|
#define X2_DIR_PIN 23
|
||||||
|
|
||||||
|
#endif // DUAL_X_CARRIAGE
|
||||||
|
|
||||||
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
||||||
#define X_HOME_RETRACT_MM 5
|
#define X_HOME_RETRACT_MM 5
|
||||||
#define Y_HOME_RETRACT_MM 5
|
#define Y_HOME_RETRACT_MM 5
|
||||||
|
@ -96,7 +96,11 @@ void process_commands();
|
|||||||
|
|
||||||
void manage_inactivity();
|
void manage_inactivity();
|
||||||
|
|
||||||
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
|
#if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \
|
||||||
|
&& defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
||||||
|
#define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0)
|
||||||
|
#define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); } while (0)
|
||||||
|
#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
|
||||||
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
|
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
|
||||||
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
|
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
|
||||||
#else
|
#else
|
||||||
|
@ -677,7 +677,44 @@ XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|||||||
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
|
||||||
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
||||||
|
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
#if EXTRUDERS == 1 || defined(COREXY) \
|
||||||
|
|| !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
|
||||||
|
|| !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
|
||||||
|
|| !defined(X_MAX_PIN) || X_MAX_PIN < 0
|
||||||
|
#error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
|
||||||
|
#endif
|
||||||
|
#if X_HOME_DIR != -1 || X2_HOME_DIR != 1
|
||||||
|
#error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static float x_home_pos(int extruder) {
|
||||||
|
if (extruder == 0)
|
||||||
|
return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
|
||||||
|
else
|
||||||
|
// In dual carriage mode the extruder offset provides an override of the
|
||||||
|
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
|
||||||
|
// This allow soft recalibration of the second extruder offset position without firmware reflash
|
||||||
|
// (through the M218 command).
|
||||||
|
return (extruder_offset[X_AXIS][1] != 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int x_home_dir(int extruder) {
|
||||||
|
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
|
||||||
|
}
|
||||||
|
|
||||||
|
static float inactive_x_carriage_pos = X2_MAX_POS;
|
||||||
|
#endif
|
||||||
|
|
||||||
static void axis_is_at_home(int axis) {
|
static void axis_is_at_home(int axis) {
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (axis == X_AXIS && active_extruder != 0) {
|
||||||
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
||||||
|
min_pos[X_AXIS] = X2_MIN_POS;
|
||||||
|
max_pos[X_AXIS] = X2_MAX_POS;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
#endif
|
||||||
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
|
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
|
||||||
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
|
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
|
||||||
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
|
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
|
||||||
@ -686,10 +723,16 @@ static void axis_is_at_home(int axis) {
|
|||||||
static void homeaxis(int axis) {
|
static void homeaxis(int axis) {
|
||||||
#define HOMEAXIS_DO(LETTER) \
|
#define HOMEAXIS_DO(LETTER) \
|
||||||
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
||||||
|
|
||||||
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
|
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
|
||||||
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
|
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
|
||||||
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
|
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
|
||||||
0) {
|
0) {
|
||||||
|
int axis_home_dir = home_dir(axis);
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (axis == X_AXIS)
|
||||||
|
axis_home_dir = x_home_dir(active_extruder);
|
||||||
|
#endif
|
||||||
|
|
||||||
// Engage Servo endstop if enabled
|
// Engage Servo endstop if enabled
|
||||||
#ifdef SERVO_ENDSTOPS
|
#ifdef SERVO_ENDSTOPS
|
||||||
@ -700,18 +743,18 @@ static void homeaxis(int axis) {
|
|||||||
|
|
||||||
current_position[axis] = 0;
|
current_position[axis] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
|
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
||||||
feedrate = homing_feedrate[axis];
|
feedrate = homing_feedrate[axis];
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
|
|
||||||
current_position[axis] = 0;
|
current_position[axis] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[axis] = -home_retract_mm(axis) * home_dir(axis);
|
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
|
|
||||||
destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
|
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
|
||||||
feedrate = homing_feedrate[axis]/2 ;
|
feedrate = homing_feedrate[axis]/2 ;
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
@ -851,7 +894,7 @@ void process_commands()
|
|||||||
|
|
||||||
#else // NOT DELTA
|
#else // NOT DELTA
|
||||||
|
|
||||||
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
||||||
|
|
||||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||||
@ -864,8 +907,14 @@ void process_commands()
|
|||||||
{
|
{
|
||||||
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
|
||||||
|
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
int x_axis_home_dir = home_dir(X_AXIS);
|
||||||
|
#else
|
||||||
|
int x_axis_home_dir = x_home_dir(active_extruder);
|
||||||
|
#endif
|
||||||
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
|
||||||
feedrate = homing_feedrate[X_AXIS];
|
feedrate = homing_feedrate[X_AXIS];
|
||||||
if(homing_feedrate[Y_AXIS]<feedrate)
|
if(homing_feedrate[Y_AXIS]<feedrate)
|
||||||
feedrate =homing_feedrate[Y_AXIS];
|
feedrate =homing_feedrate[Y_AXIS];
|
||||||
@ -890,6 +939,13 @@ void process_commands()
|
|||||||
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
|
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
|
||||||
{
|
{
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
int tmp_extruder = active_extruder;
|
||||||
|
active_extruder = !active_extruder;
|
||||||
|
HOMEAXIS(X);
|
||||||
|
inactive_x_carriage_pos = current_position[X_AXIS];
|
||||||
|
active_extruder = tmp_extruder;
|
||||||
|
#endif
|
||||||
HOMEAXIS(X);
|
HOMEAXIS(X);
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -922,7 +978,7 @@ void process_commands()
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
#endif // DELTA
|
#endif // else DELTA
|
||||||
|
|
||||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||||
enable_endstops(false);
|
enable_endstops(false);
|
||||||
@ -2001,6 +2057,20 @@ void process_commands()
|
|||||||
if(tmp_extruder != active_extruder) {
|
if(tmp_extruder != active_extruder) {
|
||||||
// Save current position to return to after applying extruder offset
|
// Save current position to return to after applying extruder offset
|
||||||
memcpy(destination, current_position, sizeof(destination));
|
memcpy(destination, current_position, sizeof(destination));
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
// only apply Y extruder offset in dual x carriage mode (x offset is already used in determining home pos)
|
||||||
|
current_position[Y_AXIS] = current_position[Y_AXIS] -
|
||||||
|
extruder_offset[Y_AXIS][active_extruder] +
|
||||||
|
extruder_offset[Y_AXIS][tmp_extruder];
|
||||||
|
|
||||||
|
float tmp_x_pos = current_position[X_AXIS];
|
||||||
|
|
||||||
|
// Set the new active extruder and position
|
||||||
|
active_extruder = tmp_extruder;
|
||||||
|
axis_is_at_home(X_AXIS); //this function updates X min/max values.
|
||||||
|
current_position[X_AXIS] = inactive_x_carriage_pos;
|
||||||
|
inactive_x_carriage_pos = tmp_x_pos;
|
||||||
|
#else
|
||||||
// Offset extruder (only by XY)
|
// Offset extruder (only by XY)
|
||||||
int i;
|
int i;
|
||||||
for(i = 0; i < 2; i++) {
|
for(i = 0; i < 2; i++) {
|
||||||
@ -2010,6 +2080,7 @@ void process_commands()
|
|||||||
}
|
}
|
||||||
// Set the new active extruder and position
|
// Set the new active extruder and position
|
||||||
active_extruder = tmp_extruder;
|
active_extruder = tmp_extruder;
|
||||||
|
#endif //else DUAL_X_CARRIAGE
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
// Move to the old position if 'F' was in the parameters
|
// Move to the old position if 'F' was in the parameters
|
||||||
if(make_move && Stopped == false) {
|
if(make_move && Stopped == false) {
|
||||||
@ -2254,6 +2325,9 @@ void controllerFan()
|
|||||||
|| !READ(E2_ENABLE_PIN)
|
|| !READ(E2_ENABLE_PIN)
|
||||||
#endif
|
#endif
|
||||||
#if EXTRUDER > 1
|
#if EXTRUDER > 1
|
||||||
|
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
||||||
|
|| !READ(X2_ENABLE_PIN)
|
||||||
|
#endif
|
||||||
|| !READ(E1_ENABLE_PIN)
|
|| !READ(E1_ENABLE_PIN)
|
||||||
#endif
|
#endif
|
||||||
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
|
|| !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
|
||||||
|
@ -348,11 +348,21 @@ ISR(TIMER1_COMPA_vect)
|
|||||||
|
|
||||||
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
||||||
if((out_bits & (1<<X_AXIS))!=0){
|
if((out_bits & (1<<X_AXIS))!=0){
|
||||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (active_extruder != 0)
|
||||||
|
WRITE(X2_DIR_PIN,INVERT_X_DIR);
|
||||||
|
else
|
||||||
|
#endif
|
||||||
|
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||||
count_direction[X_AXIS]=-1;
|
count_direction[X_AXIS]=-1;
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (active_extruder != 0)
|
||||||
|
WRITE(X2_DIR_PIN,!INVERT_X_DIR);
|
||||||
|
else
|
||||||
|
#endif
|
||||||
|
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
||||||
count_direction[X_AXIS]=1;
|
count_direction[X_AXIS]=1;
|
||||||
}
|
}
|
||||||
if((out_bits & (1<<Y_AXIS))!=0){
|
if((out_bits & (1<<Y_AXIS))!=0){
|
||||||
@ -372,29 +382,41 @@ ISR(TIMER1_COMPA_vect)
|
|||||||
#endif
|
#endif
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
#ifdef DUAL_X_CARRIAGE
|
||||||
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
if ((active_extruder == 0 && X_HOME_DIR == -1) || (active_extruder != 0 && X2_HOME_DIR == -1))
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
||||||
endstop_x_hit=true;
|
|
||||||
step_events_completed = current_block->step_event_count;
|
|
||||||
}
|
|
||||||
old_x_min_endstop = x_min_endstop;
|
|
||||||
#endif
|
#endif
|
||||||
|
{
|
||||||
|
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||||
|
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
||||||
|
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
||||||
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
|
endstop_x_hit=true;
|
||||||
|
step_events_completed = current_block->step_event_count;
|
||||||
|
}
|
||||||
|
old_x_min_endstop = x_min_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
CHECK_ENDSTOPS
|
CHECK_ENDSTOPS
|
||||||
{
|
{
|
||||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
#ifdef DUAL_X_CARRIAGE
|
||||||
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
if ((active_extruder == 0 && X_HOME_DIR == 1) || (active_extruder != 0 && X2_HOME_DIR == 1))
|
||||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
||||||
endstop_x_hit=true;
|
|
||||||
step_events_completed = current_block->step_event_count;
|
|
||||||
}
|
|
||||||
old_x_max_endstop = x_max_endstop;
|
|
||||||
#endif
|
#endif
|
||||||
|
{
|
||||||
|
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||||
|
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
||||||
|
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
||||||
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||||
|
endstop_x_hit=true;
|
||||||
|
step_events_completed = current_block->step_event_count;
|
||||||
|
}
|
||||||
|
old_x_max_endstop = x_max_endstop;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -507,10 +529,20 @@ ISR(TIMER1_COMPA_vect)
|
|||||||
|
|
||||||
counter_x += current_block->steps_x;
|
counter_x += current_block->steps_x;
|
||||||
if (counter_x > 0) {
|
if (counter_x > 0) {
|
||||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (active_extruder != 0)
|
||||||
|
WRITE(X2_STEP_PIN,!INVERT_X_STEP_PIN);
|
||||||
|
else
|
||||||
|
#endif
|
||||||
|
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||||
counter_x -= current_block->step_event_count;
|
counter_x -= current_block->step_event_count;
|
||||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
if (active_extruder != 0)
|
||||||
|
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
|
||||||
|
else
|
||||||
|
#endif
|
||||||
|
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||||
}
|
}
|
||||||
|
|
||||||
counter_y += current_block->steps_y;
|
counter_y += current_block->steps_y;
|
||||||
@ -685,6 +717,9 @@ void st_init()
|
|||||||
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
|
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
|
||||||
SET_OUTPUT(X_DIR_PIN);
|
SET_OUTPUT(X_DIR_PIN);
|
||||||
#endif
|
#endif
|
||||||
|
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
|
||||||
|
SET_OUTPUT(X2_DIR_PIN);
|
||||||
|
#endif
|
||||||
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
|
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
|
||||||
SET_OUTPUT(Y_DIR_PIN);
|
SET_OUTPUT(Y_DIR_PIN);
|
||||||
#endif
|
#endif
|
||||||
@ -711,6 +746,10 @@ void st_init()
|
|||||||
SET_OUTPUT(X_ENABLE_PIN);
|
SET_OUTPUT(X_ENABLE_PIN);
|
||||||
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
|
||||||
#endif
|
#endif
|
||||||
|
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
||||||
|
SET_OUTPUT(X2_ENABLE_PIN);
|
||||||
|
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
|
||||||
|
#endif
|
||||||
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
||||||
SET_OUTPUT(Y_ENABLE_PIN);
|
SET_OUTPUT(Y_ENABLE_PIN);
|
||||||
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
|
||||||
@ -788,6 +827,11 @@ void st_init()
|
|||||||
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
|
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
|
||||||
disable_x();
|
disable_x();
|
||||||
#endif
|
#endif
|
||||||
|
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
|
||||||
|
SET_OUTPUT(X2_STEP_PIN);
|
||||||
|
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
|
||||||
|
disable_x();
|
||||||
|
#endif
|
||||||
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
|
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
|
||||||
SET_OUTPUT(Y_STEP_PIN);
|
SET_OUTPUT(Y_STEP_PIN);
|
||||||
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
|
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
|
||||||
|
@ -41,6 +41,8 @@ Features:
|
|||||||
* Heater power reporting. Useful for PID monitoring.
|
* Heater power reporting. Useful for PID monitoring.
|
||||||
* PID tuning
|
* PID tuning
|
||||||
* CoreXY kinematics (www.corexy.com/theory.html)
|
* CoreXY kinematics (www.corexy.com/theory.html)
|
||||||
|
* Delta kinematics
|
||||||
|
* Dual X-carriage support for multiple extruder systems
|
||||||
* Configurable serial port to support connection of wireless adaptors.
|
* Configurable serial port to support connection of wireless adaptors.
|
||||||
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
|
* Automatic operation of extruder/cold-end cooling fans based on nozzle temperature
|
||||||
* RC Servo Support, specify angle or duration for continuous rotation servos.
|
* RC Servo Support, specify angle or duration for continuous rotation servos.
|
||||||
|
Loading…
Reference in New Issue
Block a user