==============================================
clarified BLTouch calculation & changed comment delimitters/flags
I found it hard to pickout the various sections in this area so I
changed most comments from // style to /** ... */
Made the BLTouch calculation simpler and clarified the units of measure
for the result.
============================================
add changes to example configurations
============================================
add TinyBoy2 to this PR & add BLTouch Delay
The offset for Z_DUAL_ENDSTOP (z_endstop_adj) is already in Marlin.
This PR just makes it a configuration item.
z_endstop_adj is initialized in two places so both had to be modified.
The OLED is driven by an SSD1306, connected to the board via
I2C, the rotary encoder is connected to 3 GPIO pins.
Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>
Made the double touch portion a conditional compile based on the
PROBE_DOUBLE_TOUCH flag.
==============================================
Bugfix
The current G38 only stopped a move if it involved the Z axis.
Moved all the G38 code to it's own section and put it where it would
always be executed no matter what axis was moving or if the endstop was
enabled.
Also added a comment to configuration_adv to alert the user the double
tap had to be turned on.
==============================================
Change G38 back to using Z_MIN_PROBE
There's no Z_MIN endstop if Z_DUAL_ENDSTOPS is enabled and you have them
set to the top of the gantry.
G38 started out as using the Z_MIN_PROBE pin. I don't remember why we
changed it to the Z_MIN endstop.
- Add configuration support for zigzags in either the X or Y axis, for
wipe pads significantly longer in one dimension.
- Add configuration for default number of zig-zag triangles, vs. a
magic number in `Marlin_main.cpp`.
- Update description of auto nozzle wiping to match functionality
The target here is to update the screens of graphical and char base
displays as fast as possible, without draining the planner buffer too much.
For that measure the time it takes to draw and transfer one
(partial) screen to the display. Build a max. value from that.
Because ther can be large differences, depending on how much the display
updates are interrupted, the max value is decreased by one ms/s. This way
it can shrink again.
On the other side we keep track on how much time it takes to empty the
planner buffer.
Now we draw the next (partial) display update only then, when we do not
drain the planner buffer to much. We draw only when the time in the
buffer is two times larger than a update takes, or the buffer is empty anyway.
When we have begun to draw a screen we do not wait until the next 100ms
time slot comes. We draw the next partial screen as fast as possible, but
give the system a chance to refill the buffers a bit.
When we see, during drawing a screen, the screen contend has changed,
we stop the current draw and begin to draw the new content from the top.
If ENDSTOP_INTERRUPTS_FEATURE is enabled this tries to set up interrupt routines
for all used endstop pins. If this worked without errors, `endstops.update()` is called
only if one of the endstops changed its state.
The new interrupt routines do not really check the endstops and react upon them. All what they
do, is to set a flag if it makes sense to call the endstop test we are used to.
This can be used on:
* ARM (DUE) based boards - all pins can raise interrupts,
* RAMPS - all 6 endstop pins plus some other on EXT-2 can raise interrupts,
* RAMPS based boards - as long the designers did not change the pins for the endstops or at least left enough,
* all boards, if there are enough pins that can raise interrupts, and you are willing/able to swap with pins dedicated to other purpose.
About Configuration.h:
・Fix the PR #4899 (ABL: Enable by type. Bilinear for all.)
Remove Duplicated contents
・Fix the PR #4305 (Custom boot screen feature improvement)
Revert from "during boot" to "during bootup" in all the example
Configuration.h
・Fix the PR #4207 (Clean up, simplify and generalize the Allen-key-probe
code.)
Resolve and relocate the duplicated definitions in Z_PROBE_ALLEN_KEY
section
・Follow-up the PR #4805 (Additional documentation of Configuration.h)
Add forgotten changes to all the example Configuration.h
Adjust spacing
About Configuration_adv.h:
Add missing description of SLOWDOWN for DELTA
Adjust spacing
Why double touch probing is not a good thing.
It's widely believed we can get better __probing__ results when using a double touch when probing.
Let's compare to double touch __homing__.
Or better let's begin with single touch __homing__.
We home to find out out position, so our position is unknown.
To find the endstop we have to move into the direction of the endstop.
The maximum way we have to move is a bit longer than the axis length.
When we arrive at the endstop - when it triggers, the stepper pulses are stopped immediately.
It's a sudden stop. No smooth deacceleration is possible.
Depending on the speed and the moving mass we lose steps here.
Only if we approached slow enough (below jerk speed?) we will not lose steps.
Moving a complete axis length, that slow, takes for ever.
To speed up homing, we now make the first approach faster, get a guess about our position,
back up a bit and make a second slower approach to get a exact result without losing steps.
What we do in double touch probing is the same. But the difference here is:
a. we already know where we are
b. if the first approach is to fast we will lose steps here to.
But this time there is no second approach to set the position to 0. We are measuring only.
The lost steps are permanent until we home the next time.
So if you experienced permanently rising values in M48 you now know why. (Too fast, suddenly stopped, first approach)
What can we do to improve probing?
We can use the information about our current position.
We can make a really fast, but deaccelerated, move to a place we know it is a bit before the trigger point.
And then move the rest of the way really slow.
Unify run_z_probe
Add double touch for DELTAs.
Introduce Z_PROBE_SPEED_FAST and Z_PROBE_SPEED_SLOW
defaulting to homing_feedrate_mm_m[Z_AXIS] and homing_feedrate_mm_m[Z_AXIS]/2
Similar to the current Arduino HardwareSerial
but with max. 256 byte buffer-size.
Deactivated by default.
The boards with AT90USB processor (USBCON) already use a TX-buffer.
Add an emergency-command parser to MarlinSerial's RX interrupt.
The parser tries to find and execute M108,M112,M410 before the commands disappear in the RX-buffer.
To avoid false positives for M117, comments and commands followed by filenames (M23, M28, M30, M32, M33) are filtered.
This enables Marlin to receive and react on the Emergency command at all times - regardless of whether the buffers are full or not. It remains to convince hosts to send the commands. To inform the hosts about the new feature a new entry in the M115-report was made. "`EMERGENCY_CODES:M112,M108,M410;`".
The parser is fast. It only ever needs two switch decisions and one assignment of the new state for every character.
One problem remains. If the host has sent an incomplete line before sending an emergency command the emergency command could be omitted when the parser is in `state_IGNORE`.
In that case the host should send "\ncommand\n"
Also introduces M108 to break the waiting for the heaters in M109, M190 and M303.
Rename `cancel_heatup` to `wait_for_heatup` to better see the purpose.
Includes:
*firmware version / branch / date.
*extruder count
*board information (name, serial details, power supply type)
*thermistors (names, min/max temperatures)
*printer statistics (PRINTCOUNTER details)
Thanks to @thinkyhead for contributions.