diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 42b55bf78..f0ab000e0 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -465,7 +465,7 @@ static uint8_t target_extruder; #define COS_60 0.5 float delta[ABC], - cartesian_position[XYZ] = { 0 }, + cartes[XYZ] = { 0 }, endstop_adj[ABC] = { 0 }; // these are the default values, can be overriden with M665 @@ -487,7 +487,7 @@ static uint8_t target_extruder; delta_clip_start_height = Z_MAX_POS; float delta_safe_distance_from_top(); - void set_cartesian_from_steppers(); + void get_cartesian_from_steppers(); #else @@ -509,8 +509,8 @@ static uint8_t target_extruder; float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND, delta[ABC], axis_scaling[ABC] = { 1, 1, 1 }, // Build size scaling, default to 1 - cartesian_position[XYZ] = { 0 }; - void set_cartesian_from_steppers() { } // to be written later + cartes[XYZ] = { 0 }; + void get_cartesian_from_steppers() { } // to be written later #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) @@ -3412,8 +3412,8 @@ inline void gcode_G28() { // For DELTA/SCARA we need to apply forward kinematics. // This returns raw positions and we remap to the space. - set_cartesian_from_steppers(); - LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartesian_position[i], i); + get_cartesian_from_steppers(); + LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartes[i], i); #else @@ -7741,7 +7741,7 @@ void ok_to_send() { // based on a Java function from // "Delta Robot Kinematics by Steve Graves" V3 - // Result is in cartesian_position[]. + // Result is in cartes[]. //Create a vector in old coordinates along x axis of new coordinate float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 }; @@ -7785,16 +7785,16 @@ void ok_to_send() { //Now we can start from the origin in the old coords and //add vectors in the old coords that represent the //Xnew, Ynew and Znew to find the point in the old system - cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew; - cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew; - cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; + cartes[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew; + cartes[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew; + cartes[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew; }; void forward_kinematics_DELTA(float point[ABC]) { forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); } - void set_cartesian_from_steppers() { + void get_cartesian_from_steppers() { forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS), stepper.get_axis_position_mm(B_AXIS), stepper.get_axis_position_mm(C_AXIS)); @@ -7846,8 +7846,8 @@ void ok_to_send() { void set_current_from_steppers_for_axis(AxisEnum axis) { #if ENABLED(DELTA) - set_cartesian_from_steppers(); - current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis); + get_cartesian_from_steppers(); + current_position[axis] = LOGICAL_POSITION(cartes[axis], axis); #elif ENABLED(AUTO_BED_LEVELING_FEATURE) vector_3 pos = untilted_stepper_position(); current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;