to warrant watching is set or reset.
Make setTargetBed() in _lcd_preheat() dependant of TEMP_SENSOR_BED.
Use disable_all_heaters() in lcd_cooldown() and abort_on_endstop_hit.
I.e., when acceleration * steps per mm > 2,000,000.
This was done by changing MultiU24X24toH16 to take a 32b bit operand.
Removed the claim that stepper.cpp uses the Leib algorithm.
Updated documentation in Configuration.h.
Cleaned up and commented some code relating to Z_PROBE_ENDSTOP.
Separated Z_MIN_ENDSTOP and Z_PROBE_ENDSTOP completely.
Documented some additional areas that should be addressed if Z_PROBE is
fully separated from Z_MIN or Z_MAX.
Fixed a documentation error in sanity checks. Servos start at 0 not 1.
- Fix `prepare_move` function not calling `adjust_delta`
- Add more shorthand for plan_buffer_line.
- Fix wrong `federate` usage, assuming they are all mm/m
- Minor `stepper.cpp` cleanup
- Add some documentation to planner and stepper headers
- Patch up RAMBO pins with undefs
- Add `sync_plan_position` inline to set current XYZE
- Swap indices in `extruder_offset` to fix initialization values
Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z
steppers - Let's call them Z stepper and Z2 stepper.
That way the machine is capable to align the bed during home, since both
Z steppers are homed.
There is also an implementation of M666 (software endstops adjustment)
to this feature.
After Z homing, this adjustment is applied to just one of the steppers
in order to align the bed.
One just need to home the Z axis and measure the distance difference
between both Z axis and apply the math: Z adjust = Z - Z2.
If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it
is.. think about it) and the Z adjust would be positive.
Play a little bit with small adjustments (0.5mm) and check the
behaviour.
The M119 (endstops report) will start reporting the Z2 Endstop as well.