Scale feedrate (mm/s to deg/s) for SCARA

This commit is contained in:
Scott Lahteine 2018-04-03 20:59:29 -05:00
parent bc2fc86993
commit c46d47f45f
5 changed files with 145 additions and 33 deletions

View File

@ -356,7 +356,7 @@ script:
# SCARA with TMC2130 and TMC2208
#
- use_example_configs SCARA
- opt_enable AUTO_BED_LEVELING_BILINEAR FIX_MOUNTED_PROBE USE_ZMIN_PLUG EEPROM_SETTINGS EEPROM_CHITCHAT ULTIMAKERCONTROLLER
- opt_enable AUTO_BED_LEVELING_BILINEAR FIX_MOUNTED_PROBE USE_ZMIN_PLUG EEPROM_SETTINGS EEPROM_CHITCHAT ULTIMAKERCONTROLLER SCARA_FEEDRATE_SCALING
- opt_enable_adv HAVE_TMC2130 HAVE_TMC2208 X_IS_TMC2130 Y_IS_TMC2130 Z_IS_TMC2208 E0_IS_TMC2208
- opt_enable_adv MONITOR_DRIVER_STATUS STEALTHCHOP HYBRID_THRESHOLD TMC_DEBUG SENSORLESS_HOMING TMC_Z_CALIBRATION
- build_marlin

View File

@ -12848,6 +12848,20 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#if !UBL_SEGMENTED
#if IS_KINEMATIC
#if IS_SCARA
/**
* Before raising this value, use M665 S[seg_per_sec] to decrease
* the number of segments-per-second. Default is 200. Some deltas
* do better with 160 or lower. It would be good to know how many
* segments-per-second are actually possible for SCARA on AVR.
*
* Longer segments result in less kinematic overhead
* but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm
* and compare the difference.
*/
#define SCARA_MIN_SEGMENT_LENGTH 0.5
#endif
/**
* Prepare a linear move in a DELTA or SCARA setup.
*
@ -12892,9 +12906,9 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// gives the number of segments
uint16_t segments = delta_segments_per_second * seconds;
// For SCARA minimum segment size is 0.25mm
// For SCARA enforce a minimum segment size
#if IS_SCARA
NOMORE(segments, cartesian_mm * 4);
NOMORE(segments, cartesian_mm * (1.0 / SCARA_MIN_SEGMENT_LENGTH));
#endif
// At least one segment is required
@ -12902,7 +12916,6 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
// The approximate length of each segment
const float inv_segments = 1.0 / float(segments),
cartesian_segment_mm = cartesian_mm * inv_segments,
segment_distance[XYZE] = {
xdiff * inv_segments,
ydiff * inv_segments,
@ -12910,16 +12923,47 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
ediff * inv_segments
};
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
// SERIAL_ECHOPAIR(" seconds=", seconds);
// SERIAL_ECHOLNPAIR(" segments=", segments);
// SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
#if DISABLED(SCARA_FEEDRATE_SCALING)
const float cartesian_segment_mm = cartesian_mm * inv_segments;
#endif
/*
SERIAL_ECHOPAIR("mm=", cartesian_mm);
SERIAL_ECHOPAIR(" seconds=", seconds);
SERIAL_ECHOPAIR(" segments=", segments);
#if DISABLED(SCARA_FEEDRATE_SCALING)
SERIAL_ECHOLNPAIR(" segment_mm=", cartesian_segment_mm);
#else
SERIAL_EOL();
#endif
//*/
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
const float segment_length = cartesian_mm * inv_segments,
inv_segment_length = 1.0 / segment_length, // 1/mm/segs
inverse_secs = inv_segment_length * _feedrate_mm_s;
float oldA = planner.position_float[A_AXIS],
oldB = planner.position_float[B_AXIS];
/*
SERIAL_ECHOPGM("Scaled kinematic move: ");
SERIAL_ECHOPAIR(" segment_length (inv)=", segment_length);
SERIAL_ECHOPAIR(" (", inv_segment_length);
SERIAL_ECHOPAIR(") _feedrate_mm_s=", _feedrate_mm_s);
SERIAL_ECHOPAIR(" inverse_secs=", inverse_secs);
SERIAL_ECHOPAIR(" oldA=", oldA);
SERIAL_ECHOLNPAIR(" oldB=", oldB);
safe_delay(5);
//*/
#endif
// Get the current position as starting point
float raw[XYZE];
COPY(raw, current_position);
// Calculate and execute the segments
while (--segments) {
@ -12939,11 +12983,41 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
/*
SERIAL_ECHO(segments);
SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]);
SERIAL_ECHOPAIR(" A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
SERIAL_ECHOLNPAIR(" F", HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs * 60);
safe_delay(5);
//*/
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#endif
}
// Ensure last segment arrives at target location.
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(rtarget);
ADJUST_DELTA(rtarget);
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
if (diff2) {
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], rtarget[Z_AXIS], rtarget[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder);
/*
SERIAL_ECHOPAIR("final: A=", delta[A_AXIS]); SERIAL_ECHOPAIR(" B=", delta[B_AXIS]);
SERIAL_ECHOPAIR(" adiff=", delta[A_AXIS] - oldA); SERIAL_ECHOPAIR(" bdiff=", delta[B_AXIS] - oldB);
SERIAL_ECHOLNPAIR(" F", (SQRT(diff2) * inverse_secs) * 60);
SERIAL_EOL();
safe_delay(5);
//*/
}
#else
planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder, cartesian_segment_mm);
#endif
return false; // caller will update current_position
}
@ -13227,6 +13301,14 @@ void prepare_move_to_destination() {
millis_t next_idle_ms = millis() + 200UL;
#if ENABLED(SCARA_FEEDRATE_SCALING)
// SCARA needs to scale the feed rate from mm/s to degrees/s
const float inv_segment_length = 1.0 / (MM_PER_ARC_SEGMENT),
inverse_secs = inv_segment_length * fr_mm_s;
float oldA = planner.position_float[A_AXIS],
oldB = planner.position_float[B_AXIS];
#endif
#if N_ARC_CORRECTION > 1
int8_t arc_recalc_count = N_ARC_CORRECTION;
#endif
@ -13270,11 +13352,28 @@ void prepare_move_to_destination() {
clamp_to_software_endstops(raw);
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
#if ENABLED(SCARA_FEEDRATE_SCALING)
// For SCARA scale the feed rate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
inverse_kinematics(raw);
ADJUST_DELTA(raw);
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder);
oldA = delta[A_AXIS]; oldB = delta[B_AXIS];
#else
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
#endif
}
// Ensure last segment arrives at target location.
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#if ENABLED(SCARA_FEEDRATE_SCALING)
inverse_kinematics(cart);
ADJUST_DELTA(cart);
const float diff2 = HYPOT2(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB);
if (diff2)
planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], cart[Z_AXIS], cart[E_AXIS], SQRT(diff2) * inverse_secs, active_extruder);
#else
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position

View File

@ -73,6 +73,7 @@
#if ENABLED(MORGAN_SCARA) || ENABLED(MAKERARM_SCARA)
//#define DEBUG_SCARA_KINEMATICS
//#define SCARA_FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
// If movement is choppy try lowering this value
#define SCARA_SEGMENTS_PER_SECOND 200

View File

@ -174,8 +174,11 @@ float Planner::previous_speed[NUM_AXIS],
#endif
#if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_K, // Initialized by settings.load()
Planner::position_float[XYZE]; // Needed for accurate maths. Steps cannot be used!
float Planner::extruder_advance_K; // Initialized by settings.load()
#endif
#if HAS_POSITION_FLOAT
float Planner::position_float[XYZE]; // Needed for accurate maths. Steps cannot be used!
#endif
#if ENABLED(ULTRA_LCD)
@ -191,7 +194,7 @@ Planner::Planner() { init(); }
void Planner::init() {
block_buffer_head = block_buffer_tail = 0;
ZERO(position);
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
ZERO(position_float);
#endif
ZERO(previous_speed);
@ -734,7 +737,7 @@ void Planner::check_axes_activity() {
* extruder - target extruder
*/
void Planner::_buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
, const float (&target_float)[XYZE]
#endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
@ -764,7 +767,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
position_float[E_AXIS] = target_float[E_AXIS];
#endif
de = 0; // no difference
@ -775,7 +778,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
position_float[E_AXIS] = target_float[E_AXIS];
#endif
de = 0; // no difference
@ -846,6 +849,10 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc);
#elif IS_SCARA
block->steps[A_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db);
block->steps[Z_AXIS] = labs(dc);
#else
// default non-h-bot planning
block->steps[A_AXIS] = labs(da);
@ -881,7 +888,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
powerManager.power_on();
#endif
//enable active axes
// Enable active axes
#if CORE_IS_XY
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
enable_X();
@ -1452,7 +1459,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
// Update the position (only when a move was queued)
static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!");
COPY(position, target);
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
COPY(position_float, target_float);
#endif
@ -1490,14 +1497,14 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
LROUND(e * axis_steps_per_mm[E_AXIS_N])
};
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
const float target_float[XYZE] = { a, b, c, e };
#endif
// DRYRUN prevents E moves from taking place
if (DEBUGGING(DRYRUN)) {
position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
position_float[E_AXIS] = e;
#endif
}
@ -1536,7 +1543,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
const int32_t between[ABCE] = { _BETWEEN(A), _BETWEEN(B), _BETWEEN(C), _BETWEEN(E) };
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
#define _BETWEEN_F(A) (position_float[A##_AXIS] + target_float[A##_AXIS]) * 0.5
const float between_float[ABCE] = { _BETWEEN_F(A), _BETWEEN_F(B), _BETWEEN_F(C), _BETWEEN_F(E) };
#endif
@ -1544,7 +1551,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
DISABLE_STEPPER_DRIVER_INTERRUPT();
_buffer_steps(between
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
, between_float
#endif
, fr_mm_s, extruder, millimeters * 0.5
@ -1553,7 +1560,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
const uint8_t next = block_buffer_head;
_buffer_steps(target
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
, target_float
#endif
, fr_mm_s, extruder, millimeters * 0.5
@ -1564,7 +1571,7 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con
}
else
_buffer_steps(target
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
, target_float
#endif
, fr_mm_s, extruder, millimeters
@ -1592,7 +1599,7 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
nb = position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]),
nc = position[C_AXIS] = LROUND(c * axis_steps_per_mm[C_AXIS]),
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
@ -1624,7 +1631,7 @@ void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
void Planner::sync_from_steppers() {
LOOP_XYZE(i) {
position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
position_float[i] = position[i] * steps_to_mm[i
#if ENABLED(DISTINCT_E_FACTORS)
+ (i == E_AXIS ? active_extruder : 0)
@ -1645,7 +1652,7 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
const uint8_t axis_index = axis;
#endif
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
position_float[axis] = v;
#endif
stepper.set_position(axis, v);

View File

@ -126,6 +126,8 @@ typedef struct {
} block_t;
#define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || ENABLED(SCARA_FEEDRATE_SCALING))
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
class Planner {
@ -190,8 +192,11 @@ class Planner {
#endif
#if ENABLED(LIN_ADVANCE)
static float extruder_advance_K,
position_float[XYZE];
static float extruder_advance_K;
#endif
#if HAS_POSITION_FLOAT
static float position_float[XYZE];
#endif
#if ENABLED(SKEW_CORRECTION)
@ -413,7 +418,7 @@ class Planner {
* millimeters - the length of the movement, if known
*/
static void _buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(LIN_ADVANCE)
#if HAS_POSITION_FLOAT
, const float (&target_float)[XYZE]
#endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0