Add LOGICAL_POSITION macro, apply to kinematics

This commit is contained in:
Scott Lahteine 2016-07-22 17:46:05 -07:00
parent 35a610abf9
commit b3eb0c8569

View File

@ -330,6 +330,7 @@ float position_shift[3] = { 0 };
// Set by M206, M428, or menu item. Saved to EEPROM. // Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[3] = { 0 }; float home_offset[3] = { 0 };
#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS])
#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS)) #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
@ -1402,7 +1403,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static float x_home_pos(int extruder) { static float x_home_pos(int extruder) {
if (extruder == 0) if (extruder == 0)
return base_home_pos(X_AXIS) + home_offset[X_AXIS]; return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
else else
/** /**
* In dual carriage mode the extruder offset provides an override of the * In dual carriage mode the extruder offset provides an override of the
@ -1437,7 +1438,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
* at the same positions relative to the machine. * at the same positions relative to the machine.
*/ */
static void update_software_endstops(AxisEnum axis) { static void update_software_endstops(AxisEnum axis) {
float offs = home_offset[axis] + position_shift[axis]; float offs = LOGICAL_POSITION(0, axis);
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) { if (axis == X_AXIS) {
@ -1508,7 +1509,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
if (active_extruder != 0) if (active_extruder != 0)
current_position[X_AXIS] = x_home_pos(active_extruder); current_position[X_AXIS] = x_home_pos(active_extruder);
else else
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS);
update_software_endstops(X_AXIS); update_software_endstops(X_AXIS);
return; return;
} }
@ -1519,7 +1520,8 @@ static void set_axis_is_at_home(AxisEnum axis) {
if (axis == X_AXIS || axis == Y_AXIS) { if (axis == X_AXIS || axis == Y_AXIS) {
float homeposition[3]; float homeposition[3];
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i); for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]); // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
@ -1529,23 +1531,12 @@ static void set_axis_is_at_home(AxisEnum axis) {
* and calculates homing offset using forward kinematics * and calculates homing offset using forward kinematics
*/ */
inverse_kinematics(homeposition); inverse_kinematics(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
forward_kinematics_SCARA(delta); forward_kinematics_SCARA(delta);
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]); // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position[axis] = delta[axis]; current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
/** /**
* SCARA home positions are based on configuration since the actual * SCARA home positions are based on configuration since the actual
@ -1557,7 +1548,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
else else
#endif #endif
{ {
current_position[axis] = base_home_pos(axis) + home_offset[axis]; current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
update_software_endstops(axis); update_software_endstops(axis);
#if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
@ -1786,7 +1777,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
} }
#endif #endif
float z_dest = home_offset[Z_AXIS] + z_raise; float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS);
if (zprobe_zoffset < 0) if (zprobe_zoffset < 0)
z_dest -= zprobe_zoffset; z_dest -= zprobe_zoffset;
@ -2089,7 +2080,7 @@ static void clean_up_after_endstop_or_probe_move() {
#if ENABLED(DELTA) #if ENABLED(DELTA)
#define SET_Z_FROM_STEPPERS() set_current_from_steppers() #define SET_Z_FROM_STEPPERS() set_current_from_steppers()
#else #else
#define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS) #define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS)
#endif #endif
// Do a single Z probe and return with current_position[Z_AXIS] // Do a single Z probe and return with current_position[Z_AXIS]
@ -2958,7 +2949,7 @@ inline void gcode_G28() {
if (home_all_axis || homeX || homeY) { if (home_all_axis || homeX || homeY) {
// Raise Z before homing any other axes and z is not already high enough (never lower z) // Raise Z before homing any other axes and z is not already high enough (never lower z)
destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING; destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS);
if (destination[Z_AXIS] > current_position[Z_AXIS]) { if (destination[Z_AXIS] > current_position[Z_AXIS]) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -3213,12 +3204,12 @@ inline void gcode_G28() {
; ;
line_to_current_position(); line_to_current_position();
current_position[X_AXIS] = x + home_offset[X_AXIS]; current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS);
current_position[Y_AXIS] = y + home_offset[Y_AXIS]; current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS);
line_to_current_position(); line_to_current_position();
#if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS);
line_to_current_position(); line_to_current_position();
#endif #endif
@ -3636,14 +3627,14 @@ inline void gcode_G28() {
#endif #endif
// Probe at 3 arbitrary points // Probe at 3 arbitrary points
float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS], float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS),
ABL_PROBE_PT_1_Y + home_offset[Y_AXIS], LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS),
stow_probe_after_each, verbose_level), stow_probe_after_each, verbose_level),
z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS], z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS),
ABL_PROBE_PT_2_Y + home_offset[Y_AXIS], LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS),
stow_probe_after_each, verbose_level), stow_probe_after_each, verbose_level),
z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS], z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS),
ABL_PROBE_PT_3_Y + home_offset[Y_AXIS], LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS),
stow_probe_after_each, verbose_level); stow_probe_after_each, verbose_level);
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
@ -5174,9 +5165,9 @@ static void report_current_position() {
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]); SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]); SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
@ -6143,7 +6134,7 @@ inline void gcode_M428() {
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (axis_homed[i]) { if (axis_homed[i]) {
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
diff = current_position[i] - base; diff = current_position[i] - LOGICAL_POSITION(base, i);
if (diff > -20 && diff < 20) { if (diff > -20 && diff < 20) {
set_home_offset((AxisEnum)i, home_offset[i] - diff); set_home_offset((AxisEnum)i, home_offset[i] - diff);
} }
@ -7739,6 +7730,12 @@ void clamp_to_software_endstops(float target[3]) {
void inverse_kinematics(const float in_cartesian[3]) { void inverse_kinematics(const float in_cartesian[3]) {
const float cartesian[3] = {
RAW_POSITION(in_cartesian[X_AXIS], X_AXIS),
RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS),
RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS)
};
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
- sq(delta_tower1_x - cartesian[X_AXIS]) - sq(delta_tower1_x - cartesian[X_AXIS])
- sq(delta_tower1_y - cartesian[Y_AXIS]) - sq(delta_tower1_y - cartesian[Y_AXIS])
@ -7763,10 +7760,14 @@ void clamp_to_software_endstops(float target[3]) {
} }
float delta_safe_distance_from_top() { float delta_safe_distance_from_top() {
float cartesian[3] = { 0 }; float cartesian[3] = {
LOGICAL_POSITION(0, X_AXIS),
LOGICAL_POSITION(0, Y_AXIS),
LOGICAL_POSITION(0, Z_AXIS)
};
inverse_kinematics(cartesian); inverse_kinematics(cartesian);
float distance = delta[TOWER_3]; float distance = delta[TOWER_3];
cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS);
inverse_kinematics(cartesian); inverse_kinematics(cartesian);
return abs(distance - delta[TOWER_3]); return abs(distance - delta[TOWER_3]);
} }
@ -7846,8 +7847,8 @@ void clamp_to_software_endstops(float target[3]) {
void set_cartesian_from_steppers() { void set_cartesian_from_steppers() {
forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS), forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Y_AXIS),
stepper.get_axis_position_mm(Z_AXIS)); stepper.get_axis_position_mm(Z_AXIS));
} }
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
@ -7858,8 +7859,8 @@ void clamp_to_software_endstops(float target[3]) {
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
float h1 = 0.001 - half, h2 = half - 0.001, float h1 = 0.001 - half, h2 = half - 0.001,
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])), grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])),
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1])); grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1]));
int floor_x = floor(grid_x), floor_y = floor(grid_y); int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level[floor_x + half][floor_y + half], z1 = bed_level[floor_x + half][floor_y + half],
@ -7910,6 +7911,9 @@ void set_current_from_steppers() {
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
#endif #endif
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
current_position[i] += LOGICAL_POSITION(0, i);
} }
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
@ -7940,14 +7944,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
if (cx2 != cx1 && TEST(x_splits, gcx)) { if (cx2 != cx1 && TEST(x_splits, gcx)) {
memcpy(end, destination, sizeof(end)); memcpy(end, destination, sizeof(end));
destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS]; destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS);
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
destination[Y_AXIS] = MBL_SEGMENT_END(Y); destination[Y_AXIS] = MBL_SEGMENT_END(Y);
CBI(x_splits, gcx); CBI(x_splits, gcx);
} }
else if (cy2 != cy1 && TEST(y_splits, gcy)) { else if (cy2 != cy1 && TEST(y_splits, gcy)) {
memcpy(end, destination, sizeof(end)); memcpy(end, destination, sizeof(end));
destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS]; destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS);
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
destination[X_AXIS] = MBL_SEGMENT_END(X); destination[X_AXIS] = MBL_SEGMENT_END(X);
CBI(y_splits, gcy); CBI(y_splits, gcy);
@ -8362,8 +8366,8 @@ void prepare_move_to_destination() {
float SCARA_pos[2]; float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2) #if (Linkage_1 == Linkage_2)
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
@ -8381,7 +8385,7 @@ void prepare_move_to_destination() {
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS]; delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS);
/** /**
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);