diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp index 62e65d9a6..730c000fb 100644 --- a/Marlin/G26_Mesh_Validation_Tool.cpp +++ b/Marlin/G26_Mesh_Validation_Tool.cpp @@ -38,7 +38,7 @@ #define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But #define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize - #define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all + #define NOZZLE 0.3 // these numbers for their printer so they don't need to type all #define FILAMENT 1.75 // the options every time they do a Mesh Validation Print. #define LAYER_HEIGHT 0.2 #define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place. @@ -113,10 +113,7 @@ * Y # Y coordinate Specify the starting location of the drawing activity. */ - extern bool g26_debug_flag; - extern bool ubl_has_control_of_lcd_panel; extern float feedrate; - //extern bool relative_mode; extern Planner planner; //#if ENABLED(ULTRA_LCD) extern char lcd_status_message[]; @@ -197,12 +194,10 @@ set_current_to_destination(); } - ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel! + ubl.has_control_of_lcd_panel = true; // Take control of the LCD Panel! if (turn_on_heaters()) // Turn on the heaters, leave the command if anything goto LEAVE; // has gone wrong. - axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the - //relative_mode = false; // planner and stepper motors! current_position[E_AXIS] = 0.0; sync_plan_position_e(); @@ -232,7 +227,7 @@ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); - ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel! + ubl.has_control_of_lcd_panel = true; // Take control of the LCD Panel! //debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern."); /** @@ -292,7 +287,7 @@ xi = location.x_index; // Just to shrink the next few lines and make them easier to understand yi = location.y_index; - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(", yi=", yi); SERIAL_CHAR(')'); @@ -346,7 +341,7 @@ ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif - //if (g26_debug_flag) { + //if (ubl.g26_debug_flag) { // char ccc, *cptr, seg_msg[50], seg_num[10]; // strcpy(seg_msg, " segment: "); // strcpy(seg_num, " \n"); @@ -364,7 +359,7 @@ //if (lcd_init_counter > 10) { // lcd_init_counter = 0; // lcd_init(); // Some people's LCD Displays are locking up. This might help them - // ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel + // ubl.has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel //} //debug_current_and_destination((char*)"Looking for lines to connect."); @@ -394,7 +389,7 @@ move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position //debug_current_and_destination((char*)"done doing X/Y move."); - ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel! + ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel! if (!keep_heaters_on) { #if HAS_TEMP_BED @@ -479,7 +474,7 @@ ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); @@ -516,7 +511,7 @@ ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); @@ -541,10 +536,10 @@ bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. - //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component); if (z != last_z) { - //if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z); last_z = z; feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate @@ -559,24 +554,24 @@ stepper.synchronize(); set_destination_to_current(); - //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move"); + //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move"); } // Check if X or Y is involved in the movement. // Yes: a 'normal' movement. No: a retract() or un_retract() feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; - if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); + if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[E_AXIS] += e_delta; - //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move"); + //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move"); ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); - //if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move"); + //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move"); stepper.synchronize(); set_destination_to_current(); @@ -586,9 +581,9 @@ void retract_filament() { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier); - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); } } @@ -596,7 +591,7 @@ if (g26_retracted) { // Only un-retract if we are retracted. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier); g26_retracted = false; - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); } } @@ -633,7 +628,7 @@ // On very small lines we don't do the optimization because it just isn't worth it. // if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); return; } @@ -642,7 +637,7 @@ if (dist_start > 2.0) { retract_filament(); - //if (g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); + //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); } move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion @@ -650,7 +645,7 @@ un_retract_filament(); - //if (g26_debug_flag) { + //if (ubl.g26_debug_flag) { // SERIAL_ECHOLNPGM(" doing printing move."); // debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()"); //} @@ -810,7 +805,7 @@ lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99); lcd_quick_feedback(); #endif - ubl_has_control_of_lcd_panel = true; + ubl.has_control_of_lcd_panel = true; thermalManager.setTargetBed(bed_temp); while (abs(thermalManager.degBed() - bed_temp) > 3) { if (ubl_lcd_clicked()) return exit_from_g26(); diff --git a/Marlin/M100_Free_Mem_Chk.cpp b/Marlin/M100_Free_Mem_Chk.cpp index 7b71df0b1..d0d0bf6bb 100644 --- a/Marlin/M100_Free_Mem_Chk.cpp +++ b/Marlin/M100_Free_Mem_Chk.cpp @@ -76,10 +76,10 @@ void gcode_M100() { // We want to start and end the dump on a nice 16 byte boundry even though // the values we are using are not 16 byte aligned. // - SERIAL_ECHOPAIR("\nbss_end : ", hex_word((uint16_t)ptr)); + SERIAL_ECHOPAIR("\nbss_end : 0x", hex_word((uint16_t)ptr)); ptr = (char*)((uint32_t)ptr & 0xfff0); sp = top_of_stack(); - SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_word((uint16_t)sp)); + SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp)); sp = (char*)((uint32_t)sp | 0x000f); n = sp - ptr; // diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index e9f0e27ac..f4f947a2e 100755 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -299,13 +299,11 @@ #if ENABLED(AUTO_BED_LEVELING_UBL) #include "UBL.h" unified_bed_leveling ubl; - #define UBL_MESH_VALID !( ( z_values[0][0] == z_values[0][1] && z_values[0][1] == z_values[0][2] \ - && z_values[1][0] == z_values[1][1] && z_values[1][1] == z_values[1][2] \ - && z_values[2][0] == z_values[2][1] && z_values[2][1] == z_values[2][2] \ - && z_values[0][0] == 0 && z_values[1][0] == 0 && z_values[2][0] == 0 ) \ - || isnan(z_values[0][0])) - extern bool g26_debug_flag; - extern int ubl_eeprom_start; + #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \ + && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \ + && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \ + && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \ + || isnan(ubl.z_values[0][0])) #endif bool Running = true; @@ -5349,11 +5347,9 @@ inline void gcode_M42() { #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) inline void gcode_M49() { + ubl.g26_debug_flag = !ubl.g26_debug_flag; SERIAL_PROTOCOLPGM("UBL Debug Flag turned "); - if ((g26_debug_flag = !g26_debug_flag)) - SERIAL_PROTOCOLLNPGM("on."); - else - SERIAL_PROTOCOLLNPGM("off."); + serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off.")); } #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED @@ -7212,11 +7208,13 @@ void quickstop_stepper() { /** * M420: Enable/Disable Bed Leveling and/or set the Z fade height. * - * S[bool] Turns leveling on or off - * Z[height] Sets the Z fade height (0 or none to disable) - * V[bool] Verbose - Print the leveling grid + * S[bool] Turns leveling on or off + * Z[height] Sets the Z fade height (0 or none to disable) + * V[bool] Verbose - Print the leveling grid * - * L[index] Load UBL mesh from index (0 is default) + * With AUTO_BED_LEVELING_UBL only: + * + * L[index] Load UBL mesh from index (0 is default) */ inline void gcode_M420() { @@ -7224,15 +7222,15 @@ void quickstop_stepper() { // L to load a mesh from the EEPROM if (code_seen('L')) { const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; - const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(z_values); + const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } - ubl.load_mesh(Storage_Slot); - ubl.state.eeprom_storage_slot = Storage_Slot; - if (Storage_Slot != ubl.state.eeprom_storage_slot) - ubl.store_state(); + + ubl.load_mesh(storage_slot); + if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state(); + ubl.state.eeprom_storage_slot = storage_slot; ubl.display_map(0); // Right now, we only support one type of map SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID); SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot); @@ -8736,7 +8734,7 @@ void process_next_command() { #endif // Z_MIN_PROBE_REPEATABILITY_TEST #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) - case 49: // M49: Turn on or off g26_debug_flag for verbose output + case 49: // M49: Turn on or off G26 debug flag for verbose output gcode_M49(); break; #endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED diff --git a/Marlin/UBL.h b/Marlin/UBL.h index fe2c6506e..933d36774 100644 --- a/Marlin/UBL.h +++ b/Marlin/UBL.h @@ -81,20 +81,33 @@ #define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0)) #define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0)) - extern float last_specified_z; - extern float fade_scaling_factor_for_current_height; - extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell class unified_bed_leveling { + private: + + float last_specified_z, + fade_scaling_factor_for_current_height; + public: + + float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; + + bool g26_debug_flag = false, + has_control_of_lcd_panel = false; + + int8_t eeprom_start = -1; + + volatile int encoder_diff; // Volatile because it's changed at interrupt time. + struct ubl_state { bool active = false; float z_offset = 0.0; - int eeprom_storage_slot = -1, - n_x = UBL_MESH_NUM_X_POINTS, - n_y = UBL_MESH_NUM_Y_POINTS; + int8_t eeprom_storage_slot = -1, + n_x = UBL_MESH_NUM_X_POINTS, + n_y = UBL_MESH_NUM_Y_POINTS; + float mesh_x_min = UBL_MESH_MIN_X, mesh_y_min = UBL_MESH_MIN_Y, mesh_x_max = UBL_MESH_MAX_X, @@ -104,23 +117,26 @@ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float g29_correction_fade_height = 10.0, - g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating - // point divide. So, we keep this number in both forms. The first - // is for the user. The second one is the one that is actually used - // again and again and again during the correction calculations. + g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide, + // so keep this value and its reciprocal. + #else + const float g29_correction_fade_height = 10.0, + g29_fade_height_multiplier = 1.0 / 10.0; #endif - unsigned char padding[24]; // This is just to allow room to add state variables without - // changing the location of data structures in the EEPROM. - // This is for compatability with future versions to keep - // people from having to regenerate thier mesh data. - // - // If you change the contents of this struct, please adjust - // the padding[] to keep the size the same! + // If you change this struct, adjust TOTAL_STRUCT_SIZE + + #define TOTAL_STRUCT_SIZE 43 // Total size of the above fields + + // padding provides space to add state variables without + // changing the location of data structures in the EEPROM. + // This is for compatibility with future versions to keep + // users from having to regenerate their mesh data. + unsigned char padding[64 - TOTAL_STRUCT_SIZE]; + } state, pre_initialized; unified_bed_leveling(); - // ~unified_bed_leveling(); // No destructor because this object never goes away! void display_map(const int); @@ -269,8 +285,9 @@ #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPAIR(" raw get_z_correction(", x0); - SERIAL_ECHOPAIR(",", y0); - SERIAL_ECHOPGM(")="); + SERIAL_CHAR(',') + SERIAL_ECHO(y0); + SERIAL_ECHOPGM(") = "); SERIAL_ECHO_F(z0, 6); } #endif @@ -291,11 +308,11 @@ #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( "); - SERIAL_ECHO(x0); - SERIAL_ECHOPGM(", "); + SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0); + SERIAL_CHAR(','); SERIAL_ECHO(y0); - SERIAL_ECHOLNPGM(" )"); + SERIAL_CHAR(')'); + SERIAL_EOL; } #endif } @@ -313,7 +330,7 @@ */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) const { + FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { const float rz = RAW_Z_POSITION(lz); if (last_specified_z != rz) { last_specified_z = rz; diff --git a/Marlin/UBL_Bed_Leveling.cpp b/Marlin/UBL_Bed_Leveling.cpp index 2fa032b91..98c5a445a 100644 --- a/Marlin/UBL_Bed_Leveling.cpp +++ b/Marlin/UBL_Bed_Leveling.cpp @@ -27,7 +27,6 @@ #include "UBL.h" #include "hex_print_routines.h" - extern int ubl_eeprom_start; /** * These support functions allow the use of large bit arrays of flags that take very @@ -65,10 +64,7 @@ * 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be * moved back inside the bed leveling class. */ - float last_specified_z, - fade_scaling_factor_for_current_height, - z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], - mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the + float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell unified_bed_leveling::unified_bed_leveling() { @@ -96,7 +92,7 @@ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) /** * These lines can go away in a few weeks. They are just - * to make sure people updating thier firmware won't be using + * to make sure people updating their firmware won't be using * an incomplete Bed_Leveling.state structure. For speed * we now multiply by the inverse of the Fade Height instead of * dividing by it. Soon... all of the old structures will be @@ -111,7 +107,7 @@ } void unified_bed_leveling::load_mesh(const int16_t m) { - int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); if (m == -1) { SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n"); @@ -119,7 +115,7 @@ return; } - if (m < 0 || m >= j || ubl_eeprom_start <= 0) { + if (m < 0 || m >= j || eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); return; } @@ -132,9 +128,9 @@ } void unified_bed_leveling::store_mesh(const int16_t m) { - int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); - if (m < 0 || m >= j || ubl_eeprom_start <= 0) { + if (m < 0 || m >= j || eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); SERIAL_PROTOCOL(m); SERIAL_PROTOCOLLNPGM(" mesh slots available.\n"); @@ -202,9 +198,8 @@ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { const bool is_current = i == current_xi && j == current_yi; - // is the nozzle here? if so, mark the number - if (map0) - SERIAL_CHAR(is_current ? '[' : ' '); + // is the nozzle here? then mark the number + if (map0) SERIAL_CHAR(is_current ? '[' : ' '); const float f = z_values[i][j]; if (isnan(f)) { @@ -212,12 +207,11 @@ } else { // if we don't do this, the columns won't line up nicely - if (f >= 0.0 && map0) SERIAL_CHAR(' '); + if (map0 && f >= 0.0) SERIAL_CHAR(' '); SERIAL_PROTOCOL_F(f, 3); idle(); } - if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1) - SERIAL_CHAR(','); + if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1) SERIAL_CHAR(','); #if TX_BUFFER_SIZE > 0 MYSERIAL.flushTX(); @@ -252,47 +246,40 @@ bool unified_bed_leveling::sanity_check() { uint8_t error_flag = 0; - if (state.n_x != UBL_MESH_NUM_X_POINTS) { + if (state.n_x != UBL_MESH_NUM_X_POINTS) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n"); error_flag++; } - - if (state.n_y != UBL_MESH_NUM_Y_POINTS) { + if (state.n_y != UBL_MESH_NUM_Y_POINTS) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n"); error_flag++; } - - if (state.mesh_x_min != UBL_MESH_MIN_X) { + if (state.mesh_x_min != UBL_MESH_MIN_X) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n"); error_flag++; } - - if (state.mesh_y_min != UBL_MESH_MIN_Y) { + if (state.mesh_y_min != UBL_MESH_MIN_Y) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n"); error_flag++; } - - if (state.mesh_x_max != UBL_MESH_MAX_X) { + if (state.mesh_x_max != UBL_MESH_MAX_X) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n"); error_flag++; } - - if (state.mesh_y_max != UBL_MESH_MAX_Y) { + if (state.mesh_y_max != UBL_MESH_MAX_Y) { SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n"); error_flag++; } - - if (state.mesh_x_dist != MESH_X_DIST) { + if (state.mesh_x_dist != MESH_X_DIST) { SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n"); error_flag++; } - - if (state.mesh_y_dist != MESH_Y_DIST) { + if (state.mesh_y_dist != MESH_Y_DIST) { SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n"); error_flag++; } - const int j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); if (j < 1) { SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n"); error_flag++; diff --git a/Marlin/UBL_G29.cpp b/Marlin/UBL_G29.cpp index 1a9bf4bd5..ef14b8cac 100644 --- a/Marlin/UBL_G29.cpp +++ b/Marlin/UBL_G29.cpp @@ -65,8 +65,6 @@ #define SIZE_OF_LITTLE_RAISE 0 #define BIG_RAISE_NOT_NEEDED 0 extern void lcd_quick_feedback(); - extern int ubl_eeprom_start; - extern volatile int ubl_encoderDiff; // This is volatile because it is getting changed at interrupt time. /** * G29: Unified Bed Leveling by Roxy @@ -146,7 +144,7 @@ * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * was turned on. Setting the entire Mesh to Zero is a special case that allows - * a subsequent G or T leveling operation for backward compatability. + * a subsequent G or T leveling operation for backward compatibility. * * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and @@ -299,14 +297,10 @@ * this is going to be helpful to the users!) * * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big - * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions + * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions * we now have the functionality and features of all three systems combined. */ - int ubl_eeprom_start = -1; - bool ubl_has_control_of_lcd_panel = false; - volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update - // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine. static int g29_verbose_level, phase_value = -1, repetition_cnt, storage_slot = 0, map_type; //unlevel_value = -1; @@ -318,8 +312,8 @@ #endif void gcode_G29() { - SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start); - if (ubl_eeprom_start < 0) { + SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start); + if (ubl.eeprom_start < 0) { SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); return; @@ -340,7 +334,7 @@ SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } - z_values[location.x_index][location.y_index] = NAN; + ubl.z_values[location.x_index][location.y_index] = NAN; } SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); } @@ -359,21 +353,21 @@ for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta. const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x, p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y; - z_values[x][y] += 2.0 * HYPOT(p1, p2); + ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2); } } break; case 1: for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised - z_values[x][x] += 9.999; - z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick + ubl.z_values[x][x] += 9.999; + ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick } break; case 2: // Allow the user to specify the height because 10mm is a little extreme in some cases. for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed - z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; + ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; break; } } @@ -395,17 +389,18 @@ return; } switch (phase_value) { - // - // Zero Mesh Data - // case 0: + // + // Zero Mesh Data + // ubl.reset(); SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n"); break; - // - // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe - // + case 1: + // + // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe + // if (!code_seen('C') ) { ubl.invalidate(); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n"); @@ -419,10 +414,11 @@ probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); break; - // - // Manually Probe Mesh in areas that can't be reached by the probe - // + case 2: { + // + // Manually Probe Mesh in areas that can't be reached by the probe + // SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); if (!x_flag && !y_flag) { // use a good default location for the path @@ -455,24 +451,24 @@ } break; - // - // Populate invalid Mesh areas with a constant - // case 3: { + // + // Populate invalid Mesh areas with a constant + // const float height = code_seen('C') ? ubl_constant : 0.0; // If no repetition is specified, do the whole Mesh if (!repeat_flag) repetition_cnt = 9999; while (repetition_cnt--) { const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position if (location.x_index < 0) break; // No more invalid Mesh Points to populate - z_values[location.x_index][location.y_index] = height; + ubl.z_values[location.x_index][location.y_index] = height; } } break; - // - // Fine Tune (Or Edit) the Mesh - // case 4: + // + // Fine Tune (i.e., Edit) the Mesh + // fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M')); break; case 5: @@ -487,16 +483,16 @@ SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; while (!ubl_lcd_clicked()) { safe_delay(250); - if (ubl_encoderDiff) { - SERIAL_ECHOLN((int)ubl_encoderDiff); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + SERIAL_ECHOLN((int)ubl.encoder_diff); + ubl.encoder_diff = 0; } } SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); break; @@ -508,9 +504,9 @@ wait_for_user = true; while (wait_for_user) { safe_delay(250); - if (ubl_encoderDiff) { - SERIAL_ECHOLN((int)ubl_encoderDiff); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + SERIAL_ECHOLN((int)ubl.encoder_diff); + ubl.encoder_diff = 0; } } SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); @@ -562,9 +558,9 @@ if (code_seen('L')) { // Load Current Mesh Data storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; - const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); - if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { + if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } @@ -586,19 +582,19 @@ SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) { + if (!isnan(ubl.z_values[x][y])) { SERIAL_ECHOPAIR("M421 I ", x); SERIAL_ECHOPAIR(" J ", y); SERIAL_ECHOPGM(" Z "); - SERIAL_ECHO_F(z_values[x][y], 6); + SERIAL_ECHO_F(ubl.z_values[x][y], 6); SERIAL_EOL; } return; } - const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); + const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); - if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { + if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); goto LEAVE; @@ -622,7 +618,7 @@ save_ubl_active_state_and_disable(); //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); - ubl_has_control_of_lcd_panel++; // Grab the LCD Hardware + ubl.has_control_of_lcd_panel++; // Grab the LCD Hardware measured_z = 1.5; do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything // The user is not going to be locking in a new Z-Offset very often so @@ -638,7 +634,7 @@ do_blocking_move_to_z(measured_z); } while (!ubl_lcd_clicked()); - ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked. + ubl.has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. So, until we are done looking for a long Encoder Wheel Press, // we need to take control of the panel @@ -658,7 +654,7 @@ goto LEAVE; } } - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; safe_delay(20); // We don't want any switch noise. ubl.state.z_offset = measured_z; @@ -675,7 +671,7 @@ lcd_quick_feedback(); #endif - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; } void find_mean_mesh_height() { @@ -687,8 +683,8 @@ n = 0; for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) { - sum += z_values[x][y]; + if (!isnan(ubl.z_values[x][y])) { + sum += ubl.z_values[x][y]; n++; } @@ -699,8 +695,8 @@ // for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) { - difference = (z_values[x][y] - mean); + if (!isnan(ubl.z_values[x][y])) { + difference = (ubl.z_values[x][y] - mean); sum_of_diff_squared += difference * difference; } @@ -717,15 +713,15 @@ if (c_flag) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) - z_values[x][y] -= mean + ubl_constant; + if (!isnan(ubl.z_values[x][y])) + ubl.z_values[x][y] -= mean + ubl_constant; } void shift_mesh_height() { for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - if (!isnan(z_values[x][y])) - z_values[x][y] += ubl_constant; + if (!isnan(ubl.z_values[x][y])) + ubl.z_values[x][y] += ubl_constant; } /** @@ -735,7 +731,7 @@ void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) { mesh_index_pair location; - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe DEPLOY_PROBE(); @@ -745,7 +741,7 @@ lcd_quick_feedback(); STOW_PROBE(); while (ubl_lcd_clicked()) idle(); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; restore_ubl_active_state_and_leave(); safe_delay(50); // Debounce the Encoder wheel return; @@ -761,11 +757,11 @@ if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; goto LEAVE; } const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); - z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; + ubl.z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; } if (do_ubl_mesh_map) ubl.display_map(map_type); @@ -842,7 +838,7 @@ for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d); - z_values[i][j] += c; + ubl.z_values[i][j] += c; } } return normal; @@ -852,9 +848,9 @@ KEEPALIVE_STATE(PAUSED_FOR_USER); while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); - if (ubl_encoderDiff) { - do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff)); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff)); + ubl.encoder_diff = 0; } } KEEPALIVE_STATE(IN_HANDLER); @@ -863,7 +859,7 @@ float measure_business_card_thickness(const float &in_height) { - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); @@ -873,7 +869,7 @@ const float z1 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); const float z2 = use_encoder_wheel_to_measure_point(); @@ -890,7 +886,7 @@ void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { - ubl_has_control_of_lcd_panel++; + ubl.has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe do_blocking_move_to_z(z_clearance); do_blocking_move_to_xy(lx, ly); @@ -911,7 +907,7 @@ if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; goto LEAVE; } @@ -931,13 +927,13 @@ last_y = yProbe; KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl_has_control_of_lcd_panel = true; + ubl.has_control_of_lcd_panel = true; while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); - if (ubl_encoderDiff) { - do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0); - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0); + ubl.encoder_diff = 0; } } @@ -949,17 +945,17 @@ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_quick_feedback(); while (ubl_lcd_clicked()) idle(); - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); restore_ubl_active_state_and_leave(); return; } } - z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; + ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; if (g29_verbose_level > 2) { SERIAL_PROTOCOLPGM("Mesh Point Measured at: "); - SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); + SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6); SERIAL_EOL; } } while (location.x_index >= 0 && location.y_index >= 0); @@ -1110,7 +1106,7 @@ * good to have the extra information. Soon... we prune this to just a few items */ void g29_what_command() { - const uint16_t k = E2END - ubl_eeprom_start; + const uint16_t k = E2END - ubl.eeprom_start; SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); if (ubl.state.active) @@ -1167,21 +1163,21 @@ SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); SERIAL_EOL; safe_delay(50); - SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start)); + SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start)); - SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_word(E2END)); + SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END)); safe_delay(50); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_EOL; - SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); + SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values)); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k)); safe_delay(50); - SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values)); + SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values)); SERIAL_PROTOCOLLNPGM(" meshes.\n"); safe_delay(50); @@ -1245,9 +1241,9 @@ } storage_slot = code_value_int(); - int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values); + int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values); - if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) { + if (storage_slot < 0 || storage_slot > j || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } @@ -1256,12 +1252,12 @@ eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); - SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing + SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing // the address in the EEPROM where the Mesh is stored. for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) - z_values[x][y] = z_values[x][y] - tmp_z_values[x][y]; + ubl.z_values[x][y] -= tmp_z_values[x][y]; } mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { @@ -1280,8 +1276,8 @@ for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { - if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing - || (type == REAL && !isnan(z_values[i][j])) + if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing + || (type == REAL && !isnan(ubl.z_values[i][j])) || (type == SET_IN_BITMAP && is_bit_set(bits, i, j)) ) { @@ -1308,7 +1304,7 @@ if (far_flag) { // If doing the far_flag action, we want to be as far as possible for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces - if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed + if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find. + sq(j - l) * (MESH_Y_DIST) * .05; } @@ -1361,19 +1357,19 @@ if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check. SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; goto FINE_TUNE_EXIT; } do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); - float new_z = z_values[location.x_index][location.y_index]; + float new_z = ubl.z_values[location.x_index][location.y_index]; round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the new_z = float(round_off) / 1000.0; KEEPALIVE_STATE(PAUSED_FOR_USER); - ubl_has_control_of_lcd_panel = true; + ubl.has_control_of_lcd_panel = true; lcd_implementation_clear(); lcd_mesh_edit_setup(new_z); @@ -1385,7 +1381,7 @@ lcd_return_to_status(); - ubl_has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. + ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. @@ -1406,7 +1402,7 @@ safe_delay(20); // We don't want any switch noise. - z_values[location.x_index][location.y_index] = new_z; + ubl.z_values[location.x_index][location.y_index] = new_z; lcd_implementation_clear(); @@ -1414,7 +1410,7 @@ FINE_TUNE_EXIT: - ubl_has_control_of_lcd_panel = false; + ubl.has_control_of_lcd_panel = false; KEEPALIVE_STATE(IN_HANDLER); if (do_ubl_mesh_map) ubl.display_map(map_type); diff --git a/Marlin/UBL_line_to_destination.cpp b/Marlin/UBL_line_to_destination.cpp index 3ed7a2a29..7c8b6251d 100644 --- a/Marlin/UBL_line_to_destination.cpp +++ b/Marlin/UBL_line_to_destination.cpp @@ -32,12 +32,11 @@ extern float destination[XYZE]; extern void set_current_to_destination(); extern float destination[]; - bool g26_debug_flag = false; void debug_current_and_destination(char *title) { // if the title message starts with a '!' it is so important, we are going to // ignore the status of the g26_debug_flag - if (*title != '!' && !g26_debug_flag) return; + if (*title != '!' && !ubl.g26_debug_flag) return; const float de = destination[E_AXIS] - current_position[E_AXIS]; @@ -122,7 +121,7 @@ cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)), cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end)); - if (g26_debug_flag) { + if (ubl.g26_debug_flag) { SERIAL_ECHOPGM(" ubl_line_to_destination(xe="); SERIAL_ECHO(x_end); SERIAL_ECHOPGM(", ye="); @@ -151,7 +150,7 @@ planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder); set_current_to_destination(); - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()"); return; @@ -213,7 +212,7 @@ planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder); - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); set_current_to_destination(); @@ -340,7 +339,7 @@ } //else printf("FIRST MOVE PRUNED "); } - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()"); // @@ -425,7 +424,7 @@ } //else printf("FIRST MOVE PRUNED "); } - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) @@ -564,7 +563,7 @@ } } - if (g26_debug_flag) + if (ubl.g26_debug_flag) debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); if (current_position[0] != x_end || current_position[1] != y_end) diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp index 276bb068b..dab1acd88 100644 --- a/Marlin/configuration_store.cpp +++ b/Marlin/configuration_store.cpp @@ -166,7 +166,6 @@ #if ENABLED(AUTO_BED_LEVELING_UBL) #include "UBL.h" - int ubl_eeprom_start = -1; #endif #if ENABLED(ABL_BILINEAR_SUBDIVISION) @@ -847,7 +846,7 @@ void Config_Postprocess() { } #if ENABLED(AUTO_BED_LEVELING_UBL) - ubl_eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it + ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it // can float up or down a little bit without // disrupting the Unified Bed Leveling data ubl.load_state(); @@ -1233,7 +1232,7 @@ void Config_ResetDefault() { SERIAL_ECHO_F(ubl.state.z_offset, 6); SERIAL_EOL; - SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values))); + SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values))); SERIAL_ECHOLNPGM(" meshes.\n"); SERIAL_ECHOLNPGM("UBL_MESH_NUM_X_POINTS " STRINGIFY(UBL_MESH_NUM_X_POINTS)); diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 02cb3e239..a7ab03243 100755 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -124,8 +124,7 @@ uint16_t max_display_update_time = 0; int32_t lastEncoderMovementMillis; #if ENABLED(AUTO_BED_LEVELING_UBL) - extern bool ubl_has_control_of_lcd_panel; - extern int8_t ubl_encoderDiff; + #include "UBL.h" #endif #if HAS_POWER_SWITCH @@ -860,9 +859,9 @@ void kill_screen(const char* lcd_msg) { static void _lcd_mesh_fine_tune(const char* msg) { defer_return_to_status = true; - if (ubl_encoderDiff) { - ubl_encoderPosition = (ubl_encoderDiff > 0) ? 1 : -1; - ubl_encoderDiff = 0; + if (ubl.encoder_diff) { + ubl_encoderPosition = (ubl.encoder_diff > 0) ? 1 : -1; + ubl.encoder_diff = 0; mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0; mesh_edit_value = mesh_edit_accumulator; @@ -3206,7 +3205,7 @@ void lcd_update() { lcd_buttons_update(); #if ENABLED(AUTO_BED_LEVELING_UBL) - const bool UBL_CONDITION = !ubl_has_control_of_lcd_panel; + const bool UBL_CONDITION = !ubl.has_control_of_lcd_panel; #else constexpr bool UBL_CONDITION = true; #endif @@ -3622,8 +3621,8 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; } case encrot3: ENCODER_SPIN(encrot2, encrot0); break; } #if ENABLED(AUTO_BED_LEVELING_UBL) - if (ubl_has_control_of_lcd_panel) { - ubl_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor + if (ubl.has_control_of_lcd_panel) { + ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder // wheel has not turned. }