Moved corexy implementation from stepper to planner
(Thanks iquizzle)
This commit is contained in:
parent
c8dcc7c208
commit
ff6fa09ecf
@ -238,6 +238,11 @@ const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
||||
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||
//#define DISABLE_MAX_ENDSTOPS
|
||||
|
||||
// Disable max endstops for compatibility with endstop checking routine
|
||||
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
|
||||
#define DISABLE_MAX_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
#define Y_ENABLE_ON 0
|
||||
|
@ -564,8 +564,16 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||
block->busy = false;
|
||||
|
||||
// Number of steps for each axis
|
||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||
#ifndef COREXY
|
||||
// default non-h-bot planning
|
||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
||||
#else
|
||||
// corexy planning
|
||||
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
||||
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
|
||||
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
|
||||
#endif
|
||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
||||
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
||||
block->steps_e *= extrudemultiply;
|
||||
@ -586,6 +594,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
#ifndef COREXY
|
||||
if (target[X_AXIS] < position[X_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
@ -594,6 +603,16 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||
{
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
}
|
||||
#else
|
||||
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||
{
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
}
|
||||
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||
{
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
}
|
||||
#endif
|
||||
if (target[Z_AXIS] < position[Z_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Z_AXIS);
|
||||
@ -638,8 +657,13 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||
}
|
||||
|
||||
float delta_mm[4];
|
||||
#ifndef COREXY
|
||||
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
||||
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||||
#else
|
||||
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
|
||||
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
|
||||
#endif
|
||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
|
||||
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
|
||||
|
@ -345,12 +345,31 @@ ISR(TIMER1_COMPA_vect)
|
||||
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||||
out_bits = current_block->direction_bits;
|
||||
|
||||
// Set direction en check limit switches
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
|
||||
#if !defined COREXY //NOT COREXY
|
||||
|
||||
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
||||
if((out_bits & (1<<X_AXIS))!=0){
|
||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||
#endif
|
||||
count_direction[X_AXIS]=-1;
|
||||
}
|
||||
else{
|
||||
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
||||
count_direction[X_AXIS]=1;
|
||||
}
|
||||
if((out_bits & (1<<Y_AXIS))!=0){
|
||||
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
|
||||
count_direction[Y_AXIS]=-1;
|
||||
}
|
||||
else{
|
||||
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
|
||||
count_direction[Y_AXIS]=1;
|
||||
}
|
||||
|
||||
// Set direction en check limit switches
|
||||
#ifndef COREXY
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
|
||||
#else
|
||||
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||
@ -365,11 +384,6 @@ ISR(TIMER1_COMPA_vect)
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#if !defined COREXY //NOT COREXY
|
||||
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
||||
#endif
|
||||
|
||||
count_direction[X_AXIS]=1;
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||
@ -384,11 +398,11 @@ ISR(TIMER1_COMPA_vect)
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef COREXY
|
||||
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||||
#if !defined COREXY //NOT COREXY
|
||||
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
||||
#else
|
||||
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
|
||||
#endif
|
||||
count_direction[Y_AXIS]=-1;
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||
@ -403,10 +417,6 @@ ISR(TIMER1_COMPA_vect)
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
#if !defined COREXY //NOT COREXY
|
||||
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
||||
#endif
|
||||
count_direction[Y_AXIS]=1;
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||
@ -421,27 +431,6 @@ ISR(TIMER1_COMPA_vect)
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
#ifdef COREXY //coreXY kinematics defined
|
||||
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) == 0)){ //+X is major axis
|
||||
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
||||
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
|
||||
}
|
||||
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) != 0)){ //-X is major axis
|
||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
|
||||
}
|
||||
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) == 0)){ //+Y is major axis
|
||||
WRITE(X_DIR_PIN, !INVERT_X_DIR);
|
||||
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
|
||||
}
|
||||
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) != 0)){ //-Y is major axis
|
||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
|
||||
}
|
||||
#endif //coreXY
|
||||
|
||||
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||
|
||||
@ -516,7 +505,6 @@ ISR(TIMER1_COMPA_vect)
|
||||
}
|
||||
#endif //ADVANCE
|
||||
|
||||
#if !defined COREXY
|
||||
counter_x += current_block->steps_x;
|
||||
if (counter_x > 0) {
|
||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
@ -532,55 +520,6 @@ ISR(TIMER1_COMPA_vect)
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef COREXY
|
||||
counter_x += current_block->steps_x;
|
||||
counter_y += current_block->steps_y;
|
||||
|
||||
if ((counter_x > 0)&&!(counter_y>0)){ //X step only
|
||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
counter_x -= current_block->step_event_count;
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
}
|
||||
|
||||
if (!(counter_x > 0)&&(counter_y>0)){ //Y step only
|
||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
counter_y -= current_block->step_event_count;
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
}
|
||||
|
||||
if ((counter_x > 0)&&(counter_y>0)){ //step in both axes
|
||||
if (((out_bits & (1<<X_AXIS)) == 0)^((out_bits & (1<<Y_AXIS)) == 0)){ //X and Y in different directions
|
||||
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
counter_x -= current_block->step_event_count;
|
||||
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
step_wait();
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
|
||||
counter_y -= current_block->step_event_count;
|
||||
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
|
||||
}
|
||||
else{ //X and Y in same direction
|
||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
counter_x -= current_block->step_event_count;
|
||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN) ;
|
||||
step_wait();
|
||||
count_position[X_AXIS]+=count_direction[X_AXIS];
|
||||
count_position[Y_AXIS]+=count_direction[Y_AXIS];
|
||||
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
|
||||
counter_y -= current_block->step_event_count;
|
||||
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
|
||||
}
|
||||
}
|
||||
#endif //corexy
|
||||
|
||||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) {
|
||||
|
Loading…
Reference in New Issue
Block a user