diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 3d097235e..2a4c4fd94 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -292,14 +292,26 @@ extern bool volumetric_enabled; extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner -extern float current_position[NUM_AXIS]; -extern float home_offset[3]; // axis[n].home_offset -extern float sw_endstop_min[3]; // axis[n].sw_endstop_min -extern float sw_endstop_max[3]; // axis[n].sw_endstop_max extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_homed[3]; // axis[n].is_homed extern volatile bool wait_for_heatup; +extern float current_position[NUM_AXIS]; +extern float position_shift[3]; +extern float home_offset[3]; +extern float sw_endstop_min[3]; +extern float sw_endstop_max[3]; + +#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) +#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) +#define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS) +#define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS) +#define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS) +#define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS) +#define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS) +#define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS) +#define RAW_CURRENT_POSITION(AXIS) RAW_POSITION(current_position[AXIS], AXIS) + // GCode support for external objects bool code_seen(char); int code_value_int(); diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index f7f038561..3d8b43254 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -331,10 +331,6 @@ float position_shift[3] = { 0 }; // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[3] = { 0 }; -#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) -#define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) -#define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS)) - // Software Endstops. Default to configured limits. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; @@ -1408,7 +1404,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); static float x_home_pos(int extruder) { if (extruder == 0) - return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); + return LOGICAL_X_POSITION(base_home_pos(X_AXIS)); else /** * In dual carriage mode the extruder offset provides an override of the @@ -1513,7 +1509,7 @@ static void set_axis_is_at_home(AxisEnum axis) { if (active_extruder != 0) current_position[X_AXIS] = x_home_pos(active_extruder); else - current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); + current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS)); update_software_endstops(X_AXIS); return; } @@ -1803,7 +1799,7 @@ static void clean_up_after_endstop_or_probe_move() { SERIAL_ECHOLNPGM(")"); } #endif - float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS); + float z_dest = LOGICAL_Z_POSITION(z_raise); if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset; @@ -2964,7 +2960,7 @@ inline void gcode_G28() { if (home_all_axis || homeX || homeY) { // Raise Z before homing any other axes and z is not already high enough (never lower z) - destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS); + destination[Z_AXIS] = LOGICAL_Z_POSITION(MIN_Z_HEIGHT_FOR_HOMING); if (destination[Z_AXIS] > current_position[Z_AXIS]) { #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -3218,12 +3214,12 @@ inline void gcode_G28() { ; line_to_current_position(); - current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS); - current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS); + current_position[X_AXIS] = LOGICAL_X_POSITION(x); + current_position[Y_AXIS] = LOGICAL_Y_POSITION(y); line_to_current_position(); #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 - current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS); + current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z); line_to_current_position(); #endif @@ -3641,14 +3637,14 @@ inline void gcode_G28() { #endif // Probe at 3 arbitrary points - float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS), - LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS), + float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X, X_AXIS), + LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS), stow_probe_after_each, verbose_level), - z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS), - LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS), + z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X, X_AXIS), + LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS), stow_probe_after_each, verbose_level), - z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS), - LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS), + z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X, X_AXIS), + LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS), stow_probe_after_each, verbose_level); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); @@ -7748,9 +7744,9 @@ void clamp_to_software_endstops(float target[3]) { void inverse_kinematics(const float in_cartesian[3]) { const float cartesian[3] = { - RAW_POSITION(in_cartesian[X_AXIS], X_AXIS), - RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS), - RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS) + RAW_X_POSITION(in_cartesian[X_AXIS]), + RAW_Y_POSITION(in_cartesian[Y_AXIS]), + RAW_Z_POSITION(in_cartesian[Z_AXIS]) }; delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 @@ -7778,13 +7774,13 @@ void clamp_to_software_endstops(float target[3]) { float delta_safe_distance_from_top() { float cartesian[3] = { - LOGICAL_POSITION(0, X_AXIS), - LOGICAL_POSITION(0, Y_AXIS), - LOGICAL_POSITION(0, Z_AXIS) + LOGICAL_X_POSITION(0), + LOGICAL_Y_POSITION(0), + LOGICAL_Z_POSITION(0) }; inverse_kinematics(cartesian); float distance = delta[TOWER_3]; - cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS); + cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS); inverse_kinematics(cartesian); return abs(distance - delta[TOWER_3]); } @@ -7876,8 +7872,8 @@ void clamp_to_software_endstops(float target[3]) { int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; float h1 = 0.001 - half, h2 = half - 0.001, - grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])), - grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1])); + grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[0])), + grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[1])); int floor_x = floor(grid_x), floor_y = floor(grid_y); float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, z1 = bed_level[floor_x + half][floor_y + half], @@ -7918,9 +7914,9 @@ void set_current_from_steppers_for_axis(AxisEnum axis) { current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis); #elif ENABLED(AUTO_BED_LEVELING_FEATURE) vector_3 pos = planner.adjusted_position(); - current_position[axis] = LOGICAL_POSITION(axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z, axis); + current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z; #else - current_position[axis] = LOGICAL_POSITION(stepper.get_axis_position_mm(axis), axis); // CORE handled transparently + current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently #endif } @@ -7930,8 +7926,8 @@ void set_current_from_steppers_for_axis(AxisEnum axis) { void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)), cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)), - cx2 = mbl.cell_index_x(RAW_POSITION(destination[X_AXIS], X_AXIS)), - cy2 = mbl.cell_index_y(RAW_POSITION(destination[Y_AXIS], Y_AXIS)); + cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])), + cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS])); NOMORE(cx1, MESH_NUM_X_POINTS - 2); NOMORE(cy1, MESH_NUM_Y_POINTS - 2); NOMORE(cx2, MESH_NUM_X_POINTS - 2); @@ -7952,14 +7948,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); if (cx2 != cx1 && TEST(x_splits, gcx)) { memcpy(end, destination, sizeof(end)); - destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS); + destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx)); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = MBL_SEGMENT_END(Y); CBI(x_splits, gcx); } else if (cy2 != cy1 && TEST(y_splits, gcy)) { memcpy(end, destination, sizeof(end)); - destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS); + destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy)); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = MBL_SEGMENT_END(X); CBI(y_splits, gcy); @@ -8374,8 +8370,8 @@ void prepare_move_to_destination() { float SCARA_pos[2]; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; - SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y - SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. + SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y + SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. #if (Linkage_1 == Linkage_2) SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; @@ -8393,7 +8389,7 @@ void prepare_move_to_destination() { delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) - delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS); + delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]); /** SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);