/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper.cpp - A singleton object to execute motion plans using stepper motors * Marlin Firmware * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see . */ /** * Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith * and Philipp Tiefenbacher. */ /** * __________________________ * /| |\ _________________ ^ * / | | \ /| |\ | * / | | \ / | | \ s * / | | | | | \ p * / | | | | | \ e * +-----+------------------------+---+--+---------------+----+ e * | BLOCK 1 | BLOCK 2 | d * * time -----> * * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates * first block->accelerate_until step_events_completed, then keeps going at constant speed until * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. */ /** * Marlin uses the Bresenham algorithm. For a detailed explanation of theory and * method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html */ /** * Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle. * Equations based on Synthethos TinyG2 sources, but the fixed-point * implementation is new, as we are running the ISR with a variable period. * Also implemented the Bézier velocity curve evaluation in ARM assembler, * to avoid impacting ISR speed. */ #include "Marlin.h" #include "stepper.h" #include "endstops.h" #include "planner.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "cardreader.h" #include "speed_lookuptable.h" #include "delay.h" #if HAS_DIGIPOTSS #include #endif Stepper stepper; // Singleton // public: block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) bool Stepper::homing_dual_axis = false; #endif #if HAS_MOTOR_CURRENT_PWM uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load() #endif // private: uint8_t Stepper::last_direction_bits = 0, Stepper::axis_did_move; bool Stepper::abort_current_block; #if DISABLED(MIXING_EXTRUDER) uint8_t Stepper::last_moved_extruder = 0xFF; #endif #if ENABLED(X_DUAL_ENDSTOPS) bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false; #endif #if ENABLED(Y_DUAL_ENDSTOPS) bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false; #endif #if ENABLED(Z_DUAL_ENDSTOPS) bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false; #endif uint32_t Stepper::acceleration_time, Stepper::deceleration_time; uint8_t Stepper::steps_per_isr; #if DISABLED(ADAPTIVE_STEP_SMOOTHING) constexpr #endif uint8_t Stepper::oversampling_factor; int32_t Stepper::delta_error[XYZE] = { 0 }; uint32_t Stepper::advance_dividend[XYZE] = { 0 }, Stepper::advance_divisor = 0, Stepper::step_events_completed = 0, // The number of step events executed in the current block Stepper::accelerate_until, // The point from where we need to stop acceleration Stepper::decelerate_after, // The point from where we need to start decelerating Stepper::step_event_count; // The total event count for the current block #if ENABLED(MIXING_EXTRUDER) int32_t Stepper::delta_error_m[MIXING_STEPPERS]; uint32_t Stepper::advance_dividend_m[MIXING_STEPPERS], Stepper::advance_divisor_m; #else int8_t Stepper::active_extruder; // Active extruder #endif #if ENABLED(S_CURVE_ACCELERATION) int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not #endif uint32_t Stepper::nextMainISR = 0; #if ENABLED(LIN_ADVANCE) constexpr uint32_t LA_ADV_NEVER = 0xFFFFFFFF; uint32_t Stepper::nextAdvanceISR = LA_ADV_NEVER, Stepper::LA_isr_rate = LA_ADV_NEVER; uint16_t Stepper::LA_current_adv_steps = 0, Stepper::LA_final_adv_steps, Stepper::LA_max_adv_steps; int8_t Stepper::LA_steps = 0; bool Stepper::LA_use_advance_lead; #endif // LIN_ADVANCE int32_t Stepper::ticks_nominal = -1; #if DISABLED(S_CURVE_ACCELERATION) uint32_t Stepper::acc_step_rate; // needed for deceleration start point #endif volatile int32_t Stepper::endstops_trigsteps[XYZ]; volatile int32_t Stepper::count_position[NUM_AXIS] = { 0 }; int8_t Stepper::count_direction[NUM_AXIS] = { 0, 0, 0, 0 }; #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) #define DUAL_ENDSTOP_APPLY_STEP(A,V) \ if (homing_dual_axis) { \ if (A##_HOME_DIR < 0) { \ if (!(TEST(endstops.state(), A##_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ if (!(TEST(endstops.state(), A##2_MIN) && count_direction[_AXIS(A)] < 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ } \ else { \ if (!(TEST(endstops.state(), A##_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##_motor) A##_STEP_WRITE(V); \ if (!(TEST(endstops.state(), A##2_MAX) && count_direction[_AXIS(A)] > 0) && !locked_##A##2_motor) A##2_STEP_WRITE(V); \ } \ } \ else { \ A##_STEP_WRITE(V); \ A##2_STEP_WRITE(V); \ } #endif #if ENABLED(X_DUAL_STEPPER_DRIVERS) #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0) #if ENABLED(X_DUAL_ENDSTOPS) #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v) #else #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0) #endif #elif ENABLED(DUAL_X_CARRIAGE) #define X_APPLY_DIR(v,ALWAYS) \ if (extruder_duplication_enabled || ALWAYS) { \ X_DIR_WRITE(v); \ X2_DIR_WRITE(v); \ } \ else { \ if (movement_extruder()) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \ } #define X_APPLY_STEP(v,ALWAYS) \ if (extruder_duplication_enabled || ALWAYS) { \ X_STEP_WRITE(v); \ X2_STEP_WRITE(v); \ } \ else { \ if (movement_extruder()) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \ } #else #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v) #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v) #endif #if ENABLED(Y_DUAL_STEPPER_DRIVERS) #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0) #if ENABLED(Y_DUAL_ENDSTOPS) #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v) #else #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0) #endif #else #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v) #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v) #endif #if ENABLED(Z_DUAL_STEPPER_DRIVERS) #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0) #if ENABLED(Z_DUAL_ENDSTOPS) #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v) #else #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0) #endif #else #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v) #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v) #endif #if DISABLED(MIXING_EXTRUDER) #define E_APPLY_STEP(v,Q) E_STEP_WRITE(active_extruder, v) #endif // intRes = longIn1 * longIn2 >> 24 // uses: // A[tmp] to store 0 // B[tmp] to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result. // note that the lower two bytes and the upper byte of the 48bit result are not calculated. // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones. // B A are bits 24-39 and are the returned value // C B A is longIn1 // D C B A is longIn2 // static FORCE_INLINE uint16_t MultiU24X32toH16(uint32_t longIn1, uint32_t longIn2) { register uint8_t tmp1; register uint8_t tmp2; register uint16_t intRes; __asm__ __volatile__( A("clr %[tmp1]") A("mul %A[longIn1], %B[longIn2]") A("mov %[tmp2], r1") A("mul %B[longIn1], %C[longIn2]") A("movw %A[intRes], r0") A("mul %C[longIn1], %C[longIn2]") A("add %B[intRes], r0") A("mul %C[longIn1], %B[longIn2]") A("add %A[intRes], r0") A("adc %B[intRes], r1") A("mul %A[longIn1], %C[longIn2]") A("add %[tmp2], r0") A("adc %A[intRes], r1") A("adc %B[intRes], %[tmp1]") A("mul %B[longIn1], %B[longIn2]") A("add %[tmp2], r0") A("adc %A[intRes], r1") A("adc %B[intRes], %[tmp1]") A("mul %C[longIn1], %A[longIn2]") A("add %[tmp2], r0") A("adc %A[intRes], r1") A("adc %B[intRes], %[tmp1]") A("mul %B[longIn1], %A[longIn2]") A("add %[tmp2], r1") A("adc %A[intRes], %[tmp1]") A("adc %B[intRes], %[tmp1]") A("lsr %[tmp2]") A("adc %A[intRes], %[tmp1]") A("adc %B[intRes], %[tmp1]") A("mul %D[longIn2], %A[longIn1]") A("add %A[intRes], r0") A("adc %B[intRes], r1") A("mul %D[longIn2], %B[longIn1]") A("add %B[intRes], r0") A("clr r1") : [intRes] "=&r" (intRes), [tmp1] "=&r" (tmp1), [tmp2] "=&r" (tmp2) : [longIn1] "d" (longIn1), [longIn2] "d" (longIn2) : "cc" ); return intRes; } void Stepper::wake_up() { // TCNT1 = 0; ENABLE_STEPPER_DRIVER_INTERRUPT(); } /** * Set the stepper direction of each axis * * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS */ void Stepper::set_directions() { #define SET_STEP_DIR(A) \ if (motor_direction(_AXIS(A))) { \ A##_APPLY_DIR(INVERT_## A##_DIR, false); \ count_direction[_AXIS(A)] = -1; \ } \ else { \ A##_APPLY_DIR(!INVERT_## A##_DIR, false); \ count_direction[_AXIS(A)] = 1; \ } #if HAS_X_DIR SET_STEP_DIR(X); // A #endif #if HAS_Y_DIR SET_STEP_DIR(Y); // B #endif #if HAS_Z_DIR SET_STEP_DIR(Z); // C #endif #if DISABLED(LIN_ADVANCE) #if ENABLED(MIXING_EXTRUDER) if (motor_direction(E_AXIS)) { MIXING_STEPPERS_LOOP(j) REV_E_DIR(j); count_direction[E_AXIS] = -1; } else { MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j); count_direction[E_AXIS] = 1; } #else if (motor_direction(E_AXIS)) { REV_E_DIR(active_extruder); count_direction[E_AXIS] = -1; } else { NORM_E_DIR(active_extruder); count_direction[E_AXIS] = 1; } #endif #endif // !LIN_ADVANCE // A small delay may be needed after changing direction #if MINIMUM_STEPPER_DIR_DELAY > 0 DELAY_NS(MINIMUM_STEPPER_DIR_DELAY); #endif } #if ENABLED(S_CURVE_ACCELERATION) /** * This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving * a "linear pop" velocity curve; with pop being the sixth derivative of position: * velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th * * The Bézier curve takes the form: * * V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t) * * Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t) * through B_5(t) are the Bernstein basis as follows: * * B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1 * B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t * B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2 * B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3 * B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4 * B_5(t) = t^5 = t^5 * ^ ^ ^ ^ ^ ^ * | | | | | | * A B C D E F * * Unfortunately, we cannot use forward-differencing to calculate each position through * the curve, as Marlin uses variable timer periods. So, we require a formula of the form: * * V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F * * Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5 * through t of the Bézier form of V(t), we can determine that: * * A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5 * B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4 * C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3 * D = 10*P_0 - 20*P_1 + 10*P_2 * E = - 5*P_0 + 5*P_1 * F = P_0 * * Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0, * We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity), * which, after simplification, resolves to: * * A = - 6*P_i + 6*P_t = 6*(P_t - P_i) * B = 15*P_i - 15*P_t = 15*(P_i - P_t) * C = -10*P_i + 10*P_t = 10*(P_t - P_i) * D = 0 * E = 0 * F = P_i * * As the t is evaluated in non uniform steps here, there is no other way rather than evaluating * the Bézier curve at each point: * * V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1] * * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid * overflows on the evaluation of the Bézier curve, means we can use * * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned * A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign * B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign * C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign * F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign * * The trapezoid generator state contains the following information, that we will use to create and evaluate * the Bézier curve: * * blk->step_event_count [TS] = The total count of steps for this movement. (=distance) * blk->initial_rate [VI] = The initial steps per second (=velocity) * blk->final_rate [VF] = The ending steps per second (=velocity) * and the count of events completed (step_events_completed) [CS] (=distance until now) * * Note the abbreviations we use in the following formulae are between []s * * For Any 32bit CPU: * * At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows: * * A = 6*128*(VF - VI) = 768*(VF - VI) * B = 15*128*(VI - VF) = 1920*(VI - VF) * C = 10*128*(VF - VI) = 1280*(VF - VI) * F = 128*VI = 128*VI * AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR) * * And for each point, evaluate the curve with the following sequence: * * void lsrs(uint32_t& d, uint32_t s, int cnt) { * d = s >> cnt; * } * void lsls(uint32_t& d, uint32_t s, int cnt) { * d = s << cnt; * } * void lsrs(int32_t& d, uint32_t s, int cnt) { * d = uint32_t(s) >> cnt; * } * void lsls(int32_t& d, uint32_t s, int cnt) { * d = uint32_t(s) << cnt; * } * void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) { * uint64_t res = uint64_t(op1) * op2; * rlo = uint32_t(res & 0xFFFFFFFF); * rhi = uint32_t((res >> 32) & 0xFFFFFFFF); * } * void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) { * int64_t mul = int64_t(op1) * op2; * int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U))); * mul += s; * rlo = int32_t(mul & 0xFFFFFFFF); * rhi = int32_t((mul >> 32) & 0xFFFFFFFF); * } * int32_t _eval_bezier_curve_arm(uint32_t curr_step) { * register uint32_t flo = 0; * register uint32_t fhi = bezier_AV * curr_step; * register uint32_t t = fhi; * register int32_t alo = bezier_F; * register int32_t ahi = 0; * register int32_t A = bezier_A; * register int32_t B = bezier_B; * register int32_t C = bezier_C; * * lsrs(ahi, alo, 1); // a = F << 31 * lsls(alo, alo, 31); // * umull(flo, fhi, fhi, t); // f *= t * umull(flo, fhi, fhi, t); // f>>=32; f*=t * lsrs(flo, fhi, 1); // * smlal(alo, ahi, flo, C); // a+=(f>>33)*C * umull(flo, fhi, fhi, t); // f>>=32; f*=t * lsrs(flo, fhi, 1); // * smlal(alo, ahi, flo, B); // a+=(f>>33)*B * umull(flo, fhi, fhi, t); // f>>=32; f*=t * lsrs(flo, fhi, 1); // f>>=33; * smlal(alo, ahi, flo, A); // a+=(f>>33)*A; * lsrs(alo, ahi, 6); // a>>=38 * * return alo; * } * * This is rewritten in ARM assembly for optimal performance (43 cycles to execute). * * For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time: * Let's reduce precision as much as possible. After some experimentation we found that: * * Assume t and AV with 24 bits is enough * A = 6*(VF - VI) * B = 15*(VI - VF) * C = 10*(VF - VI) * F = VI * AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR) * * Instead of storing sign for each coefficient, we will store its absolute value, * and flag the sign of the A coefficient, so we can save to store the sign bit. * It always holds that sign(A) = - sign(B) = sign(C) * * So, the resulting range of the coefficients are: * * t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned * A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits * B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits * C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits * F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits * * And for each curve, estimate its coefficients with: * * void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) { * // Calculate the Bézier coefficients * if (v1 < v0) { * A_negative = true; * bezier_A = 6 * (v0 - v1); * bezier_B = 15 * (v0 - v1); * bezier_C = 10 * (v0 - v1); * } * else { * A_negative = false; * bezier_A = 6 * (v1 - v0); * bezier_B = 15 * (v1 - v0); * bezier_C = 10 * (v1 - v0); * } * bezier_F = v0; * } * * And for each point, evaluate the curve with the following sequence: * * // unsigned multiplication of 24 bits x 24bits, return upper 16 bits * void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) { * r = (uint64_t(op1) * op2) >> 8; * } * // unsigned multiplication of 16 bits x 16bits, return upper 16 bits * void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) { * r = (uint32_t(op1) * op2) >> 16; * } * // unsigned multiplication of 16 bits x 24bits, return upper 24 bits * void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) { * r = uint24_t((uint64_t(op1) * op2) >> 16); * } * * int32_t _eval_bezier_curve(uint32_t curr_step) { * // To save computing, the first step is always the initial speed * if (!curr_step) * return bezier_F; * * uint16_t t; * umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits * uint16_t f = t; * umul16x16to16hi(f, f, t); // Range 16 bits (unsigned) * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned) * uint24_t acc = bezier_F; // Range 20 bits (unsigned) * if (A_negative) { * uint24_t v; * umul16x24to24hi(v, f, bezier_C); // Range 21bits * acc -= v; * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned) * umul16x24to24hi(v, f, bezier_B); // Range 22bits * acc += v; * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned) * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign) * acc -= v; * } * else { * uint24_t v; * umul16x24to24hi(v, f, bezier_C); // Range 21bits * acc += v; * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned) * umul16x24to24hi(v, f, bezier_B); // Range 22bits * acc -= v; * umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned) * umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign) * acc += v; * } * return acc; * } * These functions are translated to assembler for optimal performance. * Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles. */ // For AVR we use assembly to maximize speed void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) { // Store advance bezier_AV = av; // Calculate the rest of the coefficients register uint8_t r2 = v0 & 0xFF; register uint8_t r3 = (v0 >> 8) & 0xFF; register uint8_t r12 = (v0 >> 16) & 0xFF; register uint8_t r5 = v1 & 0xFF; register uint8_t r6 = (v1 >> 8) & 0xFF; register uint8_t r7 = (v1 >> 16) & 0xFF; register uint8_t r4,r8,r9,r10,r11; __asm__ __volatile__( /* Calculate the Bézier coefficients */ /* %10:%1:%0 = v0*/ /* %5:%4:%3 = v1*/ /* %7:%6:%10 = temporary*/ /* %9 = val (must be high register!)*/ /* %10 (must be high register!)*/ /* Store initial velocity*/ A("sts bezier_F, %0") A("sts bezier_F+1, %1") A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */ /* Get delta speed */ A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */ A("clr %8") /* %8 = 0 */ A("sub %0,%3") A("sbc %1,%4") A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */ A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */ /* Result was negative, get the absolute value*/ A("com %10") A("com %1") A("neg %0") A("sbc %1,%2") A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */ A("clr %2") /* %2 = 0, means A_negative = false */ /* Store negative flag*/ L("1") A("sts A_negative, %2") /* Store negative flag */ /* Compute coefficients A,B and C [20 cycles worst case]*/ A("ldi %9,6") /* %9 = 6 */ A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */ A("sts bezier_A, r0") A("mov %6,r1") A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */ A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */ A("add %6,r0") A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */ A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */ A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */ A("sts bezier_A+1, %6") A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */ A("ldi %9,15") /* %9 = 15 */ A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */ A("sts bezier_B, r0") A("mov %6,r1") A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */ A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */ A("add %6,r0") A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */ A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */ A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */ A("sts bezier_B+1, %6") A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */ A("ldi %9,10") /* %9 = 10 */ A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */ A("sts bezier_C, r0") A("mov %6,r1") A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */ A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */ A("add %6,r0") A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */ A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */ A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */ A("sts bezier_C+1, %6") " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */ : "+r" (r2), "+d" (r3), "=r" (r4), "+r" (r5), "+r" (r6), "+r" (r7), "=r" (r8), "=r" (r9), "=r" (r10), "=d" (r11), "+r" (r12) : : "r0", "r1", "cc", "memory" ); } FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) { // If dealing with the first step, save expensive computing and return the initial speed if (!curr_step) return bezier_F; register uint8_t r0 = 0; /* Zero register */ register uint8_t r2 = (curr_step) & 0xFF; register uint8_t r3 = (curr_step >> 8) & 0xFF; register uint8_t r4 = (curr_step >> 16) & 0xFF; register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */ __asm__ __volatile( /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/ A("lds %9,bezier_AV") /* %9 = LO(AV)*/ A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/ A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/ A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/ A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/ A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/ A("add %7,r0") A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/ A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/ A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/ A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/ A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/ A("add %7,r0") A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/ A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/ A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/ A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/ A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/ /* %8:%7 = t*/ /* uint16_t f = t;*/ A("mov %5,%7") /* %6:%5 = f*/ A("mov %6,%8") /* %6:%5 = f*/ /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/ A("clr %10") /* %10 = 0*/ A("clr %11") /* %11 = 0*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ A("mov %5,%10") /* %6:%5 = */ A("mov %6,%11") /* f = %10:%11*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("clr %10") /* %10 = 0*/ A("clr %11") /* %11 = 0*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ A("mov %5,%10") /* %6:%5 =*/ A("mov %6,%11") /* f = %10:%11*/ /* [15 +17*2] = [49]*/ /* %4:%3:%2 will be acc from now on*/ /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/ A("clr %9") /* "decimal place we get for free"*/ A("lds %2,bezier_F") A("lds %3,bezier_F+1") A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/ /* if (A_negative) {*/ A("lds r0,A_negative") A("or r0,%0") /* Is flag signalling negative? */ A("brne 3f") /* If yes, Skip next instruction if A was negative*/ A("rjmp 1f") /* Otherwise, jump */ /* uint24_t v; */ /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */ /* acc -= v; */ L("3") A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/ A("sub %9,r1") A("sbc %2,%0") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/ A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ A("sub %9,r0") A("sbc %2,r1") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/ A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ A("sub %2,r0") A("sbc %3,r1") A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/ A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/ A("sub %9,r0") A("sbc %2,r1") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/ A("sub %2,r0") A("sbc %3,r1") A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/ A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/ A("sub %3,r0") A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("clr %10") /* %10 = 0*/ A("clr %11") /* %11 = 0*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ A("mov %5,%10") /* %6:%5 =*/ A("mov %6,%11") /* f = %10:%11*/ /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/ /* acc += v; */ A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/ A("add %9,r1") A("adc %2,%0") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/ A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ A("add %9,r0") A("adc %2,r1") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/ A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ A("add %2,r0") A("adc %3,r1") A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/ A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/ A("add %9,r0") A("adc %2,r1") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/ A("add %2,r0") A("adc %3,r1") A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/ A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/ A("add %3,r0") A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("clr %10") /* %10 = 0*/ A("clr %11") /* %11 = 0*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ A("mov %5,%10") /* %6:%5 =*/ A("mov %6,%11") /* f = %10:%11*/ /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/ /* acc -= v; */ A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/ A("sub %9,r1") A("sbc %2,%0") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/ A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ A("sub %9,r0") A("sbc %2,r1") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/ A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ A("sub %2,r0") A("sbc %3,r1") A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/ A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/ A("sub %9,r0") A("sbc %2,r1") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/ A("sub %2,r0") A("sbc %3,r1") A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/ A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/ A("sub %3,r0") A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/ A("jmp 2f") /* Done!*/ L("1") /* uint24_t v; */ /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/ /* acc += v; */ A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/ A("add %9,r1") A("adc %2,%0") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/ A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ A("add %9,r0") A("adc %2,r1") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/ A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/ A("add %2,r0") A("adc %3,r1") A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/ A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/ A("add %9,r0") A("adc %2,r1") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/ A("add %2,r0") A("adc %3,r1") A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/ A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/ A("add %3,r0") A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("clr %10") /* %10 = 0*/ A("clr %11") /* %11 = 0*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ A("mov %5,%10") /* %6:%5 =*/ A("mov %6,%11") /* f = %10:%11*/ /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/ /* acc -= v;*/ A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/ A("sub %9,r1") A("sbc %2,%0") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/ A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ A("sub %9,r0") A("sbc %2,r1") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/ A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/ A("sub %2,r0") A("sbc %3,r1") A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/ A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/ A("sub %9,r0") A("sbc %2,r1") A("sbc %3,%0") A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/ A("sub %2,r0") A("sbc %3,r1") A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/ A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/ A("sub %3,r0") A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("clr %10") /* %10 = 0*/ A("clr %11") /* %11 = 0*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/ A("adc %11,%0") /* %11 += carry*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/ A("mov %5,%10") /* %6:%5 =*/ A("mov %6,%11") /* f = %10:%11*/ /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/ /* acc += v; */ A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/ A("add %9,r1") A("adc %2,%0") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/ A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ A("add %9,r0") A("adc %2,r1") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/ A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/ A("add %2,r0") A("adc %3,r1") A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/ A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/ A("add %9,r0") A("adc %2,r1") A("adc %3,%0") A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/ A("add %2,r0") A("adc %3,r1") A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/ A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/ A("add %3,r0") A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/ L("2") " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */ : "+r"(r0), "+r"(r1), "+r"(r2), "+r"(r3), "+r"(r4), "+r"(r5), "+r"(r6), "+r"(r7), "+r"(r8), "+r"(r9), "+r"(r10), "+r"(r11) : :"cc","r0","r1" ); return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16); } #endif // S_CURVE_ACCELERATION /** * Stepper Driver Interrupt * * Directly pulses the stepper motors at high frequency. */ HAL_STEP_TIMER_ISR { HAL_timer_isr_prologue(STEP_TIMER_NUM); Stepper::isr(); HAL_timer_isr_epilogue(STEP_TIMER_NUM); } #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B) void Stepper::isr() { // Program timer compare for the maximum period, so it does NOT // flag an interrupt while this ISR is running - So changes from small // periods to big periods are respected and the timer does not reset to 0 HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX); // Count of ticks for the next ISR hal_timer_t next_isr_ticks = 0; // Limit the amount of iterations uint8_t max_loops = 10; // We need this variable here to be able to use it in the following loop hal_timer_t min_ticks; do { // Enable ISRs to reduce USART processing latency ENABLE_ISRS(); // Run main stepping pulse phase ISR if we have to if (!nextMainISR) Stepper::stepper_pulse_phase_isr(); #if ENABLED(LIN_ADVANCE) // Run linear advance stepper ISR if we have to if (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr(); #endif // ^== Time critical. NOTHING besides pulse generation should be above here!!! // Run main stepping block processing ISR if we have to if (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr(); uint32_t interval = #if ENABLED(LIN_ADVANCE) MIN(nextAdvanceISR, nextMainISR) // Nearest time interval #else nextMainISR // Remaining stepper ISR time #endif ; // Limit the value to the maximum possible value of the timer NOMORE(interval, HAL_TIMER_TYPE_MAX); // Compute the time remaining for the main isr nextMainISR -= interval; #if ENABLED(LIN_ADVANCE) // Compute the time remaining for the advance isr if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval; #endif /** * This needs to avoid a race-condition caused by interleaving * of interrupts required by both the LA and Stepper algorithms. * * Assume the following tick times for stepper pulses: * Stepper ISR (S): 1 1000 2000 3000 4000 * Linear Adv. (E): 10 1010 2010 3010 4010 * * The current algorithm tries to interleave them, giving: * 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E * * Ideal timing would yield these delta periods: * 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E * * But, since each event must fire an ISR with a minimum duration, the * minimum delta might be 900, so deltas under 900 get rounded up: * 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E * * It works, but divides the speed of all motors by half, leading to a sudden * reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even * accounting for double/quad stepping, which makes it even worse). */ // Compute the tick count for the next ISR next_isr_ticks += interval; /** * The following section must be done with global interrupts disabled. * We want nothing to interrupt it, as that could mess the calculations * we do for the next value to program in the period register of the * stepper timer and lead to skipped ISRs (if the value we happen to program * is less than the current count due to something preempting between the * read and the write of the new period value). */ DISABLE_ISRS(); /** * Get the current tick value + margin * Assuming at least 6µs between calls to this ISR... * On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin * On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin */ min_ticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((STEPPER_TIMER_TICKS_PER_US) * 8); /** * NB: If for some reason the stepper monopolizes the MPU, eventually the * timer will wrap around (and so will 'next_isr_ticks'). So, limit the * loop to 10 iterations. Beyond that, there's no way to ensure correct pulse * timing, since the MCU isn't fast enough. */ if (!--max_loops) next_isr_ticks = min_ticks; // Advance pulses if not enough time to wait for the next ISR } while (next_isr_ticks < min_ticks); // Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are // sure that the time has not arrived yet - Warrantied by the scheduler // Set the next ISR to fire at the proper time HAL_timer_set_compare(STEP_TIMER_NUM, hal_timer_t(next_isr_ticks)); // Don't forget to finally reenable interrupts ENABLE_ISRS(); } /** * This phase of the ISR should ONLY create the pulses for the steppers. * This prevents jitter caused by the interval between the start of the * interrupt and the start of the pulses. DON'T add any logic ahead of the * call to this method that might cause variation in the timing. The aim * is to keep pulse timing as regular as possible. */ void Stepper::stepper_pulse_phase_isr() { // If we must abort the current block, do so! if (abort_current_block) { abort_current_block = false; if (current_block) { axis_did_move = 0; current_block = NULL; planner.discard_current_block(); } } // If there is no current block, do nothing if (!current_block) return; // Count of pending loops and events for this iteration const uint32_t pending_events = step_event_count - step_events_completed; uint8_t events_to_do = MIN(pending_events, steps_per_isr); // Just update the value we will get at the end of the loop step_events_completed += events_to_do; // Get the timer count and estimate the end of the pulse hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS); const hal_timer_t added_step_ticks = ADDED_STEP_TICKS; // Take multiple steps per interrupt (For high speed moves) do { #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN // Start an active pulse, if Bresenham says so, and update position #define PULSE_START(AXIS) do{ \ delta_error[_AXIS(AXIS)] += advance_dividend[_AXIS(AXIS)]; \ if (delta_error[_AXIS(AXIS)] >= 0) { \ _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), 0); \ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ } \ }while(0) // Stop an active pulse, if any, and adjust error term #define PULSE_STOP(AXIS) do { \ if (delta_error[_AXIS(AXIS)] >= 0) { \ delta_error[_AXIS(AXIS)] -= advance_divisor; \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), 0); \ } \ }while(0) // Pulse start #if HAS_X_STEP PULSE_START(X); #endif #if HAS_Y_STEP PULSE_START(Y); #endif #if HAS_Z_STEP PULSE_START(Z); #endif // Pulse E/Mixing extruders #if ENABLED(LIN_ADVANCE) // Tick the E axis, correct error term and update position delta_error[E_AXIS] += advance_dividend[E_AXIS]; if (delta_error[E_AXIS] >= 0) { count_position[E_AXIS] += count_direction[E_AXIS]; delta_error[E_AXIS] -= advance_divisor; // Don't step E here - But remember the number of steps to perform motor_direction(E_AXIS) ? --LA_steps : ++LA_steps; } #else // !LIN_ADVANCE - use linear interpolation for E also #if ENABLED(MIXING_EXTRUDER) // Tick the E axis delta_error[E_AXIS] += advance_dividend[E_AXIS]; if (delta_error[E_AXIS] >= 0) { count_position[E_AXIS] += count_direction[E_AXIS]; delta_error[E_AXIS] -= advance_divisor; } // Tick the counters used for this mix in proper proportion MIXING_STEPPERS_LOOP(j) { // Step mixing steppers (proportionally) delta_error_m[j] += advance_dividend_m[j]; // Step when the counter goes over zero if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN); } #else // !MIXING_EXTRUDER PULSE_START(E); #endif #endif // !LIN_ADVANCE #if MINIMUM_STEPPER_PULSE // Just wait for the requested pulse duration while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ } #endif // Add the delay needed to ensure the maximum driver rate is enforced if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks); // Pulse stop #if HAS_X_STEP PULSE_STOP(X); #endif #if HAS_Y_STEP PULSE_STOP(Y); #endif #if HAS_Z_STEP PULSE_STOP(Z); #endif #if DISABLED(LIN_ADVANCE) #if ENABLED(MIXING_EXTRUDER) MIXING_STEPPERS_LOOP(j) { if (delta_error_m[j] >= 0) { delta_error_m[j] -= advance_divisor_m; E_STEP_WRITE(j, INVERT_E_STEP_PIN); } } #else // !MIXING_EXTRUDER PULSE_STOP(E); #endif #endif // !LIN_ADVANCE // Decrement the count of pending pulses to do --events_to_do; // For minimum pulse time wait after stopping pulses also if (events_to_do) { // Just wait for the requested pulse duration while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ } #if MINIMUM_STEPPER_PULSE // Add to the value, the time that the pulse must be active (to be used on the next loop) pulse_end += hal_timer_t(MIN_PULSE_TICKS); #endif } } while (events_to_do); } // This is the last half of the stepper interrupt: This one processes and // properly schedules blocks from the planner. This is executed after creating // the step pulses, so it is not time critical, as pulses are already done. uint32_t Stepper::stepper_block_phase_isr() { // If no queued movements, just wait 1ms for the next move uint32_t interval = (STEPPER_TIMER_RATE / 1000); // If there is a current block if (current_block) { // If current block is finished, reset pointer if (step_events_completed >= step_event_count) { axis_did_move = 0; current_block = NULL; planner.discard_current_block(); } else { // Step events not completed yet... // Are we in acceleration phase ? if (step_events_completed <= accelerate_until) { // Calculate new timer value #if ENABLED(S_CURVE_ACCELERATION) // Get the next speed to use (Jerk limited!) uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time ? _eval_bezier_curve(acceleration_time) : current_block->cruise_rate; #else acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate; NOMORE(acc_step_rate, current_block->nominal_rate); #endif // acc_step_rate is in steps/second // step_rate to timer interval and steps per stepper isr interval = calc_timer_interval(acc_step_rate, oversampling_factor, &steps_per_isr); acceleration_time += interval; #if ENABLED(LIN_ADVANCE) if (LA_use_advance_lead) { // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached if (step_events_completed == steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed)) { nextAdvanceISR = 0; LA_isr_rate = current_block->advance_speed; } } else { LA_isr_rate = LA_ADV_NEVER; if (LA_steps) nextAdvanceISR = 0; } #endif // LIN_ADVANCE } // Are we in Deceleration phase ? else if (step_events_completed > decelerate_after) { uint32_t step_rate; #if ENABLED(S_CURVE_ACCELERATION) // If this is the 1st time we process the 2nd half of the trapezoid... if (!bezier_2nd_half) { // Initialize the Bézier speed curve _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse); bezier_2nd_half = true; // The first point starts at cruise rate. Just save evaluation of the Bézier curve step_rate = current_block->cruise_rate; } else { // Calculate the next speed to use step_rate = deceleration_time < current_block->deceleration_time ? _eval_bezier_curve(deceleration_time) : current_block->final_rate; } #else // Using the old trapezoidal control step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate); if (step_rate < acc_step_rate) { // Still decelerating? step_rate = acc_step_rate - step_rate; NOLESS(step_rate, current_block->final_rate); } else step_rate = current_block->final_rate; #endif // step_rate is in steps/second // step_rate to timer interval and steps per stepper isr interval = calc_timer_interval(step_rate, oversampling_factor, &steps_per_isr); deceleration_time += interval; #if ENABLED(LIN_ADVANCE) if (LA_use_advance_lead) { if (step_events_completed <= decelerate_after + steps_per_isr || (LA_steps && LA_isr_rate != current_block->advance_speed) ) { nextAdvanceISR = 0; // Wake up eISR on first deceleration loop LA_isr_rate = current_block->advance_speed; } } else { LA_isr_rate = LA_ADV_NEVER; if (LA_steps) nextAdvanceISR = 0; } #endif // LIN_ADVANCE } // We must be in cruise phase otherwise else { #if ENABLED(LIN_ADVANCE) // If there are any esteps, fire the next advance_isr "now" if (LA_steps && LA_isr_rate != current_block->advance_speed) nextAdvanceISR = 0; #endif // Calculate the ticks_nominal for this nominal speed, if not done yet if (ticks_nominal < 0) { // step_rate to timer interval and loops for the nominal speed ticks_nominal = calc_timer_interval(current_block->nominal_rate, oversampling_factor, &steps_per_isr); } // The timer interval is just the nominal value for the nominal speed interval = ticks_nominal; } } } // If there is no current block at this point, attempt to pop one from the buffer // and prepare its movement if (!current_block) { // Anything in the buffer? if ((current_block = planner.get_current_block())) { // Sync block? Sync the stepper counts and return while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) { _set_position( current_block->position[A_AXIS], current_block->position[B_AXIS], current_block->position[C_AXIS], current_block->position[E_AXIS] ); planner.discard_current_block(); // Try to get a new block if (!(current_block = planner.get_current_block())) return interval; // No more queued movements! } // Flag all moving axes for proper endstop handling #if IS_CORE // Define conditions for checking endstops #define S_(N) current_block->steps[CORE_AXIS_##N] #define D_(N) TEST(current_block->direction_bits, CORE_AXIS_##N) #endif #if CORE_IS_XY || CORE_IS_XZ /** * Head direction in -X axis for CoreXY and CoreXZ bots. * * If steps differ, both axes are moving. * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below) * If DeltaA == DeltaB, the movement is only in the 1st axis (X) */ #if ENABLED(COREXY) || ENABLED(COREXZ) #define X_CMP == #else #define X_CMP != #endif #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) X_CMP D_(2)) ) #else #define X_MOVE_TEST !!current_block->steps[A_AXIS] #endif #if CORE_IS_XY || CORE_IS_YZ /** * Head direction in -Y axis for CoreXY / CoreYZ bots. * * If steps differ, both axes are moving * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y) * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z) */ #if ENABLED(COREYX) || ENABLED(COREYZ) #define Y_CMP == #else #define Y_CMP != #endif #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Y_CMP D_(2)) ) #else #define Y_MOVE_TEST !!current_block->steps[B_AXIS] #endif #if CORE_IS_XZ || CORE_IS_YZ /** * Head direction in -Z axis for CoreXZ or CoreYZ bots. * * If steps differ, both axes are moving * If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above) * If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z) */ #if ENABLED(COREZX) || ENABLED(COREZY) #define Z_CMP == #else #define Z_CMP != #endif #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Z_CMP D_(2)) ) #else #define Z_MOVE_TEST !!current_block->steps[C_AXIS] #endif uint8_t axis_bits = 0; if (X_MOVE_TEST) SBI(axis_bits, A_AXIS); if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS); if (Z_MOVE_TEST) SBI(axis_bits, C_AXIS); //if (!!current_block->steps[E_AXIS]) SBI(axis_bits, E_AXIS); //if (!!current_block->steps[A_AXIS]) SBI(axis_bits, X_HEAD); //if (!!current_block->steps[B_AXIS]) SBI(axis_bits, Y_HEAD); //if (!!current_block->steps[C_AXIS]) SBI(axis_bits, Z_HEAD); axis_did_move = axis_bits; // No acceleration / deceleration time elapsed so far acceleration_time = deceleration_time = 0; uint8_t oversampling = 0; // Assume we won't use it #if ENABLED(ADAPTIVE_STEP_SMOOTHING) // At this point, we must decide if we can use Stepper movement axis smoothing. uint32_t max_rate = current_block->nominal_rate; // Get the maximum rate (maximum event speed) while (max_rate < MIN_STEP_ISR_FREQUENCY) { max_rate <<= 1; if (max_rate >= MAX_STEP_ISR_FREQUENCY_1X) break; ++oversampling; } oversampling_factor = oversampling; #endif // Based on the oversampling factor, do the calculations step_event_count = current_block->step_event_count << oversampling; // Initialize Bresenham delta errors to 1/2 delta_error[X_AXIS] = delta_error[Y_AXIS] = delta_error[Z_AXIS] = delta_error[E_AXIS] = -int32_t(step_event_count); // Calculate Bresenham dividends advance_dividend[X_AXIS] = current_block->steps[X_AXIS] << 1; advance_dividend[Y_AXIS] = current_block->steps[Y_AXIS] << 1; advance_dividend[Z_AXIS] = current_block->steps[Z_AXIS] << 1; advance_dividend[E_AXIS] = current_block->steps[E_AXIS] << 1; // Calculate Bresenham divisor advance_divisor = step_event_count << 1; // No step events completed so far step_events_completed = 0; // Compute the acceleration and deceleration points accelerate_until = current_block->accelerate_until << oversampling; decelerate_after = current_block->decelerate_after << oversampling; #if ENABLED(MIXING_EXTRUDER) const uint32_t e_steps = ( #if ENABLED(LIN_ADVANCE) current_block->steps[E_AXIS] #else step_event_count #endif ); MIXING_STEPPERS_LOOP(i) { delta_error_m[i] = -int32_t(e_steps); advance_dividend_m[i] = current_block->mix_steps[i] << 1; } advance_divisor_m = e_steps << 1; #else active_extruder = current_block->active_extruder; #endif // Initialize the trapezoid generator from the current block. #if ENABLED(LIN_ADVANCE) #if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1 // If the now active extruder wasn't in use during the last move, its pressure is most likely gone. if (active_extruder != last_moved_extruder) LA_current_adv_steps = 0; #endif if ((LA_use_advance_lead = current_block->use_advance_lead)) { LA_final_adv_steps = current_block->final_adv_steps; LA_max_adv_steps = current_block->max_adv_steps; } #endif if (current_block->direction_bits != last_direction_bits #if DISABLED(MIXING_EXTRUDER) || active_extruder != last_moved_extruder #endif ) { last_direction_bits = current_block->direction_bits; #if DISABLED(MIXING_EXTRUDER) last_moved_extruder = active_extruder; #endif set_directions(); } // At this point, we must ensure the movement about to execute isn't // trying to force the head against a limit switch. If using interrupt- // driven change detection, and already against a limit then no call to // the endstop_triggered method will be done and the movement will be // done against the endstop. So, check the limits here: If the movement // is against the limits, the block will be marked as to be killed, and // on the next call to this ISR, will be discarded. endstops.update(); #if ENABLED(Z_LATE_ENABLE) // If delayed Z enable, enable it now. This option will severely interfere with // timing between pulses when chaining motion between blocks, and it could lead // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!! if (current_block->steps[Z_AXIS]) enable_Z(); #endif // Mark the time_nominal as not calculated yet ticks_nominal = -1; #if DISABLED(S_CURVE_ACCELERATION) // Set as deceleration point the initial rate of the block acc_step_rate = current_block->initial_rate; #endif #if ENABLED(S_CURVE_ACCELERATION) // Initialize the Bézier speed curve _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse); // We haven't started the 2nd half of the trapezoid bezier_2nd_half = false; #endif // Calculate the initial timer interval interval = calc_timer_interval(current_block->initial_rate, oversampling_factor, &steps_per_isr); } } // Return the interval to wait return interval; } #if ENABLED(LIN_ADVANCE) // Timer interrupt for E. LA_steps is set in the main routine uint32_t Stepper::advance_isr() { uint32_t interval; if (LA_use_advance_lead) { if (step_events_completed > decelerate_after && LA_current_adv_steps > LA_final_adv_steps) { LA_steps--; LA_current_adv_steps--; interval = LA_isr_rate; } else if (step_events_completed < decelerate_after && LA_current_adv_steps < LA_max_adv_steps) { //step_events_completed <= (uint32_t)accelerate_until) { LA_steps++; LA_current_adv_steps++; interval = LA_isr_rate; } else interval = LA_isr_rate = LA_ADV_NEVER; } else interval = LA_ADV_NEVER; #if ENABLED(MIXING_EXTRUDER) if (LA_steps >= 0) MIXING_STEPPERS_LOOP(j) NORM_E_DIR(j); else MIXING_STEPPERS_LOOP(j) REV_E_DIR(j); #else if (LA_steps >= 0) NORM_E_DIR(active_extruder); else REV_E_DIR(active_extruder); #endif // Get the timer count and estimate the end of the pulse hal_timer_t pulse_end = HAL_timer_get_count(PULSE_TIMER_NUM) + hal_timer_t(MIN_PULSE_TICKS); const hal_timer_t added_step_ticks = ADDED_STEP_TICKS; // Step E stepper if we have steps while (LA_steps) { // Set the STEP pulse ON #if ENABLED(MIXING_EXTRUDER) MIXING_STEPPERS_LOOP(j) { // Step mixing steppers (proportionally) delta_error_m[j] += advance_dividend_m[j]; // Step when the counter goes over zero if (delta_error_m[j] >= 0) E_STEP_WRITE(j, !INVERT_E_STEP_PIN); } #else E_STEP_WRITE(active_extruder, !INVERT_E_STEP_PIN); #endif // Enforce a minimum duration for STEP pulse ON #if MINIMUM_STEPPER_PULSE // Just wait for the requested pulse duration while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ } #endif // Add the delay needed to ensure the maximum driver rate is enforced if (signed(added_step_ticks) > 0) pulse_end += hal_timer_t(added_step_ticks); LA_steps < 0 ? ++LA_steps : --LA_steps; // Set the STEP pulse OFF #if ENABLED(MIXING_EXTRUDER) MIXING_STEPPERS_LOOP(j) { if (delta_error_m[j] >= 0) { delta_error_m[j] -= advance_divisor_m; E_STEP_WRITE(j, INVERT_E_STEP_PIN); } } #else E_STEP_WRITE(active_extruder, INVERT_E_STEP_PIN); #endif // For minimum pulse time wait before looping // Just wait for the requested pulse duration if (LA_steps) { while (HAL_timer_get_count(PULSE_TIMER_NUM) < pulse_end) { /* nada */ } #if MINIMUM_STEPPER_PULSE // Add to the value, the time that the pulse must be active (to be used on the next loop) pulse_end += hal_timer_t(MIN_PULSE_TICKS); #endif } } // LA_steps return interval; } #endif // LIN_ADVANCE void Stepper::init() { // Init Digipot Motor Current #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM digipot_init(); #endif // Init Microstepping Pins #if HAS_MICROSTEPS microstep_init(); #endif // Init Dir Pins #if HAS_X_DIR X_DIR_INIT; #endif #if HAS_X2_DIR X2_DIR_INIT; #endif #if HAS_Y_DIR Y_DIR_INIT; #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR Y2_DIR_INIT; #endif #endif #if HAS_Z_DIR Z_DIR_INIT; #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR Z2_DIR_INIT; #endif #endif #if HAS_E0_DIR E0_DIR_INIT; #endif #if HAS_E1_DIR E1_DIR_INIT; #endif #if HAS_E2_DIR E2_DIR_INIT; #endif #if HAS_E3_DIR E3_DIR_INIT; #endif #if HAS_E4_DIR E4_DIR_INIT; #endif // Init Enable Pins - steppers default to disabled. #if HAS_X_ENABLE X_ENABLE_INIT; if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); #if (ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)) && HAS_X2_ENABLE X2_ENABLE_INIT; if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_Y_ENABLE Y_ENABLE_INIT; if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE Y2_ENABLE_INIT; if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_Z_ENABLE Z_ENABLE_INIT; if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE Z2_ENABLE_INIT; if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_E0_ENABLE E0_ENABLE_INIT; if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); #endif #if HAS_E1_ENABLE E1_ENABLE_INIT; if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); #endif #if HAS_E2_ENABLE E2_ENABLE_INIT; if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); #endif #if HAS_E3_ENABLE E3_ENABLE_INIT; if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); #endif #if HAS_E4_ENABLE E4_ENABLE_INIT; if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH); #endif #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW) #define _DISABLE(AXIS) disable_## AXIS() #define AXIS_INIT(AXIS, PIN) \ _STEP_INIT(AXIS); \ _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \ _DISABLE(AXIS) #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E) // Init Step Pins #if HAS_X_STEP #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE) X2_STEP_INIT; X2_STEP_WRITE(INVERT_X_STEP_PIN); #endif AXIS_INIT(X, X); #endif #if HAS_Y_STEP #if ENABLED(Y_DUAL_STEPPER_DRIVERS) Y2_STEP_INIT; Y2_STEP_WRITE(INVERT_Y_STEP_PIN); #endif AXIS_INIT(Y, Y); #endif #if HAS_Z_STEP #if ENABLED(Z_DUAL_STEPPER_DRIVERS) Z2_STEP_INIT; Z2_STEP_WRITE(INVERT_Z_STEP_PIN); #endif AXIS_INIT(Z, Z); #endif #if E_STEPPERS > 0 && HAS_E0_STEP E_AXIS_INIT(0); #endif #if E_STEPPERS > 1 && HAS_E1_STEP E_AXIS_INIT(1); #endif #if E_STEPPERS > 2 && HAS_E2_STEP E_AXIS_INIT(2); #endif #if E_STEPPERS > 3 && HAS_E3_STEP E_AXIS_INIT(3); #endif #if E_STEPPERS > 4 && HAS_E4_STEP E_AXIS_INIT(4); #endif // Init Stepper ISR to 122 Hz for quick starting HAL_timer_start(STEP_TIMER_NUM, 122); // OCR1A = 0x4000 ENABLE_STEPPER_DRIVER_INTERRUPT(); endstops.enable(true); // Start with endstops active. After homing they can be disabled sei(); set_directions(); // Init directions to last_direction_bits = 0 } /** * Set the stepper positions directly in steps * * The input is based on the typical per-axis XYZ steps. * For CORE machines XYZ needs to be translated to ABC. * * This allows get_axis_position_mm to correctly * derive the current XYZ position later on. */ void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { #if CORE_IS_XY // corexy positioning // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html count_position[A_AXIS] = a + b; count_position[B_AXIS] = CORESIGN(a - b); count_position[Z_AXIS] = c; #elif CORE_IS_XZ // corexz planning count_position[A_AXIS] = a + c; count_position[Y_AXIS] = b; count_position[C_AXIS] = CORESIGN(a - c); #elif CORE_IS_YZ // coreyz planning count_position[X_AXIS] = a; count_position[B_AXIS] = b + c; count_position[C_AXIS] = CORESIGN(b - c); #else // default non-h-bot planning count_position[X_AXIS] = a; count_position[Y_AXIS] = b; count_position[Z_AXIS] = c; #endif count_position[E_AXIS] = e; } /** * Get a stepper's position in steps. */ int32_t Stepper::position(const AxisEnum axis) { const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); const int32_t v = count_position[axis]; if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); return v; } // Signal endstops were triggered - This function can be called from // an ISR context (Temperature, Stepper or limits ISR), so we must // be very careful here. If the interrupt being preempted was the // Stepper ISR (this CAN happen with the endstop limits ISR) then // when the stepper ISR resumes, we must be very sure that the movement // is properly cancelled void Stepper::endstop_triggered(const AxisEnum axis) { const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); #if IS_CORE endstops_trigsteps[axis] = 0.5f * ( axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]) : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2] ); #else // !COREXY && !COREXZ && !COREYZ endstops_trigsteps[axis] = count_position[axis]; #endif // !COREXY && !COREXZ && !COREYZ // Discard the rest of the move if there is a current block quick_stop(); if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } int32_t Stepper::triggered_position(const AxisEnum axis) { const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); const int32_t v = endstops_trigsteps[axis]; if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); return v; } void Stepper::report_positions() { // Protect the access to the position. const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); const int32_t xpos = count_position[X_AXIS], ypos = count_position[Y_AXIS], zpos = count_position[Z_AXIS]; if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); #if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA SERIAL_PROTOCOLPGM(MSG_COUNT_A); #else SERIAL_PROTOCOLPGM(MSG_COUNT_X); #endif SERIAL_PROTOCOL(xpos); #if CORE_IS_XY || CORE_IS_YZ || IS_DELTA || IS_SCARA SERIAL_PROTOCOLPGM(" B:"); #else SERIAL_PROTOCOLPGM(" Y:"); #endif SERIAL_PROTOCOL(ypos); #if CORE_IS_XZ || CORE_IS_YZ || IS_DELTA SERIAL_PROTOCOLPGM(" C:"); #else SERIAL_PROTOCOLPGM(" Z:"); #endif SERIAL_PROTOCOL(zpos); SERIAL_EOL(); } #if ENABLED(BABYSTEPPING) #if MINIMUM_STEPPER_PULSE #define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND) #else #define STEP_PULSE_CYCLES 0 #endif #if ENABLED(DELTA) #define CYCLES_EATEN_BABYSTEP (2 * 15) #else #define CYCLES_EATEN_BABYSTEP 0 #endif #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP)) #define _ENABLE(AXIS) enable_## AXIS() #define _READ_DIR(AXIS) AXIS ##_DIR_READ #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true) #if EXTRA_CYCLES_BABYSTEP > 20 #define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_count(PULSE_TIMER_NUM) #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_count(PULSE_TIMER_NUM) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ } #else #define _SAVE_START NOOP #if EXTRA_CYCLES_BABYSTEP > 0 #define _PULSE_WAIT DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE) #elif STEP_PULSE_CYCLES > 0 #define _PULSE_WAIT NOOP #elif ENABLED(DELTA) #define _PULSE_WAIT DELAY_US(2); #else #define _PULSE_WAIT DELAY_US(4); #endif #endif #define BABYSTEP_AXIS(AXIS, INVERT, DIR) { \ const uint8_t old_dir = _READ_DIR(AXIS); \ _ENABLE(AXIS); \ _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^DIR^INVERT); \ DELAY_NS(400); /* DRV8825 */ \ _SAVE_START; \ _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \ _PULSE_WAIT; \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \ _APPLY_DIR(AXIS, old_dir); \ } // MUST ONLY BE CALLED BY AN ISR, // No other ISR should ever interrupt this! void Stepper::babystep(const AxisEnum axis, const bool direction) { cli(); switch (axis) { #if ENABLED(BABYSTEP_XY) case X_AXIS: #if CORE_IS_XY BABYSTEP_AXIS(X, false, direction); BABYSTEP_AXIS(Y, false, direction); #elif CORE_IS_XZ BABYSTEP_AXIS(X, false, direction); BABYSTEP_AXIS(Z, false, direction); #else BABYSTEP_AXIS(X, false, direction); #endif break; case Y_AXIS: #if CORE_IS_XY BABYSTEP_AXIS(X, false, direction); BABYSTEP_AXIS(Y, false, direction^(CORESIGN(1)<0)); #elif CORE_IS_YZ BABYSTEP_AXIS(Y, false, direction); BABYSTEP_AXIS(Z, false, direction^(CORESIGN(1)<0)); #else BABYSTEP_AXIS(Y, false, direction); #endif break; #endif case Z_AXIS: { #if CORE_IS_XZ BABYSTEP_AXIS(X, BABYSTEP_INVERT_Z, direction); BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0)); #elif CORE_IS_YZ BABYSTEP_AXIS(Y, BABYSTEP_INVERT_Z, direction); BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction^(CORESIGN(1)<0)); #elif DISABLED(DELTA) BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z, direction); #else // DELTA const bool z_direction = direction ^ BABYSTEP_INVERT_Z; enable_X(); enable_Y(); enable_Z(); const uint8_t old_x_dir_pin = X_DIR_READ, old_y_dir_pin = Y_DIR_READ, old_z_dir_pin = Z_DIR_READ; X_DIR_WRITE(INVERT_X_DIR ^ z_direction); Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction); Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction); DELAY_NS(400); // DRV8825 _SAVE_START; X_STEP_WRITE(!INVERT_X_STEP_PIN); Y_STEP_WRITE(!INVERT_Y_STEP_PIN); Z_STEP_WRITE(!INVERT_Z_STEP_PIN); _PULSE_WAIT; X_STEP_WRITE(INVERT_X_STEP_PIN); Y_STEP_WRITE(INVERT_Y_STEP_PIN); Z_STEP_WRITE(INVERT_Z_STEP_PIN); // Restore direction bits X_DIR_WRITE(old_x_dir_pin); Y_DIR_WRITE(old_y_dir_pin); Z_DIR_WRITE(old_z_dir_pin); #endif } break; default: break; } sei(); } #endif // BABYSTEPPING /** * Software-controlled Stepper Motor Current */ #if HAS_DIGIPOTSS // From Arduino DigitalPotControl example void Stepper::digitalPotWrite(const int16_t address, const int16_t value) { WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip SPI.transfer(address); // Send the address and value via SPI SPI.transfer(value); WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip //delay(10); } #endif // HAS_DIGIPOTSS #if HAS_MOTOR_CURRENT_PWM void Stepper::refresh_motor_power() { for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) { switch (i) { #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) case 0: #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) case 1: #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) case 2: #endif digipot_current(i, motor_current_setting[i]); default: break; } } } #endif // HAS_MOTOR_CURRENT_PWM #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM void Stepper::digipot_current(const uint8_t driver, const int current) { #if HAS_DIGIPOTSS const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; digitalPotWrite(digipot_ch[driver], current); #elif HAS_MOTOR_CURRENT_PWM if (WITHIN(driver, 0, 2)) motor_current_setting[driver] = current; // update motor_current_setting #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)) switch (driver) { #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) case 0: _WRITE_CURRENT_PWM(XY); break; #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) case 1: _WRITE_CURRENT_PWM(Z); break; #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) case 2: _WRITE_CURRENT_PWM(E); break; #endif } #endif } void Stepper::digipot_init() { #if HAS_DIGIPOTSS static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; SPI.begin(); SET_OUTPUT(DIGIPOTSS_PIN); for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) { //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); digipot_current(i, digipot_motor_current[i]); } #elif HAS_MOTOR_CURRENT_PWM #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN); #endif refresh_motor_power(); // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise) SET_CS5(PRESCALER_1); #endif } #endif #if HAS_MICROSTEPS /** * Software-controlled Microstepping */ void Stepper::microstep_init() { SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN); #if HAS_Y_MICROSTEPS SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN); #endif #if HAS_Z_MICROSTEPS SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN); #endif #if HAS_E0_MICROSTEPS SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN); #endif #if HAS_E1_MICROSTEPS SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN); #endif #if HAS_E2_MICROSTEPS SET_OUTPUT(E2_MS1_PIN); SET_OUTPUT(E2_MS2_PIN); #endif #if HAS_E3_MICROSTEPS SET_OUTPUT(E3_MS1_PIN); SET_OUTPUT(E3_MS2_PIN); #endif #if HAS_E4_MICROSTEPS SET_OUTPUT(E4_MS1_PIN); SET_OUTPUT(E4_MS2_PIN); #endif static const uint8_t microstep_modes[] = MICROSTEP_MODES; for (uint16_t i = 0; i < COUNT(microstep_modes); i++) microstep_mode(i, microstep_modes[i]); } void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) { if (ms1 >= 0) switch (driver) { case 0: WRITE(X_MS1_PIN, ms1); break; #if HAS_Y_MICROSTEPS case 1: WRITE(Y_MS1_PIN, ms1); break; #endif #if HAS_Z_MICROSTEPS case 2: WRITE(Z_MS1_PIN, ms1); break; #endif #if HAS_E0_MICROSTEPS case 3: WRITE(E0_MS1_PIN, ms1); break; #endif #if HAS_E1_MICROSTEPS case 4: WRITE(E1_MS1_PIN, ms1); break; #endif #if HAS_E2_MICROSTEPS case 5: WRITE(E2_MS1_PIN, ms1); break; #endif #if HAS_E3_MICROSTEPS case 6: WRITE(E3_MS1_PIN, ms1); break; #endif #if HAS_E4_MICROSTEPS case 7: WRITE(E4_MS1_PIN, ms1); break; #endif } if (ms2 >= 0) switch (driver) { case 0: WRITE(X_MS2_PIN, ms2); break; #if HAS_Y_MICROSTEPS case 1: WRITE(Y_MS2_PIN, ms2); break; #endif #if HAS_Z_MICROSTEPS case 2: WRITE(Z_MS2_PIN, ms2); break; #endif #if HAS_E0_MICROSTEPS case 3: WRITE(E0_MS2_PIN, ms2); break; #endif #if HAS_E1_MICROSTEPS case 4: WRITE(E1_MS2_PIN, ms2); break; #endif #if HAS_E2_MICROSTEPS case 5: WRITE(E2_MS2_PIN, ms2); break; #endif #if HAS_E3_MICROSTEPS case 6: WRITE(E3_MS2_PIN, ms2); break; #endif #if HAS_E4_MICROSTEPS case 7: WRITE(E4_MS2_PIN, ms2); break; #endif } } void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) { switch (stepping_mode) { case 1: microstep_ms(driver, MICROSTEP1); break; #if ENABLED(HEROIC_STEPPER_DRIVERS) case 128: microstep_ms(driver, MICROSTEP128); break; #else case 2: microstep_ms(driver, MICROSTEP2); break; case 4: microstep_ms(driver, MICROSTEP4); break; #endif case 8: microstep_ms(driver, MICROSTEP8); break; case 16: microstep_ms(driver, MICROSTEP16); break; default: SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Microsteps unavailable"); break; } } void Stepper::microstep_readings() { SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins"); SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL(READ(X_MS1_PIN)); SERIAL_PROTOCOLLN(READ(X_MS2_PIN)); #if HAS_Y_MICROSTEPS SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOL(READ(Y_MS1_PIN)); SERIAL_PROTOCOLLN(READ(Y_MS2_PIN)); #endif #if HAS_Z_MICROSTEPS SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOL(READ(Z_MS1_PIN)); SERIAL_PROTOCOLLN(READ(Z_MS2_PIN)); #endif #if HAS_E0_MICROSTEPS SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOL(READ(E0_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E0_MS2_PIN)); #endif #if HAS_E1_MICROSTEPS SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOL(READ(E1_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E1_MS2_PIN)); #endif #if HAS_E2_MICROSTEPS SERIAL_PROTOCOLPGM("E2: "); SERIAL_PROTOCOL(READ(E2_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E2_MS2_PIN)); #endif #if HAS_E3_MICROSTEPS SERIAL_PROTOCOLPGM("E3: "); SERIAL_PROTOCOL(READ(E3_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E3_MS2_PIN)); #endif #if HAS_E4_MICROSTEPS SERIAL_PROTOCOLPGM("E4: "); SERIAL_PROTOCOL(READ(E4_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E4_MS2_PIN)); #endif } #endif // HAS_MICROSTEPS