/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "MarlinConfig.h" #if HAS_TRINAMIC #include "tmc_util.h" #include "Marlin.h" #include "printcounter.h" #include "duration_t.h" #include "stepper_indirection.h" #if ENABLED(TMC_DEBUG) #include "planner.h" #endif bool report_tmc_status = false; /** * Check for over temperature or short to ground error flags. * Report and log warning of overtemperature condition. * Reduce driver current in a persistent otpw condition. * Keep track of otpw counter so we don't reduce current on a single instance, * and so we don't repeatedly report warning before the condition is cleared. */ #if ENABLED(MONITOR_DRIVER_STATUS) struct TMC_driver_data { uint32_t drv_status; bool is_otpw; bool is_ot; bool is_error; }; #if HAS_DRIVER(TMC2130) static uint32_t get_pwm_scale(TMC2130Stepper &st) { return st.PWM_SCALE(); } static uint8_t get_status_response(TMC2130Stepper &st) { return st.status_response & 0xF; } static TMC_driver_data get_driver_data(TMC2130Stepper &st) { constexpr uint32_t OTPW_bm = 0x4000000UL; constexpr uint8_t OTPW_bp = 26; constexpr uint32_t OT_bm = 0x2000000UL; constexpr uint8_t OT_bp = 25; constexpr uint8_t DRIVER_ERROR_bm = 0x2UL; constexpr uint8_t DRIVER_ERROR_bp = 1; TMC_driver_data data; data.drv_status = st.DRV_STATUS(); data.is_otpw = (data.drv_status & OTPW_bm) >> OTPW_bp; data.is_ot = (data.drv_status & OT_bm) >> OT_bp; data.is_error = (st.status_response & DRIVER_ERROR_bm) >> DRIVER_ERROR_bp; return data; } #endif #if HAS_DRIVER(TMC2208) static uint32_t get_pwm_scale(TMC2208Stepper &st) { return st.pwm_scale_sum(); } static uint8_t get_status_response(TMC2208Stepper &st) { uint32_t drv_status = st.DRV_STATUS(); uint8_t gstat = st.GSTAT(); uint8_t response = 0; response |= (drv_status >> (31-3)) & 0b1000; response |= gstat & 0b11; return response; } static TMC_driver_data get_driver_data(TMC2208Stepper &st) { constexpr uint32_t OTPW_bm = 0b1ul; constexpr uint8_t OTPW_bp = 0; constexpr uint32_t OT_bm = 0b10ul; constexpr uint8_t OT_bp = 1; TMC_driver_data data; data.drv_status = st.DRV_STATUS(); data.is_otpw = (data.drv_status & OTPW_bm) >> OTPW_bp; data.is_ot = (data.drv_status & OT_bm) >> OT_bp; data.is_error = st.drv_err(); return data; } #endif template void monitor_tmc_driver(TMC &st, const TMC_AxisEnum axis, uint8_t &otpw_cnt) { TMC_driver_data data = get_driver_data(st); #if ENABLED(STOP_ON_ERROR) if (data.is_error) { SERIAL_EOL(); _tmc_say_axis(axis); SERIAL_ECHOLNPGM(" driver error detected:"); if (data.is_ot) SERIAL_ECHOLNPGM("overtemperature"); if (st.s2ga()) SERIAL_ECHOLNPGM("short to ground (coil A)"); if (st.s2gb()) SERIAL_ECHOLNPGM("short to ground (coil B)"); #if ENABLED(TMC_DEBUG) tmc_report_all(); #endif kill(PSTR("Driver error")); } #endif // Report if a warning was triggered if (data.is_otpw && otpw_cnt == 0) { char timestamp[10]; duration_t elapsed = print_job_timer.duration(); const bool has_days = (elapsed.value > 60*60*24L); (void)elapsed.toDigital(timestamp, has_days); SERIAL_EOL(); SERIAL_ECHO(timestamp); SERIAL_ECHOPGM(": "); _tmc_say_axis(axis); SERIAL_ECHOPGM(" driver overtemperature warning! ("); SERIAL_ECHO(st.getCurrent()); SERIAL_ECHOLNPGM("mA)"); } #if CURRENT_STEP_DOWN > 0 // Decrease current if is_otpw is true and driver is enabled and there's been more than 4 warnings if (data.is_otpw && st.isEnabled() && otpw_cnt > 4) { st.setCurrent(st.getCurrent() - CURRENT_STEP_DOWN, R_SENSE, HOLD_MULTIPLIER); #if ENABLED(REPORT_CURRENT_CHANGE) _tmc_say_axis(axis); SERIAL_ECHOLNPAIR(" current decreased to ", st.getCurrent()); #endif } #endif if (data.is_otpw) { otpw_cnt++; st.flag_otpw = true; } else if (otpw_cnt > 0) otpw_cnt = 0; if (report_tmc_status) { const uint32_t pwm_scale = get_pwm_scale(st); _tmc_say_axis(axis); SERIAL_ECHOPAIR(":", pwm_scale); SERIAL_ECHOPGM(" |0b"); SERIAL_PRINT(get_status_response(st), BIN); SERIAL_ECHOPGM("| "); if (data.is_error) SERIAL_CHAR('E'); else if (data.is_ot) SERIAL_CHAR('O'); else if (data.is_otpw) SERIAL_CHAR('W'); else if (otpw_cnt > 0) SERIAL_PRINT(otpw_cnt, DEC); else if (st.flag_otpw) SERIAL_CHAR('F'); SERIAL_CHAR('\t'); } } #define HAS_HW_COMMS(ST) AXIS_DRIVER_TYPE(ST, TMC2130) || (AXIS_DRIVER_TYPE(ST, TMC2208) && defined(ST##_HARDWARE_SERIAL)) void monitor_tmc_driver() { static millis_t next_cOT = 0; if (ELAPSED(millis(), next_cOT)) { next_cOT = millis() + 500; #if HAS_HW_COMMS(X) static uint8_t x_otpw_cnt = 0; monitor_tmc_driver(stepperX, TMC_X, x_otpw_cnt); #endif #if HAS_HW_COMMS(Y) static uint8_t y_otpw_cnt = 0; monitor_tmc_driver(stepperY, TMC_Y, y_otpw_cnt); #endif #if HAS_HW_COMMS(Z) static uint8_t z_otpw_cnt = 0; monitor_tmc_driver(stepperZ, TMC_Z, z_otpw_cnt); #endif #if HAS_HW_COMMS(X2) static uint8_t x2_otpw_cnt = 0; monitor_tmc_driver(stepperX2, TMC_X, x2_otpw_cnt); #endif #if HAS_HW_COMMS(Y2) static uint8_t y2_otpw_cnt = 0; monitor_tmc_driver(stepperY2, TMC_Y, y2_otpw_cnt); #endif #if HAS_HW_COMMS(Z2) static uint8_t z2_otpw_cnt = 0; monitor_tmc_driver(stepperZ2, TMC_Z, z2_otpw_cnt); #endif #if HAS_HW_COMMS(E0) static uint8_t e0_otpw_cnt = 0; monitor_tmc_driver(stepperE0, TMC_E0, e0_otpw_cnt); #endif #if HAS_HW_COMMS(E1) static uint8_t e1_otpw_cnt = 0; monitor_tmc_driver(stepperE1, TMC_E1, e1_otpw_cnt); #endif #if HAS_HW_COMMS(E2) static uint8_t e2_otpw_cnt = 0; monitor_tmc_driver(stepperE2, TMC_E2, e2_otpw_cnt); #endif #if HAS_HW_COMMS(E3) static uint8_t e3_otpw_cnt = 0; monitor_tmc_driver(stepperE3, TMC_E3, e3_otpw_cnt); #endif #if HAS_HW_COMMS(E4) static uint8_t e4_otpw_cnt = 0; monitor_tmc_driver(stepperE4, TMC_E4, e4_otpw_cnt); #endif if (report_tmc_status) SERIAL_EOL(); } } #endif // MONITOR_DRIVER_STATUS void _tmc_say_axis(const TMC_AxisEnum axis) { static const char ext_X[] PROGMEM = "X", ext_Y[] PROGMEM = "Y", ext_Z[] PROGMEM = "Z", ext_X2[] PROGMEM = "X2", ext_Y2[] PROGMEM = "Y2", ext_Z2[] PROGMEM = "Z2", ext_E0[] PROGMEM = "E0", ext_E1[] PROGMEM = "E1", ext_E2[] PROGMEM = "E2", ext_E3[] PROGMEM = "E3", ext_E4[] PROGMEM = "E4"; static const char* const tmc_axes[] PROGMEM = { ext_X, ext_Y, ext_Z, ext_X2, ext_Y2, ext_Z2, ext_E0, ext_E1, ext_E2, ext_E3, ext_E4 }; serialprintPGM((char*)pgm_read_ptr(&tmc_axes[axis])); } void _tmc_say_current(const TMC_AxisEnum axis, const uint16_t curr) { _tmc_say_axis(axis); SERIAL_ECHOLNPAIR(" driver current: ", curr); } void _tmc_say_otpw(const TMC_AxisEnum axis, const bool otpw) { _tmc_say_axis(axis); SERIAL_ECHOPGM(" temperature prewarn triggered: "); serialprintPGM(otpw ? PSTR("true") : PSTR("false")); SERIAL_EOL(); } void _tmc_say_otpw_cleared(const TMC_AxisEnum axis) { _tmc_say_axis(axis); SERIAL_ECHOLNPGM(" prewarn flag cleared"); } void _tmc_say_pwmthrs(const TMC_AxisEnum axis, const uint32_t thrs) { _tmc_say_axis(axis); SERIAL_ECHOLNPAIR(" stealthChop max speed: ", thrs); } void _tmc_say_sgt(const TMC_AxisEnum axis, const int8_t sgt) { _tmc_say_axis(axis); SERIAL_ECHOPGM(" homing sensitivity: "); SERIAL_PRINTLN(sgt, DEC); } #if ENABLED(TMC_DEBUG) enum TMC_debug_enum : char { TMC_CODES, TMC_ENABLED, TMC_CURRENT, TMC_RMS_CURRENT, TMC_MAX_CURRENT, TMC_IRUN, TMC_IHOLD, TMC_CS_ACTUAL, TMC_PWM_SCALE, TMC_VSENSE, TMC_STEALTHCHOP, TMC_MICROSTEPS, TMC_TSTEP, TMC_TPWMTHRS, TMC_TPWMTHRS_MMS, TMC_OTPW, TMC_OTPW_TRIGGERED, TMC_TOFF, TMC_TBL, TMC_HEND, TMC_HSTRT, TMC_SGT }; enum TMC_drv_status_enum : char { TMC_DRV_CODES, TMC_STST, TMC_OLB, TMC_OLA, TMC_S2GB, TMC_S2GA, TMC_DRV_OTPW, TMC_OT, TMC_STALLGUARD, TMC_DRV_CS_ACTUAL, TMC_FSACTIVE, TMC_SG_RESULT, TMC_DRV_STATUS_HEX, TMC_T157, TMC_T150, TMC_T143, TMC_T120, TMC_STEALTH, TMC_S2VSB, TMC_S2VSA }; static void drv_status_print_hex(const TMC_AxisEnum axis, const uint32_t drv_status) { _tmc_say_axis(axis); SERIAL_ECHOPGM(" = 0x"); for (int B = 24; B >= 8; B -= 8){ SERIAL_PRINT((drv_status >> (B + 4)) & 0xF, HEX); SERIAL_PRINT((drv_status >> B) & 0xF, HEX); SERIAL_CHAR(':'); } SERIAL_PRINT((drv_status >> 4) & 0xF, HEX); SERIAL_PRINT((drv_status) & 0xF, HEX); SERIAL_EOL(); } #if HAS_DRIVER(TMC2130) static void tmc_status(TMC2130Stepper &st, const TMC_debug_enum i) { switch (i) { case TMC_PWM_SCALE: SERIAL_PRINT(st.PWM_SCALE(), DEC); break; case TMC_TSTEP: SERIAL_ECHO(st.TSTEP()); break; case TMC_SGT: SERIAL_PRINT(st.sgt(), DEC); break; case TMC_STEALTHCHOP: serialprintPGM(st.stealthChop() ? PSTR("true") : PSTR("false")); break; default: break; } } static void tmc_parse_drv_status(TMC2130Stepper &st, const TMC_drv_status_enum i) { switch (i) { case TMC_STALLGUARD: if (st.stallguard()) SERIAL_CHAR('X'); break; case TMC_SG_RESULT: SERIAL_PRINT(st.sg_result(), DEC); break; case TMC_FSACTIVE: if (st.fsactive()) SERIAL_CHAR('X'); break; default: break; } } #endif #if HAS_DRIVER(TMC2208) static void tmc_status(TMC2208Stepper &st, const TMC_debug_enum i) { switch (i) { case TMC_TSTEP: { uint32_t data = 0; st.TSTEP(&data); SERIAL_PROTOCOL(data); break; } case TMC_PWM_SCALE: SERIAL_PRINT(st.pwm_scale_sum(), DEC); break; case TMC_STEALTHCHOP: serialprintPGM(st.stealth() ? PSTR("true") : PSTR("false")); break; case TMC_S2VSA: if (st.s2vsa()) SERIAL_CHAR('X'); break; case TMC_S2VSB: if (st.s2vsb()) SERIAL_CHAR('X'); break; default: break; } } static void tmc_parse_drv_status(TMC2208Stepper &st, const TMC_drv_status_enum i) { switch (i) { case TMC_T157: if (st.t157()) SERIAL_CHAR('X'); break; case TMC_T150: if (st.t150()) SERIAL_CHAR('X'); break; case TMC_T143: if (st.t143()) SERIAL_CHAR('X'); break; case TMC_T120: if (st.t120()) SERIAL_CHAR('X'); break; default: break; } } #endif template static void tmc_status(TMC &st, const TMC_AxisEnum axis, const TMC_debug_enum i, const float spmm) { SERIAL_ECHO('\t'); switch (i) { case TMC_CODES: _tmc_say_axis(axis); break; case TMC_ENABLED: serialprintPGM(st.isEnabled() ? PSTR("true") : PSTR("false")); break; case TMC_CURRENT: SERIAL_ECHO(st.getCurrent()); break; case TMC_RMS_CURRENT: SERIAL_PROTOCOL(st.rms_current()); break; case TMC_MAX_CURRENT: SERIAL_PRINT((float)st.rms_current() * 1.41, 0); break; case TMC_IRUN: SERIAL_PRINT(st.irun(), DEC); SERIAL_ECHOPGM("/31"); break; case TMC_IHOLD: SERIAL_PRINT(st.ihold(), DEC); SERIAL_ECHOPGM("/31"); break; case TMC_CS_ACTUAL: SERIAL_PRINT(st.cs_actual(), DEC); SERIAL_ECHOPGM("/31"); break; case TMC_VSENSE: serialprintPGM(st.vsense() ? PSTR("1=.18") : PSTR("0=.325")); break; case TMC_MICROSTEPS: SERIAL_ECHO(st.microsteps()); break; case TMC_TPWMTHRS: { uint32_t tpwmthrs_val = st.TPWMTHRS(); SERIAL_ECHO(tpwmthrs_val); } break; case TMC_TPWMTHRS_MMS: { uint32_t tpwmthrs_val = st.TPWMTHRS(); if (tpwmthrs_val) SERIAL_ECHO(12650000UL * st.microsteps() / (256 * tpwmthrs_val * spmm)); else SERIAL_CHAR('-'); } break; case TMC_OTPW: serialprintPGM(st.otpw() ? PSTR("true") : PSTR("false")); break; case TMC_OTPW_TRIGGERED: serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false")); break; case TMC_TOFF: SERIAL_PRINT(st.toff(), DEC); break; case TMC_TBL: SERIAL_PRINT(st.blank_time(), DEC); break; case TMC_HEND: SERIAL_PRINT(st.hysteresis_end(), DEC); break; case TMC_HSTRT: SERIAL_PRINT(st.hysteresis_start(), DEC); break; default: tmc_status(st, i); break; } } template static void tmc_parse_drv_status(TMC &st, const TMC_AxisEnum axis, const TMC_drv_status_enum i) { SERIAL_CHAR('\t'); switch (i) { case TMC_DRV_CODES: _tmc_say_axis(axis); break; case TMC_STST: if (st.stst()) SERIAL_CHAR('X'); break; case TMC_OLB: if (st.olb()) SERIAL_CHAR('X'); break; case TMC_OLA: if (st.ola()) SERIAL_CHAR('X'); break; case TMC_S2GB: if (st.s2gb()) SERIAL_CHAR('X'); break; case TMC_S2GA: if (st.s2ga()) SERIAL_CHAR('X'); break; case TMC_DRV_OTPW: if (st.otpw()) SERIAL_CHAR('X'); break; case TMC_OT: if (st.ot()) SERIAL_CHAR('X'); break; case TMC_DRV_CS_ACTUAL: SERIAL_PRINT(st.cs_actual(), DEC); break; case TMC_DRV_STATUS_HEX:drv_status_print_hex(axis, st.DRV_STATUS()); break; default: tmc_parse_drv_status(st, i); break; } } static void tmc_debug_loop(const TMC_debug_enum i) { #if AXIS_IS_TMC(X) tmc_status(stepperX, TMC_X, i, planner.axis_steps_per_mm[X_AXIS]); #endif #if AXIS_IS_TMC(X2) tmc_status(stepperX2, TMC_X2, i, planner.axis_steps_per_mm[X_AXIS]); #endif #if AXIS_IS_TMC(Y) tmc_status(stepperY, TMC_Y, i, planner.axis_steps_per_mm[Y_AXIS]); #endif #if AXIS_IS_TMC(Y2) tmc_status(stepperY2, TMC_Y2, i, planner.axis_steps_per_mm[Y_AXIS]); #endif #if AXIS_IS_TMC(Z) tmc_status(stepperZ, TMC_Z, i, planner.axis_steps_per_mm[Z_AXIS]); #endif #if AXIS_IS_TMC(Z2) tmc_status(stepperZ2, TMC_Z2, i, planner.axis_steps_per_mm[Z_AXIS]); #endif #if AXIS_IS_TMC(E0) tmc_status(stepperE0, TMC_E0, i, planner.axis_steps_per_mm[E_AXIS]); #endif #if AXIS_IS_TMC(E1) tmc_status(stepperE1, TMC_E1, i, planner.axis_steps_per_mm[E_AXIS #if ENABLED(DISTINCT_E_FACTORS) + 1 #endif ]); #endif #if AXIS_IS_TMC(E2) tmc_status(stepperE2, TMC_E2, i, planner.axis_steps_per_mm[E_AXIS #if ENABLED(DISTINCT_E_FACTORS) + 2 #endif ]); #endif #if AXIS_IS_TMC(E3) tmc_status(stepperE3, TMC_E3, i, planner.axis_steps_per_mm[E_AXIS #if ENABLED(DISTINCT_E_FACTORS) + 3 #endif ]); #endif #if AXIS_IS_TMC(E4) tmc_status(stepperE4, TMC_E4, i, planner.axis_steps_per_mm[E_AXIS #if ENABLED(DISTINCT_E_FACTORS) + 4 #endif ]); #endif SERIAL_EOL(); } static void drv_status_loop(const TMC_drv_status_enum i) { #if AXIS_IS_TMC(X) tmc_parse_drv_status(stepperX, TMC_X, i); #endif #if AXIS_IS_TMC(X2) tmc_parse_drv_status(stepperX2, TMC_X2, i); #endif #if AXIS_IS_TMC(Y) tmc_parse_drv_status(stepperY, TMC_Y, i); #endif #if AXIS_IS_TMC(Y2) tmc_parse_drv_status(stepperY2, TMC_Y2, i); #endif #if AXIS_IS_TMC(Z) tmc_parse_drv_status(stepperZ, TMC_Z, i); #endif #if AXIS_IS_TMC(Z2) tmc_parse_drv_status(stepperZ2, TMC_Z2, i); #endif #if AXIS_IS_TMC(E0) tmc_parse_drv_status(stepperE0, TMC_E0, i); #endif #if AXIS_IS_TMC(E1) tmc_parse_drv_status(stepperE1, TMC_E1, i); #endif #if AXIS_IS_TMC(E2) tmc_parse_drv_status(stepperE2, TMC_E2, i); #endif #if AXIS_IS_TMC(E3) tmc_parse_drv_status(stepperE3, TMC_E3, i); #endif #if AXIS_IS_TMC(E4) tmc_parse_drv_status(stepperE4, TMC_E4, i); #endif SERIAL_EOL(); } /** * M122 report functions */ void tmc_set_report_status(const bool status) { if ((report_tmc_status = status)) SERIAL_ECHOLNPGM("axis:pwm_scale |status_response|"); } void tmc_report_all() { #define TMC_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); tmc_debug_loop(ITEM); }while(0) #define DRV_REPORT(LABEL, ITEM) do{ SERIAL_ECHOPGM(LABEL); drv_status_loop(ITEM); }while(0) TMC_REPORT("\t", TMC_CODES); TMC_REPORT("Enabled\t", TMC_ENABLED); TMC_REPORT("Set current", TMC_CURRENT); TMC_REPORT("RMS current", TMC_RMS_CURRENT); TMC_REPORT("MAX current", TMC_MAX_CURRENT); TMC_REPORT("Run current", TMC_IRUN); TMC_REPORT("Hold current", TMC_IHOLD); TMC_REPORT("CS actual\t", TMC_CS_ACTUAL); TMC_REPORT("PWM scale\t", TMC_PWM_SCALE); TMC_REPORT("vsense\t", TMC_VSENSE); TMC_REPORT("stealthChop", TMC_STEALTHCHOP); TMC_REPORT("msteps\t", TMC_MICROSTEPS); TMC_REPORT("tstep\t", TMC_TSTEP); TMC_REPORT("pwm\nthreshold\t", TMC_TPWMTHRS); TMC_REPORT("[mm/s]\t", TMC_TPWMTHRS_MMS); TMC_REPORT("OT prewarn", TMC_OTPW); TMC_REPORT("OT prewarn has\n" "been triggered", TMC_OTPW_TRIGGERED); TMC_REPORT("off time\t", TMC_TOFF); TMC_REPORT("blank time", TMC_TBL); TMC_REPORT("hysteresis\n-end\t", TMC_HEND); TMC_REPORT("-start\t", TMC_HSTRT); TMC_REPORT("Stallguard thrs", TMC_SGT); DRV_REPORT("DRVSTATUS", TMC_DRV_CODES); #if HAS_DRIVER(TMC2130) DRV_REPORT("stallguard\t", TMC_STALLGUARD); DRV_REPORT("sg_result\t", TMC_SG_RESULT); DRV_REPORT("fsactive\t", TMC_FSACTIVE); #endif DRV_REPORT("stst\t", TMC_STST); DRV_REPORT("olb\t", TMC_OLB); DRV_REPORT("ola\t", TMC_OLA); DRV_REPORT("s2gb\t", TMC_S2GB); DRV_REPORT("s2ga\t", TMC_S2GA); DRV_REPORT("otpw\t", TMC_DRV_OTPW); DRV_REPORT("ot\t", TMC_OT); #if HAS_DRIVER(TMC2208) DRV_REPORT("157C\t", TMC_T157); DRV_REPORT("150C\t", TMC_T150); DRV_REPORT("143C\t", TMC_T143); DRV_REPORT("120C\t", TMC_T120); DRV_REPORT("s2vsa\t", TMC_S2VSA); DRV_REPORT("s2vsb\t", TMC_S2VSB); #endif DRV_REPORT("Driver registers:", TMC_DRV_STATUS_HEX); SERIAL_EOL(); } #endif // TMC_DEBUG #if ENABLED(SENSORLESS_HOMING) void tmc_sensorless_homing(TMC2130Stepper &st, const bool enable/*=true*/) { st.coolstep_min_speed(enable ? 1024UL * 1024UL - 1UL : 0); #if ENABLED(STEALTHCHOP) st.stealthChop(!enable); #endif st.diag1_stall(enable ? 1 : 0); } #endif // SENSORLESS_HOMING #if HAS_DRIVER(TMC2130) #define SET_CS_PIN(st) OUT_WRITE(st##_CS_PIN, HIGH) void tmc_init_cs_pins() { #if AXIS_DRIVER_TYPE(X, TMC2130) SET_CS_PIN(X); #endif #if AXIS_DRIVER_TYPE(Y, TMC2130) SET_CS_PIN(Y); #endif #if AXIS_DRIVER_TYPE(Z, TMC2130) SET_CS_PIN(Z); #endif #if AXIS_DRIVER_TYPE(X2, TMC2130) SET_CS_PIN(X2); #endif #if AXIS_DRIVER_TYPE(Y2, TMC2130) SET_CS_PIN(Y2); #endif #if AXIS_DRIVER_TYPE(Z2, TMC2130) SET_CS_PIN(Z2); #endif #if AXIS_DRIVER_TYPE(E0, TMC2130) SET_CS_PIN(E0); #endif #if AXIS_DRIVER_TYPE(E1, TMC2130) SET_CS_PIN(E1); #endif #if AXIS_DRIVER_TYPE(E2, TMC2130) SET_CS_PIN(E2); #endif #if AXIS_DRIVER_TYPE(E3, TMC2130) SET_CS_PIN(E3); #endif #if AXIS_DRIVER_TYPE(E4, TMC2130) SET_CS_PIN(E4); #endif } #endif // TMC2130 #endif // HAS_TRINAMIC