From e64cfb13b8d5385e89186acf72b22ea39694afc7 Mon Sep 17 00:00:00 2001 From: Luc Van Daele Date: Fri, 27 Oct 2017 06:49:20 +0200 Subject: [PATCH] (1.1.x) auto tune calibration parameters (#8031) * auto tune calibration parameters * solve warnings * Tweaks to formatting * review Thinkyhead * Error --- Marlin/Marlin.h | 2 +- Marlin/Marlin_main.cpp | 539 ++++++++++++------ Marlin/configuration_store.cpp | 14 +- .../FLSUN/auto_calibrate/Configuration.h | 6 + .../delta/FLSUN/kossel_mini/Configuration.h | 6 + .../delta/generic/Configuration.h | 6 + .../delta/kossel_mini/Configuration.h | 6 + .../delta/kossel_pro/Configuration.h | 6 + .../delta/kossel_xl/Configuration.h | 6 + Marlin/ubl_motion.cpp | 6 +- Marlin/ultralcd.cpp | 6 +- 11 files changed, 415 insertions(+), 188 deletions(-) diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index b33d2404a..82ebe62a0 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -297,7 +297,7 @@ extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ]; #endif #if ENABLED(DELTA) - extern float endstop_adj[ABC], + extern float delta_endstop_adj[ABC], delta_radius, delta_diagonal_rod, delta_calibration_radius, diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 708df4a6b..a3627f6ac 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -610,11 +610,11 @@ static uint8_t target_extruder; #if ENABLED(DELTA) - float delta[ABC], - endstop_adj[ABC] = { 0 }; + float delta[ABC]; // Initialized by settings.load() - float delta_radius, + float delta_endstop_adj[ABC] = { 0 }, + delta_radius, delta_tower_angle_trim[ABC], delta_tower[ABC][2], delta_diagonal_rod, @@ -3093,12 +3093,12 @@ static void homeaxis(const AxisEnum axis) { // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. - // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps - if (endstop_adj[axis] * Z_HOME_DIR <= 0) { + // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps + if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) - if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:"); + if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:"); #endif - do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR); + do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR); } #else @@ -5339,36 +5339,8 @@ void home_all_axes() { gcode_G28(true); } #if PROBE_SELECTED #if ENABLED(DELTA_AUTO_CALIBRATION) - /** - * G33 - Delta '1-4-7-point' Auto-Calibration - * Calibrate height, endstops, delta radius, and tower angles. - * - * Parameters: - * - * Pn Number of probe points: - * - * P0 No probe. Normalize only. - * P1 Probe center and set height only. - * P2 Probe center and towers. Set height, endstops, and delta radius. - * P3 Probe all positions: center, towers and opposite towers. Set all. - * P4-P7 Probe all positions at different locations and average them. - * - * T0 Don't calibrate tower angle corrections - * - * Cn.nn Calibration precision; when omitted calibrates to maximum precision - * - * Fn Force to run at least n iterations and takes the best result - * - * Vn Verbose level: - * - * V0 Dry-run mode. Report settings and probe results. No calibration. - * V1 Report settings - * V2 Report settings and probe results - * - * E Engage the probe for each point - */ - void print_signed_float(const char * const prefix, const float &f) { + static void print_signed_float(const char * const prefix, const float &f) { SERIAL_PROTOCOLPGM(" "); serialprintPGM(prefix); SERIAL_PROTOCOLCHAR(':'); @@ -5376,25 +5348,59 @@ void home_all_axes() { gcode_G28(true); } SERIAL_PROTOCOL_F(f, 2); } - void print_G33_settings(const bool end_stops, const bool tower_angles) { + static void print_G33_settings(const bool end_stops, const bool tower_angles) { SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); if (end_stops) { - print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]); - print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]); - print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]); - SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); + print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]); + print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]); + print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]); + } + if (end_stops && tower_angles) { + SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); + SERIAL_EOL(); + SERIAL_CHAR('.'); + SERIAL_PROTOCOL_SP(13); } - SERIAL_EOL(); if (tower_angles) { - SERIAL_PROTOCOLPGM(".Tower angle : "); print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]); print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]); print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]); - SERIAL_EOL(); } + if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR + SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); + } + SERIAL_EOL(); } - void G33_cleanup( + static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) { + SERIAL_PROTOCOLPGM(". "); + print_signed_float(PSTR("c"), z_at_pt[0]); + if (tower_points) { + print_signed_float(PSTR(" x"), z_at_pt[1]); + print_signed_float(PSTR(" y"), z_at_pt[5]); + print_signed_float(PSTR(" z"), z_at_pt[9]); + } + if (tower_points && opposite_points) { + SERIAL_EOL(); + SERIAL_CHAR('.'); + SERIAL_PROTOCOL_SP(13); + } + if (opposite_points) { + print_signed_float(PSTR("yz"), z_at_pt[7]); + print_signed_float(PSTR("zx"), z_at_pt[11]); + print_signed_float(PSTR("xy"), z_at_pt[3]); + } + SERIAL_EOL(); + } + + /** + * After G33: + * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only) + * - Stow the probe + * - Restore endstops state + * - Select the old tool, if needed + */ + static void G33_cleanup( #if HOTENDS > 1 const uint8_t old_tool_index #endif @@ -5409,6 +5415,244 @@ void home_all_axes() { gcode_G28(true); } #endif } + static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { + const bool _0p_calibration = probe_points == 0, + _1p_calibration = probe_points == 1, + _4p_calibration = probe_points == 2, + _4p_opposite_points = _4p_calibration && !towers_set, + _7p_calibration = probe_points >= 3 || probe_points == 0, + _7p_half_circle = probe_points == 3, + _7p_double_circle = probe_points == 5, + _7p_triple_circle = probe_points == 6, + _7p_quadruple_circle = probe_points == 7, + _7p_intermed_points = probe_points >= 4, + _7p_multi_circle = probe_points >= 5; + + #if DISABLED(PROBE_MANUALLY) + const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER), + dy = (Y_PROBE_OFFSET_FROM_EXTRUDER); + #endif + + for (uint8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] = 0.0; + + if (!_0p_calibration) { + + if (!_7p_half_circle && !_7p_triple_circle) { // probe the center + #if ENABLED(PROBE_MANUALLY) + z_at_pt[0] += lcd_probe_pt(0, 0); + #else + z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); + #endif + } + + if (_7p_calibration) { // probe extra center points + for (int8_t axis = _7p_multi_circle ? COUNT(z_at_pt) - 2 : COUNT(z_at_pt) - 4; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { + const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; + #if ENABLED(PROBE_MANUALLY) + z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); + #else + z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); + #endif + } + z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); + } + + if (!_1p_calibration) { // probe the radius + bool zig_zag = true; + const uint8_t start = _4p_opposite_points ? 3 : 1, + step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; + for (uint8_t axis = start; axis < COUNT(z_at_pt); axis += step) { + const float zigadd = (zig_zag ? 0.5 : 0.0), + offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : + _7p_triple_circle ? zigadd + 0.5 : + _7p_double_circle ? zigadd : 0; + for (float circles = -offset_circles ; circles <= offset_circles; circles++) { + const float a = RADIANS(180 + 30 * axis), + r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); + #if ENABLED(PROBE_MANUALLY) + z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); + #else + z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); + #endif + } + zig_zag = !zig_zag; + z_at_pt[axis] /= (2 * offset_circles + 1); + } + } + + if (_7p_intermed_points) // average intermediates to tower and opposites + for (uint8_t axis = 1; axis < COUNT(z_at_pt); axis += 2) + z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; + + float S1 = z_at_pt[0], + S2 = sq(z_at_pt[0]); + int16_t N = 1; + if (!_1p_calibration) // std dev from zero plane + for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < COUNT(z_at_pt); axis += (_4p_calibration ? 4 : 2)) { + S1 += z_at_pt[axis]; + S2 += sq(z_at_pt[axis]); + N++; + } + return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001; + } + + return 0.00001; + } + + #if DISABLED(PROBE_MANUALLY) + + static void G33_auto_tune() { + float z_at_pt[13] = { 0.0 }, + z_at_pt_base[13] = { 0.0 }, + z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8; + + #define ZP(N,I) ((N) * z_at_pt[I]) + #define Z06(I) ZP(6, I) + #define Z03(I) ZP(3, I) + #define Z02(I) ZP(2, I) + #define Z01(I) ZP(1, I) + #define Z32(I) ZP(3/2, I) + + SERIAL_PROTOCOLPGM("AUTO TUNE baseline"); + SERIAL_EOL(); + probe_G33_points(z_at_pt_base, 3, true, false); + print_G33_results(z_at_pt_base, true, true); + + LOOP_XYZ(axis) { + delta_endstop_adj[axis] -= 1.0; + + endstops.enable(true); + if (!home_delta()) return; + endstops.not_homing(); + + SERIAL_PROTOCOLPGM("Tuning E"); + SERIAL_CHAR(tolower(axis_codes[axis])); + SERIAL_EOL(); + + probe_G33_points(z_at_pt, 3, true, false); + for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i]; + print_G33_results(z_at_pt, true, true); + delta_endstop_adj[axis] += 1.0; + switch (axis) { + case A_AXIS : + h_fac += 4.0 / (Z03(0) +Z01(1) +Z32(11) +Z32(3)); // Offset by X-tower end-stop + break; + case B_AXIS : + h_fac += 4.0 / (Z03(0) +Z01(5) +Z32(7) +Z32(3)); // Offset by Y-tower end-stop + break; + case C_AXIS : + h_fac += 4.0 / (Z03(0) +Z01(9) +Z32(7) +Z32(11) ); // Offset by Z-tower end-stop + break; + } + } + h_fac /= 3.0; + h_fac *= norm; // Normalize to 1.02 for Kossel mini + + for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) { + delta_radius += 1.0 * zig_zag; + recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); + + endstops.enable(true); + if (!home_delta()) return; + endstops.not_homing(); + + SERIAL_PROTOCOLPGM("Tuning R"); + SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+"); + SERIAL_EOL(); + probe_G33_points(z_at_pt, 3, true, false); + for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i]; + print_G33_results(z_at_pt, true, true); + delta_radius -= 1.0 * zig_zag; + recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); + r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius + } + r_fac /= 2.0; + r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini + + LOOP_XYZ(axis) { + delta_tower_angle_trim[axis] += 1.0; + delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5; + delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5; + z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); + home_offset[Z_AXIS] -= z_temp; + LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; + recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); + + endstops.enable(true); + if (!home_delta()) return; + endstops.not_homing(); + + SERIAL_PROTOCOLPGM("Tuning T"); + SERIAL_CHAR(tolower(axis_codes[axis])); + SERIAL_EOL(); + + probe_G33_points(z_at_pt, 3, true, false); + for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i]; + print_G33_results(z_at_pt, true, true); + + delta_tower_angle_trim[axis] -= 1.0; + delta_endstop_adj[(axis+1) % 3] += 1.0/4.5; + delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5; + z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); + home_offset[Z_AXIS] -= z_temp; + LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; + recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); + switch (axis) { + case A_AXIS : + a_fac += 4.0 / ( Z06(5) -Z06(9) +Z06(11) -Z06(3)); // Offset by alpha tower angle + break; + case B_AXIS : + a_fac += 4.0 / (-Z06(1) +Z06(9) -Z06(7) +Z06(3)); // Offset by beta tower angle + break; + case C_AXIS : + a_fac += 4.0 / (Z06(1) -Z06(5) +Z06(7) -Z06(11) ); // Offset by gamma tower angle + break; + } + } + a_fac /= 3.0; + a_fac *= norm; // Normalize to 0.83 for Kossel mini + + endstops.enable(true); + if (!home_delta()) return; + endstops.not_homing(); + print_signed_float(PSTR( "H_FACTOR: "), h_fac); + print_signed_float(PSTR(" R_FACTOR: "), r_fac); + print_signed_float(PSTR(" A_FACTOR: "), a_fac); + SERIAL_EOL(); + SERIAL_PROTOCOLPGM("Copy these values to Configuration.h"); + SERIAL_EOL(); + } + + #endif // !PROBE_MANUALLY + + /** + * G33 - Delta '1-4-7-point' Auto-Calibration + * Calibrate height, endstops, delta radius, and tower angles. + * + * Parameters: + * + * Pn Number of probe points: + * P0 No probe. Normalize only. + * P1 Probe center and set height only. + * P2 Probe center and towers. Set height, endstops and delta radius. + * P3 Probe all positions: center, towers and opposite towers. Set all. + * P4-P7 Probe all positions at different locations and average them. + * + * T Don't calibrate tower angle corrections + * + * Cn.nn Calibration precision; when omitted calibrates to maximum precision + * + * Fn Force to run at least n iterations and takes the best result + * + * A Auto tune calibartion factors (set in Configuration.h) + * + * Vn Verbose level: + * V0 Dry-run mode. Report settings and probe results. No calibration. + * V1 Report settings + * V2 Report settings and probe results + * + * E Engage the probe for each point + */ inline void gcode_G33() { const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); @@ -5425,7 +5669,7 @@ void home_all_axes() { gcode_G28(true); } const float calibration_precision = parser.floatval('C'); if (calibration_precision < 0) { - SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0)."); + SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0)."); return; } @@ -5436,31 +5680,29 @@ void home_all_axes() { gcode_G28(true); } } const bool towers_set = !parser.boolval('T'), + auto_tune = parser.boolval('A'), stow_after_each = parser.boolval('E'), _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1, _4p_calibration = probe_points == 2, - _4p_towers_points = _4p_calibration && towers_set, - _4p_opposite_points = _4p_calibration && !towers_set, - _7p_calibration = probe_points >= 3 || _0p_calibration, - _7p_half_circle = probe_points == 3, + _tower_results = (_4p_calibration && towers_set) + || probe_points >= 3 || probe_points == 0, + _opposite_results = (_4p_calibration && !towers_set) + || probe_points >= 3 || probe_points == 0, + _endstop_results = probe_points != 1, + _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set, _7p_double_circle = probe_points == 5, _7p_triple_circle = probe_points == 6, - _7p_quadruple_circle = probe_points == 7, - _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle, - _7p_intermed_points = _7p_calibration && !_7p_half_circle; + _7p_quadruple_circle = probe_points == 7; const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; - const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER), - dy = (Y_PROBE_OFFSET_FROM_EXTRUDER); int8_t iterations = 0; float test_precision, zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end - zero_std_dev_old = zero_std_dev, zero_std_dev_min = zero_std_dev, e_old[ABC] = { - endstop_adj[A_AXIS], - endstop_adj[B_AXIS], - endstop_adj[C_AXIS] + delta_endstop_adj[A_AXIS], + delta_endstop_adj[B_AXIS], + delta_endstop_adj[C_AXIS] }, dr_old = delta_radius, zh_old = home_offset[Z_AXIS], @@ -5470,12 +5712,14 @@ void home_all_axes() { gcode_G28(true); } delta_tower_angle_trim[C_AXIS] }; + SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); + if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable const float circles = (_7p_quadruple_circle ? 1.5 : _7p_triple_circle ? 1.0 : _7p_double_circle ? 0.5 : 0), r = (1 + circles * 0.1) * delta_calibration_radius; - for (uint8_t axis = 1; axis < 13; ++axis) { + for (uint8_t axis = 1; axis <= 12; ++axis) { const float a = RADIANS(180 + 30 * axis); if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) { SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible."); @@ -5483,7 +5727,6 @@ void home_all_axes() { gcode_G28(true); } } } } - SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); stepper.synchronize(); #if HAS_LEVELING @@ -5506,7 +5749,17 @@ void home_all_axes() { gcode_G28(true); } endstops.not_homing(); } - // print settings + if (auto_tune) { + #if ENABLED(PROBE_MANUALLY) + SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune"); + #else + G33_auto_tune(); + #endif + G33_CLEANUP(); + return; + } + + // Report settings const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string serialprintPGM(checkingac); @@ -5514,94 +5767,50 @@ void home_all_axes() { gcode_G28(true); } SERIAL_EOL(); lcd_setstatusPGM(checkingac); - print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); + print_G33_settings(_endstop_results, _angle_results); do { float z_at_pt[13] = { 0.0 }; - test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev; + test_precision = zero_std_dev; + iterations++; // Probe the points - if (!_0p_calibration){ - if (!_7p_half_circle && !_7p_triple_circle) { // probe the center - #if ENABLED(PROBE_MANUALLY) - z_at_pt[0] += lcd_probe_pt(0, 0); - #else - z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); - if (isnan(z_at_pt[0])) return G33_CLEANUP(); - #endif - } - if (_7p_calibration) { // probe extra center points - for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { - const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; - #if ENABLED(PROBE_MANUALLY) - z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); - #else - z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); - if (isnan(z_at_pt[0])) return G33_CLEANUP(); - #endif - } - z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); - } - if (!_1p_calibration) { // probe the radius - bool zig_zag = true; - const uint8_t start = _4p_opposite_points ? 3 : 1, - step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; - for (uint8_t axis = start; axis < 13; axis += step) { - const float zigadd = (zig_zag ? 0.5 : 0.0), - offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : - _7p_triple_circle ? zigadd + 0.5 : - _7p_double_circle ? zigadd : 0; - for (float circles = -offset_circles ; circles <= offset_circles; circles++) { - const float a = RADIANS(180 + 30 * axis), - r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); - #if ENABLED(PROBE_MANUALLY) - z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); - #else - z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); - if (isnan(z_at_pt[axis])) return G33_CLEANUP(); - #endif - } - zig_zag = !zig_zag; - z_at_pt[axis] /= (2 * offset_circles + 1); - } - } - if (_7p_intermed_points) // average intermediates to tower and opposites - for (uint8_t axis = 1; axis < 13; axis += 2) - z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; - - } - float S1 = z_at_pt[0], - S2 = sq(z_at_pt[0]); - int16_t N = 1; - if (!_1p_calibration) // std dev from zero plane - for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) { - S1 += z_at_pt[axis]; - S2 += sq(z_at_pt[axis]); - N++; - } - zero_std_dev_old = zero_std_dev; - zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001; + zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each); // Solve matrices if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) { if (zero_std_dev < zero_std_dev_min) { - COPY(e_old, endstop_adj); + COPY(e_old, delta_endstop_adj); dr_old = delta_radius; zh_old = home_offset[Z_AXIS]; COPY(ta_old, delta_tower_angle_trim); } float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 }; - const float r_diff = delta_radius - delta_calibration_radius, - h_factor = (1.00 + r_diff * 0.001) / 6.0, // 1.02 for r_diff = 20mm - r_factor = (-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff))) / 6.0, // 2.25 for r_diff = 20mm - a_factor = (66.66 / delta_calibration_radius) / (iterations == 1 ? 16.0 : 2.0); // 0.83 for cal_rd = 80mm (Slow down on 1st iteration) + h_factor = 1 / 6.0 * + #ifdef H_FACTOR + (H_FACTOR), // Set in Configuration.h + #else + (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm + #endif + r_factor = 1 / 6.0 * + #ifdef R_FACTOR + -(R_FACTOR), // Set in Configuration.h + #else + -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm + #endif + a_factor = 1 / 6.0 * + #ifdef A_FACTOR + (A_FACTOR); // Set in Configuration.h + #else + (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm + #endif #define ZP(N,I) ((N) * z_at_pt[I]) #define Z6(I) ZP(6, I) @@ -5615,15 +5824,11 @@ void home_all_axes() { gcode_G28(true); } switch (probe_points) { case 0: - #if DISABLED(PROBE_MANUALLY) - test_precision = 0.00; // forced end - #endif + test_precision = 0.00; // forced end break; case 1: - #if DISABLED(PROBE_MANUALLY) - test_precision = 0.00; // forced end - #endif + test_precision = 0.00; // forced end LOOP_XYZ(axis) e_delta[axis] = Z1(0); break; @@ -5649,9 +5854,9 @@ void home_all_axes() { gcode_G28(true); } r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor; if (towers_set) { - t_delta[A_AXIS] = ( - Z2(5) + Z2(9) - Z2(11) + Z2(3)) * a_factor; - t_delta[B_AXIS] = ( Z2(1) - Z2(9) + Z2(7) - Z2(3)) * a_factor; - t_delta[C_AXIS] = (-Z2(1) + Z2(5) - Z2(7) + Z2(11) ) * a_factor; + t_delta[A_AXIS] = ( - Z4(5) + Z4(9) - Z4(11) + Z4(3)) * a_factor; + t_delta[B_AXIS] = ( Z4(1) - Z4(9) + Z4(7) - Z4(3)) * a_factor; + t_delta[C_AXIS] = (-Z4(1) + Z4(5) - Z4(7) + Z4(11) ) * a_factor; e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5; e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5; e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5; @@ -5659,12 +5864,12 @@ void home_all_axes() { gcode_G28(true); } break; } - LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis]; + LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis]; delta_radius += r_delta; LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis]; } else if (zero_std_dev >= test_precision) { // step one back - COPY(endstop_adj, e_old); + COPY(delta_endstop_adj, e_old); delta_radius = dr_old; home_offset[Z_AXIS] = zh_old; COPY(delta_tower_angle_trim, ta_old); @@ -5672,44 +5877,29 @@ void home_all_axes() { gcode_G28(true); } if (verbose_level != 0) { // !dry run // normalise angles to least squares - float a_sum = 0.0; - LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; - LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0; + if (_angle_results) { + float a_sum = 0.0; + LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; + LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0; + } // adjust delta_height and endstops by the max amount - const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]); + const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]); home_offset[Z_AXIS] -= z_temp; - LOOP_XYZ(axis) endstop_adj[axis] -= z_temp; + LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; } recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); NOMORE(zero_std_dev_min, zero_std_dev); // print report - if (verbose_level != 1) { - SERIAL_PROTOCOLPGM(". "); - print_signed_float(PSTR("c"), z_at_pt[0]); - if (_4p_towers_points || _7p_calibration) { - print_signed_float(PSTR(" x"), z_at_pt[1]); - print_signed_float(PSTR(" y"), z_at_pt[5]); - print_signed_float(PSTR(" z"), z_at_pt[9]); - } - if (!_4p_opposite_points) SERIAL_EOL(); - if ((_4p_opposite_points) || _7p_calibration) { - if (_7p_calibration) { - SERIAL_CHAR('.'); - SERIAL_PROTOCOL_SP(13); - } - print_signed_float(PSTR(" yz"), z_at_pt[7]); - print_signed_float(PSTR("zx"), z_at_pt[11]); - print_signed_float(PSTR("xy"), z_at_pt[3]); - SERIAL_EOL(); - } - } + if (verbose_level != 1) + print_G33_results(z_at_pt, _tower_results, _opposite_results); + if (verbose_level != 0) { // !dry run if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations SERIAL_PROTOCOLPGM("Calibration OK"); - SERIAL_PROTOCOL_SP(36); + SERIAL_PROTOCOL_SP(32); #if DISABLED(PROBE_MANUALLY) if (zero_std_dev >= test_precision && !_1p_calibration) SERIAL_PROTOCOLPGM("rolling back."); @@ -5727,7 +5917,7 @@ void home_all_axes() { gcode_G28(true); } else sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min)); lcd_setstatus(mess); - print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); + print_G33_settings(_endstop_results, _angle_results); serialprintPGM(save_message); SERIAL_EOL(); } @@ -5738,18 +5928,18 @@ void home_all_axes() { gcode_G28(true); } else sprintf_P(mess, PSTR("No convergence")); SERIAL_PROTOCOL(mess); - SERIAL_PROTOCOL_SP(36); + SERIAL_PROTOCOL_SP(32); SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL(); lcd_setstatus(mess); - print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); + print_G33_settings(_endstop_results, _angle_results); } } else { // dry run const char *enddryrun = PSTR("End DRY-RUN"); serialprintPGM(enddryrun); - SERIAL_PROTOCOL_SP(39); + SERIAL_PROTOCOL_SP(35); SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL(); @@ -5765,7 +5955,8 @@ void home_all_axes() { gcode_G28(true); } } endstops.enable(true); - home_delta(); + if (!home_delta()) + return; endstops.not_homing(); } @@ -8649,11 +8840,11 @@ inline void gcode_M205() { LOOP_XYZ(i) { if (parser.seen(axis_codes[i])) { if (parser.value_linear_units() * Z_HOME_DIR <= 0) - endstop_adj[i] = parser.value_linear_units(); + delta_endstop_adj[i] = parser.value_linear_units(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { - SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]); - SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]); + SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]); + SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]); } #endif } diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp index 56642e944..a07656fb9 100644 --- a/Marlin/configuration_store.cpp +++ b/Marlin/configuration_store.cpp @@ -92,7 +92,7 @@ * 325 G29 S ubl.storage_slot (int8_t) * * DELTA: 48 bytes - * 348 M666 XYZ endstop_adj (float x3) + * 348 M666 XYZ delta_endstop_adj (float x3) * 360 M665 R delta_radius (float) * 364 M665 L delta_diagonal_rod (float) * 368 M665 S delta_segments_per_second (float) @@ -450,7 +450,7 @@ void MarlinSettings::postprocess() { // 10 floats for DELTA / Z_DUAL_ENDSTOPS #if ENABLED(DELTA) - EEPROM_WRITE(endstop_adj); // 3 floats + EEPROM_WRITE(delta_endstop_adj); // 3 floats EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float @@ -837,7 +837,7 @@ void MarlinSettings::postprocess() { #endif // AUTO_BED_LEVELING_UBL #if ENABLED(DELTA) - EEPROM_READ(endstop_adj); // 3 floats + EEPROM_READ(delta_endstop_adj); // 3 floats EEPROM_READ(delta_radius); // 1 float EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_READ(delta_segments_per_second); // 1 float @@ -1226,7 +1226,7 @@ void MarlinSettings::reset() { #if ENABLED(DELTA) const float adj[ABC] = DELTA_ENDSTOP_ADJ, dta[ABC] = DELTA_TOWER_ANGLE_TRIM; - COPY(endstop_adj, adj); + COPY(delta_endstop_adj, adj); delta_radius = DELTA_RADIUS; delta_diagonal_rod = DELTA_DIAGONAL_ROD; delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; @@ -1639,9 +1639,9 @@ void MarlinSettings::reset() { SERIAL_ECHOLNPGM("Endstop adjustment:"); } CONFIG_ECHO_START; - SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS])); - SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS])); - SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS])); + SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS])); + SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS])); + SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS])); if (!forReplay) { CONFIG_ECHO_START; SERIAL_ECHOLNPGM("Delta settings: L R H S B XYZ"); diff --git a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h index db03d2bba..8451786b7 100644 --- a/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h +++ b/Marlin/example_configurations/delta/FLSUN/auto_calibrate/Configuration.h @@ -496,6 +496,12 @@ #if ENABLED(DELTA_AUTO_CALIBRATION) // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 + + // Enable and set these values based on results of 'G33 A1' + //#define H_FACTOR 1.01 + //#define R_FACTOR 2.61 + //#define A_FACTOR 0.87 + #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) diff --git a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h index 85827bc91..ba10c1850 100644 --- a/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/FLSUN/kossel_mini/Configuration.h @@ -496,6 +496,12 @@ #if ENABLED(DELTA_AUTO_CALIBRATION) // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 + + // Enable and set these values based on results of 'G33 A1' + //#define H_FACTOR 1.01 + //#define R_FACTOR 2.61 + //#define A_FACTOR 0.87 + #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) diff --git a/Marlin/example_configurations/delta/generic/Configuration.h b/Marlin/example_configurations/delta/generic/Configuration.h index 04023e2ff..9e42f4db0 100644 --- a/Marlin/example_configurations/delta/generic/Configuration.h +++ b/Marlin/example_configurations/delta/generic/Configuration.h @@ -486,6 +486,12 @@ #if ENABLED(DELTA_AUTO_CALIBRATION) // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 + + // Enable and set these values based on results of 'G33 A1' + //#define H_FACTOR 1.01 + //#define R_FACTOR 2.61 + //#define A_FACTOR 0.87 + #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) diff --git a/Marlin/example_configurations/delta/kossel_mini/Configuration.h b/Marlin/example_configurations/delta/kossel_mini/Configuration.h index 6cd650234..b90c3d840 100644 --- a/Marlin/example_configurations/delta/kossel_mini/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_mini/Configuration.h @@ -486,6 +486,12 @@ #if ENABLED(DELTA_AUTO_CALIBRATION) // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 + + // Enable and set these values based on results of 'G33 A1' + //#define H_FACTOR 1.01 + //#define R_FACTOR 2.61 + //#define A_FACTOR 0.87 + #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) diff --git a/Marlin/example_configurations/delta/kossel_pro/Configuration.h b/Marlin/example_configurations/delta/kossel_pro/Configuration.h index a0711d7db..b23accdc0 100644 --- a/Marlin/example_configurations/delta/kossel_pro/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_pro/Configuration.h @@ -472,6 +472,12 @@ #if ENABLED(DELTA_AUTO_CALIBRATION) // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 + + // Enable and set these values based on results of 'G33 A1' + //#define H_FACTOR 1.01 + //#define R_FACTOR 2.61 + //#define A_FACTOR 0.87 + #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) diff --git a/Marlin/example_configurations/delta/kossel_xl/Configuration.h b/Marlin/example_configurations/delta/kossel_xl/Configuration.h index 6fe371d48..d2e9432b5 100644 --- a/Marlin/example_configurations/delta/kossel_xl/Configuration.h +++ b/Marlin/example_configurations/delta/kossel_xl/Configuration.h @@ -490,6 +490,12 @@ #if ENABLED(DELTA_AUTO_CALIBRATION) // set the default number of probe points : n*n (1 -> 7) #define DELTA_CALIBRATION_DEFAULT_POINTS 4 + + // Enable and set these values based on results of 'G33 A1' + //#define H_FACTOR 1.01 + //#define R_FACTOR 2.61 + //#define A_FACTOR 0.87 + #endif #if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU) diff --git a/Marlin/ubl_motion.cpp b/Marlin/ubl_motion.cpp index 48de3e7d0..84f4fdfed 100644 --- a/Marlin/ubl_motion.cpp +++ b/Marlin/ubl_motion.cpp @@ -40,10 +40,10 @@ #if ENABLED(DELTA) - extern float delta[ABC], - endstop_adj[ABC]; + extern float delta[ABC]; - extern float delta_radius, + extern float delta_endstop_adj[ABC], + delta_radius, delta_tower_angle_trim[ABC], delta_tower[ABC][2], delta_diagonal_rod, diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index 633db5fe3..76a2f32a0 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -2757,9 +2757,9 @@ void kill_screen(const char* lcd_msg) { MENU_ITEM_EDIT(float52, MSG_DELTA_DIAG_ROG, &delta_diagonal_rod, DELTA_DIAGONAL_ROD - 5.0, DELTA_DIAGONAL_ROD + 5.0); _delta_height = DELTA_HEIGHT + home_offset[Z_AXIS]; MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float52, MSG_DELTA_HEIGHT, &_delta_height, _delta_height - 10.0, _delta_height + 10.0, _lcd_set_delta_height); - MENU_ITEM_EDIT(float43, "Ex", &endstop_adj[A_AXIS], -5.0, 5.0); - MENU_ITEM_EDIT(float43, "Ey", &endstop_adj[B_AXIS], -5.0, 5.0); - MENU_ITEM_EDIT(float43, "Ez", &endstop_adj[C_AXIS], -5.0, 5.0); + MENU_ITEM_EDIT(float43, "Ex", &delta_endstop_adj[A_AXIS], -5.0, 5.0); + MENU_ITEM_EDIT(float43, "Ey", &delta_endstop_adj[B_AXIS], -5.0, 5.0); + MENU_ITEM_EDIT(float43, "Ez", &delta_endstop_adj[C_AXIS], -5.0, 5.0); MENU_ITEM_EDIT(float52, MSG_DELTA_RADIUS, &delta_radius, DELTA_RADIUS - 5.0, DELTA_RADIUS + 5.0); MENU_ITEM_EDIT(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0); MENU_ITEM_EDIT(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0);