Use array refs where possible
This commit is contained in:
parent
8244284116
commit
da2eaa6b09
@ -733,11 +733,11 @@ void get_cartesian_from_steppers();
|
||||
void set_current_from_steppers_for_axis(const AxisEnum axis);
|
||||
|
||||
#if ENABLED(ARC_SUPPORT)
|
||||
void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
|
||||
void plan_arc(const float (&cart)[XYZE], const float (&offset)[2], const bool clockwise);
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
||||
void plan_cubic_move(const float offset[4]);
|
||||
void plan_cubic_move(const float (&offset)[4]);
|
||||
#endif
|
||||
|
||||
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
|
||||
@ -1808,7 +1808,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
||||
|
||||
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
||||
|
||||
FORCE_INLINE void do_blocking_move_to(const float raw[XYZ], const float &fr_mm_s) {
|
||||
FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s) {
|
||||
do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
|
||||
}
|
||||
|
||||
@ -8326,7 +8326,7 @@ void report_current_position() {
|
||||
|
||||
#ifdef M114_DETAIL
|
||||
|
||||
void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
|
||||
void report_xyze(const float pos[], const uint8_t n = 4, const uint8_t precision = 3) {
|
||||
char str[12];
|
||||
for (uint8_t i = 0; i < n; i++) {
|
||||
SERIAL_CHAR(' ');
|
||||
@ -8337,7 +8337,7 @@ void report_current_position() {
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
|
||||
inline void report_xyz(const float pos[]) { report_xyze(pos, 3); }
|
||||
|
||||
void report_current_position_detail() {
|
||||
|
||||
@ -12659,7 +12659,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
* For Unified Bed Leveling (Delta or Segmented Cartesian)
|
||||
* the ubl.prepare_segmented_line_to method replaces this.
|
||||
*/
|
||||
inline bool prepare_kinematic_move_to(float rtarget[XYZE]) {
|
||||
inline bool prepare_kinematic_move_to(const float (&rtarget)[XYZE]) {
|
||||
|
||||
// Get the top feedrate of the move in the XY plane
|
||||
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
||||
@ -12968,9 +12968,9 @@ void prepare_move_to_destination() {
|
||||
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
||||
*/
|
||||
void plan_arc(
|
||||
float raw[XYZE], // Destination position
|
||||
float *offset, // Center of rotation relative to current_position
|
||||
uint8_t clockwise // Clockwise?
|
||||
const float (&cart)[XYZE], // Destination position
|
||||
const float (&offset)[2], // Center of rotation relative to current_position
|
||||
const bool clockwise // Clockwise?
|
||||
) {
|
||||
#if ENABLED(CNC_WORKSPACE_PLANES)
|
||||
AxisEnum p_axis, q_axis, l_axis;
|
||||
@ -12990,10 +12990,10 @@ void prepare_move_to_destination() {
|
||||
const float radius = HYPOT(r_P, r_Q),
|
||||
center_P = current_position[p_axis] - r_P,
|
||||
center_Q = current_position[q_axis] - r_Q,
|
||||
rt_X = raw[p_axis] - center_P,
|
||||
rt_Y = raw[q_axis] - center_Q,
|
||||
linear_travel = raw[l_axis] - current_position[l_axis],
|
||||
extruder_travel = raw[E_AXIS] - current_position[E_AXIS];
|
||||
rt_X = cart[p_axis] - center_P,
|
||||
rt_Y = cart[q_axis] - center_Q,
|
||||
linear_travel = cart[l_axis] - current_position[l_axis],
|
||||
extruder_travel = cart[E_AXIS] - current_position[E_AXIS];
|
||||
|
||||
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
||||
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
|
||||
@ -13001,7 +13001,7 @@ void prepare_move_to_destination() {
|
||||
if (clockwise) angular_travel -= RADIANS(360);
|
||||
|
||||
// Make a circle if the angular rotation is 0 and the target is current position
|
||||
if (angular_travel == 0 && current_position[p_axis] == raw[p_axis] && current_position[q_axis] == raw[q_axis])
|
||||
if (angular_travel == 0 && current_position[p_axis] == cart[p_axis] && current_position[q_axis] == cart[q_axis])
|
||||
angular_travel = RADIANS(360);
|
||||
|
||||
const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
|
||||
@ -13101,7 +13101,7 @@ void prepare_move_to_destination() {
|
||||
}
|
||||
|
||||
// Ensure last segment arrives at target location.
|
||||
planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
|
||||
planner.buffer_line_kinematic(cart, fr_mm_s, active_extruder);
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
@ -13113,7 +13113,7 @@ void prepare_move_to_destination() {
|
||||
|
||||
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
||||
|
||||
void plan_cubic_move(const float offset[4]) {
|
||||
void plan_cubic_move(const float (&offset)[4]) {
|
||||
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
|
||||
|
||||
// As far as the parser is concerned, the position is now == destination. In reality the
|
||||
|
@ -1455,18 +1455,18 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
|
||||
ZERO(previous_speed);
|
||||
}
|
||||
|
||||
void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
|
||||
void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
|
||||
#if PLANNER_LEVELING
|
||||
float lpos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
|
||||
apply_leveling(lpos);
|
||||
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
||||
apply_leveling(raw);
|
||||
#else
|
||||
const float * const lpos = position;
|
||||
const float (&raw)[XYZE] = cart;
|
||||
#endif
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(lpos);
|
||||
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
|
||||
inverse_kinematics(raw);
|
||||
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS]);
|
||||
#else
|
||||
_set_position_mm(lpos[X_AXIS], lpos[Y_AXIS], lpos[Z_AXIS], position[E_AXIS]);
|
||||
_set_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS]);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -352,7 +352,7 @@ class Planner {
|
||||
* as it will be given to the planner and steppers.
|
||||
*/
|
||||
static void apply_leveling(float &rx, float &ry, float &rz);
|
||||
static void apply_leveling(float raw[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
|
||||
static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
|
||||
static void unapply_leveling(float raw[XYZ]);
|
||||
|
||||
#else
|
||||
@ -417,12 +417,12 @@ class Planner {
|
||||
* fr_mm_s - (target) speed of the move (mm/s)
|
||||
* extruder - target extruder
|
||||
*/
|
||||
FORCE_INLINE static void buffer_line_kinematic(const float cart[XYZE], const float &fr_mm_s, const uint8_t extruder) {
|
||||
FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder) {
|
||||
#if PLANNER_LEVELING
|
||||
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
|
||||
apply_leveling(raw);
|
||||
#else
|
||||
const float * const raw = cart;
|
||||
const float (&raw)[XYZE] = cart;
|
||||
#endif
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(raw);
|
||||
@ -447,7 +447,7 @@ class Planner {
|
||||
#endif
|
||||
_set_position_mm(rx, ry, rz, e);
|
||||
}
|
||||
static void set_position_mm_kinematic(const float position[NUM_AXIS]);
|
||||
static void set_position_mm_kinematic(const float (&cart)[XYZE]);
|
||||
static void set_position_mm(const AxisEnum axis, const float &v);
|
||||
FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
|
||||
FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
|
||||
|
@ -319,7 +319,7 @@
|
||||
return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
|
||||
}
|
||||
|
||||
static bool prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate);
|
||||
static bool prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate);
|
||||
static void line_to_destination_cartesian(const float &fr, uint8_t e);
|
||||
|
||||
#define _CMPZ(a,b) (z_values[a][b] == z_values[a][b+1])
|
||||
|
@ -470,7 +470,7 @@
|
||||
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
||||
// so we call buffer_segment directly here. Per-segmented leveling and kinematics performed first.
|
||||
|
||||
inline void _O2 ubl_buffer_segment_raw(const float raw[XYZE], const float &fr) {
|
||||
inline void _O2 ubl_buffer_segment_raw(const float (&raw)[XYZE], const float &fr) {
|
||||
|
||||
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
||||
|
||||
@ -515,7 +515,7 @@
|
||||
* Returns true if did NOT move, false if moved (requires current_position update).
|
||||
*/
|
||||
|
||||
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate) {
|
||||
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&in_target)[XYZE], const float &feedrate) {
|
||||
|
||||
if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) // fail if moving outside reachable boundary
|
||||
return true; // did not move, so current_position still accurate
|
||||
|
Loading…
Reference in New Issue
Block a user