/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * planner.cpp * * Buffer movement commands and manage the acceleration profile plan * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud * * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. * * * Reasoning behind the mathematics in this module (in the key of 'Mathematica'): * * s == speed, a == acceleration, t == time, d == distance * * Basic definitions: * Speed[s_, a_, t_] := s + (a*t) * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] * * Distance to reach a specific speed with a constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() * * Speed after a given distance of travel with constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] * m -> Sqrt[2 a d + s^2] * * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] * * When to start braking (di) to reach a specified destination speed (s2) after accelerating * from initial speed s1 without ever stopping at a plateau: * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() * * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) * */ #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "parser.h" #include "Marlin.h" #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #elif ENABLED(AUTO_BED_LEVELING_UBL) #include "ubl.h" #endif #if ENABLED(AUTO_POWER_CONTROL) #include "power.h" #endif Planner planner; // public: /** * A ring buffer of moves described in steps */ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE]; volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed Planner::block_buffer_tail; float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second Planner::axis_steps_per_mm[XYZE_N], Planner::steps_to_mm[XYZE_N]; #if ENABLED(DISTINCT_E_FACTORS) uint8_t Planner::last_extruder = 0; // Respond to extruder change #endif int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); // The flow percentage and volumetric multiplier combine to scale E movement #if DISABLED(NO_VOLUMETRICS) float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner #endif uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N], Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software uint32_t Planner::min_segment_time_us; // Initialized by settings.load() float Planner::min_feedrate_mm_s, Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration Planner::min_travel_feedrate_mm_s; #if HAS_LEVELING bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled #if ABL_PLANAR matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) float Planner::z_fade_height, // Initialized by settings.load() Planner::inverse_z_fade_height, Planner::last_fade_z; #endif #else constexpr bool Planner::leveling_active; #endif #if ENABLED(SKEW_CORRECTION) #if ENABLED(SKEW_CORRECTION_GCODE) float Planner::xy_skew_factor; #else constexpr float Planner::xy_skew_factor; #endif #if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE) float Planner::xz_skew_factor, Planner::yz_skew_factor; #else constexpr float Planner::xz_skew_factor, Planner::yz_skew_factor; #endif #endif #if ENABLED(AUTOTEMP) float Planner::autotemp_max = 250, Planner::autotemp_min = 210, Planner::autotemp_factor = 0.1; bool Planner::autotemp_enabled = false; #endif // private: int32_t Planner::position[NUM_AXIS] = { 0 }; uint32_t Planner::cutoff_long; float Planner::previous_speed[NUM_AXIS], Planner::previous_nominal_speed; #if ENABLED(DISABLE_INACTIVE_EXTRUDER) uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 }; #endif #ifdef XY_FREQUENCY_LIMIT // Old direction bits. Used for speed calculations unsigned char Planner::old_direction_bits = 0; // Segment times (in µs). Used for speed calculations uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } }; #endif #if ENABLED(LIN_ADVANCE) float Planner::extruder_advance_K; // Initialized by settings.load() #endif #if HAS_POSITION_FLOAT float Planner::position_float[XYZE]; // Needed for accurate maths. Steps cannot be used! #endif #if ENABLED(ULTRA_LCD) volatile uint32_t Planner::block_buffer_runtime_us = 0; #endif /** * Class and Instance Methods */ Planner::Planner() { init(); } void Planner::init() { ZERO(position); #if HAS_POSITION_FLOAT ZERO(position_float); #endif ZERO(previous_speed); previous_nominal_speed = 0.0; #if ABL_PLANAR bed_level_matrix.set_to_identity(); #endif clear_block_buffer(); } #if ENABLED(BEZIER_JERK_CONTROL) // This routine, for AVR, returns 0x1000000 / d, but trying to get the inverse as // fast as possible. A fast converging iterative Newton-Raphson method is able to // reach full precision in just 1 iteration, and takes 211 cycles (worst case, mean // case is less, up to 30 cycles for small divisors), instead of the 500 cycles a // normal division would take. // // Inspired by the following page, // https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers // // Suppose we want to calculate // floor(2 ^ k / B) where B is a positive integer // Then // B must be <= 2^k, otherwise, the quotient is 0. // // The Newton - Raphson iteration for x = B / 2 ^ k yields: // q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k) // // We can rearrange it as: // q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k // // Each iteration of this kind requires only integer multiplications // and bit shifts. // Does it converge to floor(2 ^ k / B) ?: Not necessarily, but, in // the worst case, it eventually alternates between floor(2 ^ k / B) // and ceiling(2 ^ k / B)). // So we can use some not-so-clever test to see if we are in this // case, and extract floor(2 ^ k / B). // Lastly, a simple but important optimization for this approach is to // truncate multiplications (i.e.calculate only the higher bits of the // product) in the early iterations of the Newton - Raphson method.The // reason to do so, is that the results of the early iterations are far // from the quotient, and it doesn't matter to perform them inaccurately. // Finally, we should pick a good starting value for x. Knowing how many // digits the divisor has, we can estimate it: // // 2^k / x = 2 ^ log2(2^k / x) // 2^k / x = 2 ^(log2(2^k)-log2(x)) // 2^k / x = 2 ^(k*log2(2)-log2(x)) // 2^k / x = 2 ^ (k-log2(x)) // 2^k / x >= 2 ^ (k-floor(log2(x))) // floor(log2(x)) simply is the index of the most significant bit set. // // If we could improve this estimation even further, then the number of // iterations can be dropped quite a bit, thus saving valuable execution time. // The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft // Research, Silicon Valley,August 26, 2008, that is available at // https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf // suggests , for its integer division algorithm, that using a table to supply the // first 8 bits of precision, and due to the quadratic convergence nature of the // Newton-Raphon iteration, then just 2 iterations should be enough to get // maximum precision of the division. // If we precompute values of inverses for small denominator values, then // just one Newton-Raphson iteration is enough to reach full precision // We will use the top 9 bits of the denominator as index. // // The AVR assembly function is implementing the following C code, included // here as reference: // // uint32_t get_period_inverse(uint32_t d) { // static const uint8_t inv_tab[256] = { // 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227, // 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200, // 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176, // 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154, // 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135, // 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117, // 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101, // 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86, // 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72, // 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59, // 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48, // 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37, // 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27, // 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17, // 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8, // 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0 // }; // // // For small denominators, it is cheaper to directly store the result, // // because those denominators would require 2 Newton-Raphson iterations // // to converge to the required result precision. For bigger ones, just // // ONE Newton-Raphson iteration is enough to get maximum precision! // static const uint32_t small_inv_tab[111] PROGMEM = { // 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481, // 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200, // 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962, // 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305, // 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369, // 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602, // 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520 // }; // // // For small divisors, it is best to directly retrieve the results // if (d <= 110) // return pgm_read_dword(&small_inv_tab[d]); // // // Compute initial estimation of 0x1000000/x - // // Get most significant bit set on divider // uint8_t idx = 0; // uint32_t nr = d; // if (!(nr & 0xFF0000)) { // nr <<= 8; // idx += 8; // if (!(nr & 0xFF0000)) { // nr <<= 8; // idx += 8; // } // } // if (!(nr & 0xF00000)) { // nr <<= 4; // idx += 4; // } // if (!(nr & 0xC00000)) { // nr <<= 2; // idx += 2; // } // if (!(nr & 0x800000)) { // nr <<= 1; // idx += 1; // } // // // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table // uint32_t tidx = nr >> 15; // top 9 bits. bit8 is always set // uint32_t ie = inv_tab[tidx & 0xFF] + 256; // Get the table value. bit9 is always set // uint32_t x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place // // // Now, refine estimation by newton-raphson. 1 iteration is enough // x = uint32_t((x * uint64_t((1 << 25) - x * d)) >> 24); // // // Estimate remainder // uint32_t r = (1 << 24) - x * d; // // // Check if we must adjust result // if (r >= d) x++; // // // x holds the proper estimation // return uint32_t(x); // } // static uint32_t get_period_inverse(uint32_t d) { static const uint8_t inv_tab[256] PROGMEM = { 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227, 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200, 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176, 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154, 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135, 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117, 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101, 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86, 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72, 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59, 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48, 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37, 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27, 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17, 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8, 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0 }; // For small denominators, it is cheaper to directly store the result. // For bigger ones, just ONE Newton-Raphson iteration is enough to get // maximum precision we need static const uint32_t small_inv_tab[111] PROGMEM = { 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481, 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200, 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962, 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305, 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369, 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602, 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520 }; // For small divisors, it is best to directly retrieve the results if (d <= 110) return pgm_read_dword(&small_inv_tab[d]); register uint8_t r8 = d & 0xFF; register uint8_t r9 = (d >> 8) & 0xFF; register uint8_t r10 = (d >> 16) & 0xFF; register uint8_t r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18; register const uint8_t* ptab = inv_tab; __asm__ __volatile__( // %8:%7:%6 = interval // r31:r30: MUST be those registers, and they must point to the inv_tab A("clr %13") // %13 = 0 // Now we must compute // result = 0xFFFFFF / d // %8:%7:%6 = interval // %16:%15:%14 = nr // %13 = 0 // A plain division of 24x24 bits should take 388 cycles to complete. We will // use Newton-Raphson for the calculation, and will strive to get way less cycles // for the same result - Using C division, it takes 500cycles to complete . A("clr %3") // idx = 0 A("mov %14,%6") A("mov %15,%7") A("mov %16,%8") // nr = interval A("tst %16") // nr & 0xFF0000 == 0 ? A("brne 2f") // No, skip this A("mov %16,%15") A("mov %15,%14") // nr <<= 8, %14 not needed A("subi %3,-8") // idx += 8 A("tst %16") // nr & 0xFF0000 == 0 ? A("brne 2f") // No, skip this A("mov %16,%15") // nr <<= 8, %14 not needed A("clr %15") // We clear %14 A("subi %3,-8") // idx += 8 // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0 L("2") A("cpi %16,0x10") // (nr & 0xF00000) == 0 ? A("brcc 3f") // No, skip this A("swap %15") // Swap nibbles A("swap %16") // Swap nibbles. Low nibble is 0 A("mov %14, %15") A("andi %14,0x0F") // Isolate low nibble A("andi %15,0xF0") // Keep proper nibble in %15 A("or %16, %14") // %16:%15 <<= 4 A("subi %3,-4") // idx += 4 L("3") A("cpi %16,0x40") // (nr & 0xC00000) == 0 ? A("brcc 4f") // No, skip this A("add %15,%15") A("adc %16,%16") A("add %15,%15") A("adc %16,%16") // %16:%15 <<= 2 A("subi %3,-2") // idx += 2 L("4") A("cpi %16,0x80") // (nr & 0x800000) == 0 ? A("brcc 5f") // No, skip this A("add %15,%15") A("adc %16,%16") // %16:%15 <<= 1 A("inc %3") // idx += 1 // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure // we have at least 9 MSBits available to enter the initial estimation table L("5") A("add %15,%15") A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table) A("add r30,%16") // Only use top 8 bits A("adc r31,%13") // r31:r30 = inv_tab + (tidx) A("lpm %14, Z") // %14 = inv_tab[tidx] A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256 // We must scale the approximation to the proper place A("clr %16") // %16 will always be 0 here A("subi %3,8") // idx == 8 ? A("breq 6f") // yes, no need to scale A("brcs 7f") // If C=1, means idx < 8, result was negative! // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8] A("sbrs %3,0") // shift by 1bit position? A("rjmp 8f") // No A("add %14,%14") A("adc %15,%15") // %15:16 <<= 1 L("8") A("sbrs %3,1") // shift by 2bit position? A("rjmp 9f") // No A("add %14,%14") A("adc %15,%15") A("add %14,%14") A("adc %15,%15") // %15:16 <<= 1 L("9") A("sbrs %3,2") // shift by 4bits position? A("rjmp 16f") // No A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0 A("swap %14") // Swap nibbles A("mov %12,%14") A("andi %12,0x0F") // isolate low nibble A("andi %14,0xF0") // and clear it A("or %15,%12") // %15:%16 <<= 4 L("16") A("sbrs %3,3") // shift by 8bits position? A("rjmp 6f") // No, we are done A("mov %16,%15") A("mov %15,%14") A("clr %14") A("jmp 6f") // idx < 8, now %3 = idx - 8. Get the count of bits L("7") A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8] A("sbrs %3,0") // shift by 1 bit position ? A("rjmp 10f") // No, skip it A("asr %15") // (bit7 is always 0 here) A("ror %14") L("10") A("sbrs %3,1") // shift by 2 bit position ? A("rjmp 11f") // No, skip it A("asr %15") // (bit7 is always 0 here) A("ror %14") A("asr %15") // (bit7 is always 0 here) A("ror %14") L("11") A("sbrs %3,2") // shift by 4 bit position ? A("rjmp 12f") // No, skip it A("swap %15") // Swap nibbles A("andi %14, 0xF0") // Lose the lowest nibble A("swap %14") // Swap nibbles. Upper nibble is 0 A("or %14,%15") // Pass nibble from upper byte A("andi %15, 0x0F") // And get rid of that nibble L("12") A("sbrs %3,3") // shift by 8 bit position ? A("rjmp 6f") // No, skip it A("mov %14,%15") A("clr %15") L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d) // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough // to get more than 18bits of precision (the initial table lookup gives 9 bits of // precision to start from). 18bits of precision is all what is needed here for result // %8:%7:%6 = d = interval // %16:%15:%14 = x = initial estimation of 0x1000000 / d // %13 = 0 // %3:%2:%1:%0 = working accumulator // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive A("clr %0") A("clr %1") A("clr %2") A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000 A("mul %6,%14") // r1:r0 = LO(d) * LO(x) A("sub %0,r0") A("sbc %1,r1") A("sbc %2,%13") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x) A("mul %7,%14") // r1:r0 = MI(d) * LO(x) A("sub %1,r0") A("sbc %2,r1") A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 A("mul %8,%14") // r1:r0 = HI(d) * LO(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 A("mul %6,%15") // r1:r0 = LO(d) * MI(x) A("sub %1,r0") A("sbc %2,r1") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 A("mul %7,%15") // r1:r0 = MI(d) * MI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 A("mul %8,%15") // r1:r0 = HI(d) * MI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 A("mul %6,%16") // r1:r0 = LO(d) * HI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 A("mul %7,%16") // r1:r0 = MI(d) * HI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 // %3:%2:%1:%0 = (1<<25) - x*d [169] // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply // %16:%15:%14 = x = initial estimation of 0x1000000 / d // %3:%2:%1:%0 = (1<<25) - x*d = acc // %13 = 0 // result = %11:%10:%9:%5:%4 A("mul %14,%0") // r1:r0 = LO(x) * LO(acc) A("mov %4,r1") A("clr %5") A("clr %9") A("clr %10") A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8 A("mul %15,%0") // r1:r0 = MI(x) * LO(acc) A("add %4,r0") A("adc %5,r1") A("adc %9,%13") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) A("mul %16,%0") // r1:r0 = HI(x) * LO(acc) A("add %5,r0") A("adc %9,r1") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8 A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc) A("add %4,r0") A("adc %5,r1") A("adc %9,%13") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc) A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc) A("add %5,r0") A("adc %9,r1") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8 A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc) A("add %9,r0") A("adc %10,r1") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16 A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc) A("add %5,r0") A("adc %9,r1") A("adc %10,%13") A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8 A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc) A("add %9,r0") A("adc %10,r1") A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16 A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc) A("add %10,r0") A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24 A("mul %14,%3") // r1:r0 = LO(x) * HI(acc) A("add %9,r0") A("adc %10,r1") A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16 A("mul %15,%3") // r1:r0 = MI(x) * HI(acc) A("add %10,r0") A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24 A("mul %16,%3") // r1:r0 = HI(x) * HI(acc) A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32 // At this point, %11:%10:%9 contains the new estimation of x. // Finally, we must correct the result. Estimate remainder as // (1<<24) - x*d // %11:%10:%9 = x // %8:%7:%6 = d = interval" "\n\t" A("ldi %3,1") A("clr %2") A("clr %1") A("clr %0") // %3:%2:%1:%0 = 0x1000000 A("mul %6,%9") // r1:r0 = LO(d) * LO(x) A("sub %0,r0") A("sbc %1,r1") A("sbc %2,%13") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x) A("mul %7,%9") // r1:r0 = MI(d) * LO(x) A("sub %1,r0") A("sbc %2,r1") A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 A("mul %8,%9") // r1:r0 = HI(d) * LO(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 A("mul %6,%10") // r1:r0 = LO(d) * MI(x) A("sub %1,r0") A("sbc %2,r1") A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 A("mul %7,%10") // r1:r0 = MI(d) * MI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 A("mul %8,%10") // r1:r0 = HI(d) * MI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 A("mul %6,%11") // r1:r0 = LO(d) * HI(x) A("sub %2,r0") A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 A("mul %7,%11") // r1:r0 = MI(d) * HI(x) A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 // %3:%2:%1:%0 = r = (1<<24) - x*d // %8:%7:%6 = d = interval // Perform the final correction A("sub %0,%6") A("sbc %1,%7") A("sbc %2,%8") // r -= d A("brcs 14f") // if ( r >= d) // %11:%10:%9 = x A("ldi %3,1") A("add %9,%3") A("adc %10,%13") A("adc %11,%13") // x++ L("14") // Estimation is done. %11:%10:%9 = x A("clr __zero_reg__") // Make C runtime happy // [211 cycles total] : "=r" (r2), "=r" (r3), "=r" (r4), "=d" (r5), "=r" (r6), "=r" (r7), "+r" (r8), "+r" (r9), "+r" (r10), "=d" (r11), "=r" (r12), "=r" (r13), "=d" (r14), "=d" (r15), "=d" (r16), "=d" (r17), "=d" (r18), "+z" (ptab) : : "r0", "r1", "cc" ); // Return the result return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16); } #endif // BEZIER_JERK_CONTROL #define MINIMAL_STEP_RATE 120 /** * Calculate trapezoid parameters, multiplying the entry- and exit-speeds * by the provided factors. */ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) { uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor), final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second) // Limit minimal step rate (Otherwise the timer will overflow.) NOLESS(initial_rate, MINIMAL_STEP_RATE); NOLESS(final_rate, MINIMAL_STEP_RATE); #if ENABLED(BEZIER_JERK_CONTROL) uint32_t cruise_rate = initial_rate; #endif const int32_t accel = block->acceleration_steps_per_s2; // Steps required for acceleration, deceleration to/from nominal rate int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)), // Steps between acceleration and deceleration, if any plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Does accelerate_steps + decelerate_steps exceed step_event_count? // Then we can't possibly reach the nominal rate, there will be no cruising. // Use intersection_distance() to calculate accel / braking time in order to // reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off accelerate_steps = MIN((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) plateau_steps = 0; #if ENABLED(BEZIER_JERK_CONTROL) // We won't reach the cruising rate. Let's calculate the speed we will reach cruise_rate = final_speed(initial_rate, accel, accelerate_steps); #endif } #if ENABLED(BEZIER_JERK_CONTROL) else // We have some plateau time, so the cruise rate will be the nominal rate cruise_rate = block->nominal_rate; #endif // block->accelerate_until = accelerate_steps; // block->decelerate_after = accelerate_steps+plateau_steps; #if ENABLED(BEZIER_JERK_CONTROL) // Jerk controlled speed requires to express speed versus time, NOT steps uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (HAL_STEPPER_TIMER_RATE), deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (HAL_STEPPER_TIMER_RATE); // And to offload calculations from the ISR, we also calculate the inverse of those times here uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time); uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time); #endif CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps + plateau_steps; block->initial_rate = initial_rate; #if ENABLED(BEZIER_JERK_CONTROL) block->acceleration_time = acceleration_time; block->deceleration_time = deceleration_time; block->acceleration_time_inverse = acceleration_time_inverse; block->deceleration_time_inverse = deceleration_time_inverse; block->cruise_rate = cruise_rate; #endif block->final_rate = final_rate; } CRITICAL_SECTION_END; } // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. //inline float junction_jerk(block_t *before, block_t *after) { // return SQRT( // POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2)); //} // The kernel called by recalculate() when scanning the plan from last to first entry. void Planner::reverse_pass_kernel(block_t* const current, const block_t* const next) { if (current && next) { // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. const float max_entry_speed = current->max_entry_speed; if (current->entry_speed != max_entry_speed || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. const float new_entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed) ? max_entry_speed : MIN(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); if (new_entry_speed != current->entry_speed) { current->entry_speed = new_entry_speed; SBI(current->flag, BLOCK_BIT_RECALCULATE); } } } } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the reverse pass. */ void Planner::reverse_pass() { if (movesplanned() > 2) { const uint8_t endnr = next_block_index(block_buffer_tail); // tail is running. tail+1 shouldn't be altered because it's connected to the running block. uint8_t blocknr = prev_block_index(block_buffer_head); block_t* current = &block_buffer[blocknr]; // Last/newest block in buffer: const float max_entry_speed = current->max_entry_speed; if (current->entry_speed != max_entry_speed) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. const float new_entry_speed = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) ? max_entry_speed : MIN(max_entry_speed, max_allowable_speed(-current->acceleration, MINIMUM_PLANNER_SPEED, current->millimeters)); if (current->entry_speed != new_entry_speed) { current->entry_speed = new_entry_speed; SBI(current->flag, BLOCK_BIT_RECALCULATE); } } do { const block_t * const next = current; blocknr = prev_block_index(blocknr); current = &block_buffer[blocknr]; reverse_pass_kernel(current, next); } while (blocknr != endnr); } } // The kernel called by recalculate() when scanning the plan from first to last entry. void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current) { if (previous) { // If the previous block is an acceleration block, too short to complete the full speed // change, adjust the entry speed accordingly. Entry speeds have already been reset, // maximized, and reverse-planned. If nominal length is set, max junction speed is // guaranteed to be reached. No need to recheck. if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) { if (previous->entry_speed < current->entry_speed) { const float new_entry_speed = MIN(current->entry_speed, max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); // Check for junction speed change if (current->entry_speed != new_entry_speed) { current->entry_speed = new_entry_speed; SBI(current->flag, BLOCK_BIT_RECALCULATE); } } } } } /** * recalculate() needs to go over the current plan twice. * Once in reverse and once forward. This implements the forward pass. */ void Planner::forward_pass() { block_t* block[3] = { NULL, NULL, NULL }; for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block[0] = block[1]; block[1] = block[2]; block[2] = &block_buffer[b]; forward_pass_kernel(block[0], block[1]); } forward_pass_kernel(block[1], block[2]); } /** * Recalculate the trapezoid speed profiles for all blocks in the plan * according to the entry_factor for each junction. Must be called by * recalculate() after updating the blocks. */ void Planner::recalculate_trapezoids() { int8_t block_index = block_buffer_tail; block_t *current, *next = NULL; while (block_index != block_buffer_head) { current = next; next = &block_buffer[block_index]; if (current) { // Recalculate if current block entry or exit junction speed has changed. if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. const float nomr = 1.0 / current->nominal_speed; calculate_trapezoid_for_block(current, current->entry_speed * nomr, next->entry_speed * nomr); #if ENABLED(LIN_ADVANCE) if (current->use_advance_lead) { const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; current->max_adv_steps = current->nominal_speed * comp; current->final_adv_steps = next->entry_speed * comp; } #endif CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed } } block_index = next_block_index(block_index); } // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if (next) { const float nomr = 1.0 / next->nominal_speed; calculate_trapezoid_for_block(next, next->entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr); #if ENABLED(LIN_ADVANCE) if (next->use_advance_lead) { const float comp = next->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; next->max_adv_steps = next->nominal_speed * comp; next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp; } #endif CBI(next->flag, BLOCK_BIT_RECALCULATE); } } /** * Recalculate the motion plan according to the following algorithm: * * 1. Go over every block in reverse order... * * Calculate a junction speed reduction (block_t.entry_factor) so: * * a. The junction jerk is within the set limit, and * * b. No speed reduction within one block requires faster * deceleration than the one, true constant acceleration. * * 2. Go over every block in chronological order... * * Dial down junction speed reduction values if: * a. The speed increase within one block would require faster * acceleration than the one, true constant acceleration. * * After that, all blocks will have an entry_factor allowing all speed changes to * be performed using only the one, true constant acceleration, and where no junction * jerk is jerkier than the set limit, Jerky. Finally it will: * * 3. Recalculate "trapezoids" for all blocks. */ void Planner::recalculate() { reverse_pass(); forward_pass(); recalculate_trapezoids(); } #if ENABLED(AUTOTEMP) void Planner::getHighESpeed() { static float oldt = 0; if (!autotemp_enabled) return; if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero. float high = 0.0; for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block_t* block = &block_buffer[b]; if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; NOLESS(high, se); } } float t = autotemp_min + high * autotemp_factor; t = constrain(t, autotemp_min, autotemp_max); if (t < oldt) t = t * (1 - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT); oldt = t; thermalManager.setTargetHotend(t, 0); } #endif // AUTOTEMP /** * Maintain fans, paste extruder pressure, */ void Planner::check_axes_activity() { unsigned char axis_active[NUM_AXIS] = { 0 }, tail_fan_speed[FAN_COUNT]; #if ENABLED(BARICUDA) #if HAS_HEATER_1 uint8_t tail_valve_pressure; #endif #if HAS_HEATER_2 uint8_t tail_e_to_p_pressure; #endif #endif if (has_blocks_queued()) { #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i]; #endif block_t* block; #if ENABLED(BARICUDA) block = &block_buffer[block_buffer_tail]; #if HAS_HEATER_1 tail_valve_pressure = block->valve_pressure; #endif #if HAS_HEATER_2 tail_e_to_p_pressure = block->e_to_p_pressure; #endif #endif for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block = &block_buffer[b]; LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++; } } else { #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 tail_valve_pressure = baricuda_valve_pressure; #endif #if HAS_HEATER_2 tail_e_to_p_pressure = baricuda_e_to_p_pressure; #endif #endif } #if ENABLED(DISABLE_X) if (!axis_active[X_AXIS]) disable_X(); #endif #if ENABLED(DISABLE_Y) if (!axis_active[Y_AXIS]) disable_Y(); #endif #if ENABLED(DISABLE_Z) if (!axis_active[Z_AXIS]) disable_Z(); #endif #if ENABLED(DISABLE_E) if (!axis_active[E_AXIS]) disable_e_steppers(); #endif #if FAN_COUNT > 0 #if FAN_KICKSTART_TIME > 0 static millis_t fan_kick_end[FAN_COUNT] = { 0 }; #define KICKSTART_FAN(f) \ if (tail_fan_speed[f]) { \ millis_t ms = millis(); \ if (fan_kick_end[f] == 0) { \ fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \ tail_fan_speed[f] = 255; \ } else if (PENDING(ms, fan_kick_end[f])) \ tail_fan_speed[f] = 255; \ } else fan_kick_end[f] = 0 #if HAS_FAN0 KICKSTART_FAN(0); #endif #if HAS_FAN1 KICKSTART_FAN(1); #endif #if HAS_FAN2 KICKSTART_FAN(2); #endif #endif // FAN_KICKSTART_TIME > 0 #if FAN_MIN_PWM != 0 || FAN_MAX_PWM != 255 #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? map(tail_fan_speed[f], 1, 255, FAN_MIN_PWM, FAN_MAX_PWM) : 0) #else #define CALC_FAN_SPEED(f) tail_fan_speed[f] #endif #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0); #endif #if HAS_FAN1 thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1); #endif #if HAS_FAN2 thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2); #endif #else #if HAS_FAN0 analogWrite(FAN_PIN, CALC_FAN_SPEED(0)); #endif #if HAS_FAN1 analogWrite(FAN1_PIN, CALC_FAN_SPEED(1)); #endif #if HAS_FAN2 analogWrite(FAN2_PIN, CALC_FAN_SPEED(2)); #endif #endif #endif // FAN_COUNT > 0 #if ENABLED(AUTOTEMP) getHighESpeed(); #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 analogWrite(HEATER_1_PIN, tail_valve_pressure); #endif #if HAS_HEATER_2 analogWrite(HEATER_2_PIN, tail_e_to_p_pressure); #endif #endif } #if DISABLED(NO_VOLUMETRICS) /** * Get a volumetric multiplier from a filament diameter. * This is the reciprocal of the circular cross-section area. * Return 1.0 with volumetric off or a diameter of 0.0. */ inline float calculate_volumetric_multiplier(const float &diameter) { return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0; } /** * Convert the filament sizes into volumetric multipliers. * The multiplier converts a given E value into a length. */ void Planner::calculate_volumetric_multipliers() { for (uint8_t i = 0; i < COUNT(filament_size); i++) { volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); refresh_e_factor(i); } } #endif // !NO_VOLUMETRICS #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * Convert the ratio value given by the filament width sensor * into a volumetric multiplier. Conversion differs when using * linear extrusion vs volumetric extrusion. */ void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) { // Reconstitute the nominal/measured ratio const float nom_meas_ratio = 1.0 + 0.01 * encoded_ratio, ratio_2 = sq(nom_meas_ratio); volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled ? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5) // Volumetric uses a true volumetric multiplier : ratio_2; // Linear squares the ratio, which scales the volume refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM); } #endif #if PLANNER_LEVELING || HAS_UBL_AND_CURVES /** * rx, ry, rz - Cartesian positions in mm * Leveled XYZ on completion */ void Planner::apply_leveling(float &rx, float &ry, float &rz) { #if ENABLED(SKEW_CORRECTION) skew(rx, ry, rz); #endif if (!leveling_active) return; #if ABL_PLANAR float dx = rx - (X_TILT_FULCRUM), dy = ry - (Y_TILT_FULCRUM); apply_rotation_xyz(bed_level_matrix, dx, dy, rz); rx = dx + X_TILT_FULCRUM; ry = dy + Y_TILT_FULCRUM; #elif HAS_MESH #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = fade_scaling_factor_for_z(rz); #else constexpr float fade_scaling_factor = 1.0; #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) const float raw[XYZ] = { rx, ry, 0 }; #endif rz += ( #if ENABLED(MESH_BED_LEVELING) mbl.get_z(rx, ry #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) , fade_scaling_factor #endif ) #elif ENABLED(AUTO_BED_LEVELING_UBL) fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(rx, ry) : 0.0 #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0 #endif ); #endif } #endif #if PLANNER_LEVELING void Planner::unapply_leveling(float raw[XYZ]) { if (leveling_active) { #if ABL_PLANAR matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); float dx = raw[X_AXIS] - (X_TILT_FULCRUM), dy = raw[Y_AXIS] - (Y_TILT_FULCRUM); apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]); raw[X_AXIS] = dx + X_TILT_FULCRUM; raw[Y_AXIS] = dy + Y_TILT_FULCRUM; #elif HAS_MESH #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]); #else constexpr float fade_scaling_factor = 1.0; #endif raw[Z_AXIS] -= ( #if ENABLED(MESH_BED_LEVELING) mbl.get_z(raw[X_AXIS], raw[Y_AXIS] #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) , fade_scaling_factor #endif ) #elif ENABLED(AUTO_BED_LEVELING_UBL) fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) : 0.0 #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0 #endif ); #endif } #if ENABLED(SKEW_CORRECTION) unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); #endif } #endif // PLANNER_LEVELING /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. */ float Planner::get_axis_position_mm(const AxisEnum axis) { float axis_steps; #if IS_CORE // Requesting one of the "core" axes? if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { // Protect the access to the position. const bool was_enabled = STEPPER_ISR_ENABLED(); DISABLE_STEPPER_DRIVER_INTERRUPT(); // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1 // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2 axis_steps = 0.5f * ( axis == CORE_AXIS_2 ? CORESIGN(stepper.position(CORE_AXIS_1) - stepper.position(CORE_AXIS_2)) : stepper.position(CORE_AXIS_1) + stepper.position(CORE_AXIS_2) ); if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } else axis_steps = stepper.position(axis); #else axis_steps = stepper.position(axis); #endif return axis_steps * steps_to_mm[axis]; } /** * Block until all buffered steps are executed / cleaned */ void Planner::synchronize() { while (has_blocks_queued() || stepper.cleaning_buffer_counter) idle(); } /** * Planner::_buffer_steps * * Add a new linear movement to the buffer (in terms of steps). * * target - target position in steps units * fr_mm_s - (target) speed of the move * extruder - target extruder */ void Planner::_buffer_steps(const int32_t (&target)[XYZE] #if HAS_POSITION_FLOAT , const float (&target_float)[XYZE] #endif , float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/ ) { const int32_t da = target[A_AXIS] - position[A_AXIS], db = target[B_AXIS] - position[B_AXIS], dc = target[C_AXIS] - position[C_AXIS]; int32_t de = target[E_AXIS] - position[E_AXIS]; /* <-- add a slash to enable SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s); SERIAL_ECHOPAIR(" A:", target[A_AXIS]); SERIAL_ECHOPAIR(" (", da); SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); SERIAL_ECHOPAIR(" (", db); SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]); SERIAL_ECHOPAIR(" (", dc); SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]); SERIAL_ECHOPAIR(" (", de); SERIAL_ECHOLNPGM(" steps)"); //*/ #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) if (de) { #if ENABLED(PREVENT_COLD_EXTRUSION) if (thermalManager.tooColdToExtrude(extruder)) { position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part #if HAS_POSITION_FLOAT position_float[E_AXIS] = target_float[E_AXIS]; #endif de = 0; // no difference SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #endif // PREVENT_COLD_EXTRUSION #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (ABS(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part #if HAS_POSITION_FLOAT position_float[E_AXIS] = target_float[E_AXIS]; #endif de = 0; // no difference SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif // PREVENT_LENGTHY_EXTRUDE } #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE // Compute direction bit-mask for this block uint8_t dm = 0; #if CORE_IS_XY if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis if (db < 0) SBI(dm, Y_HEAD); // ...and Y if (dc < 0) SBI(dm, Z_AXIS); if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction #elif CORE_IS_XZ if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis if (db < 0) SBI(dm, Y_AXIS); if (dc < 0) SBI(dm, Z_HEAD); // ...and Z if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction #elif CORE_IS_YZ if (da < 0) SBI(dm, X_AXIS); if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis if (dc < 0) SBI(dm, Z_HEAD); // ...and Z if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction #else if (da < 0) SBI(dm, X_AXIS); if (db < 0) SBI(dm, Y_AXIS); if (dc < 0) SBI(dm, Z_AXIS); #endif if (de < 0) SBI(dm, E_AXIS); const float esteps_float = de * e_factor[extruder]; const int32_t esteps = ABS(esteps_float) + 0.5; // Wait for the next available block uint8_t next_buffer_head; block_t * const block = get_next_free_block(next_buffer_head); // Clear all flags, including the "busy" bit block->flag = 0x00; // Set direction bits block->direction_bits = dm; // Number of steps for each axis // See http://www.corexy.com/theory.html #if CORE_IS_XY block->steps[A_AXIS] = ABS(da + db); block->steps[B_AXIS] = ABS(da - db); block->steps[Z_AXIS] = ABS(dc); #elif CORE_IS_XZ block->steps[A_AXIS] = ABS(da + dc); block->steps[Y_AXIS] = ABS(db); block->steps[C_AXIS] = ABS(da - dc); #elif CORE_IS_YZ block->steps[X_AXIS] = ABS(da); block->steps[B_AXIS] = ABS(db + dc); block->steps[C_AXIS] = ABS(db - dc); #elif IS_SCARA block->steps[A_AXIS] = ABS(da); block->steps[B_AXIS] = ABS(db); block->steps[Z_AXIS] = ABS(dc); #else // default non-h-bot planning block->steps[A_AXIS] = ABS(da); block->steps[B_AXIS] = ABS(db); block->steps[C_AXIS] = ABS(dc); #endif block->steps[E_AXIS] = esteps; block->step_event_count = MAX4(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], esteps); // Bail if this is a zero-length block if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return; // For a mixing extruder, get a magnified step_event_count for each #if ENABLED(MIXING_EXTRUDER) for (uint8_t i = 0; i < MIXING_STEPPERS; i++) block->mix_event_count[i] = mixing_factor[i] * block->step_event_count; #endif #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) block->valve_pressure = baricuda_valve_pressure; block->e_to_p_pressure = baricuda_e_to_p_pressure; #endif block->active_extruder = extruder; #if ENABLED(AUTO_POWER_CONTROL) if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) powerManager.power_on(); #endif // Enable active axes #if CORE_IS_XY if (block->steps[A_AXIS] || block->steps[B_AXIS]) { enable_X(); enable_Y(); } #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_Z(); #endif #elif CORE_IS_XZ if (block->steps[A_AXIS] || block->steps[C_AXIS]) { enable_X(); enable_Z(); } if (block->steps[Y_AXIS]) enable_Y(); #elif CORE_IS_YZ if (block->steps[B_AXIS] || block->steps[C_AXIS]) { enable_Y(); enable_Z(); } if (block->steps[X_AXIS]) enable_X(); #else if (block->steps[X_AXIS]) enable_X(); if (block->steps[Y_AXIS]) enable_Y(); #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_Z(); #endif #endif // Enable extruder(s) if (esteps) { #if ENABLED(AUTO_POWER_CONTROL) powerManager.power_on(); #endif #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder #define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N(); for (uint8_t i = 0; i < EXTRUDERS; i++) if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; switch (extruder) { case 0: #if EXTRUDERS > 1 DISABLE_IDLE_E(1); #if EXTRUDERS > 2 DISABLE_IDLE_E(2); #if EXTRUDERS > 3 DISABLE_IDLE_E(3); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 enable_E0(); g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2; #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) if (extruder_duplication_enabled) { enable_E1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; } #endif break; #if EXTRUDERS > 1 case 1: DISABLE_IDLE_E(0); #if EXTRUDERS > 2 DISABLE_IDLE_E(2); #if EXTRUDERS > 3 DISABLE_IDLE_E(3); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 enable_E1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; break; #if EXTRUDERS > 2 case 2: DISABLE_IDLE_E(0); DISABLE_IDLE_E(1); #if EXTRUDERS > 3 DISABLE_IDLE_E(3); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif #endif enable_E2(); g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2; break; #if EXTRUDERS > 3 case 3: DISABLE_IDLE_E(0); DISABLE_IDLE_E(1); DISABLE_IDLE_E(2); #if EXTRUDERS > 4 DISABLE_IDLE_E(4); #endif enable_E3(); g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2; break; #if EXTRUDERS > 4 case 4: DISABLE_IDLE_E(0); DISABLE_IDLE_E(1); DISABLE_IDLE_E(2); DISABLE_IDLE_E(3); enable_E4(); g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2; break; #endif // EXTRUDERS > 4 #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 } #else enable_E0(); enable_E1(); enable_E2(); enable_E3(); enable_E4(); #endif } if (esteps) NOLESS(fr_mm_s, min_feedrate_mm_s); else NOLESS(fr_mm_s, min_travel_feedrate_mm_s); /** * This part of the code calculates the total length of the movement. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. */ #if IS_CORE float delta_mm[Z_HEAD + 1]; #if CORE_IS_XY delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS]; delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS]; delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS]; delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS]; delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS]; #elif CORE_IS_XZ delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS]; delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS]; delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS]; delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS]; delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS]; #elif CORE_IS_YZ delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS]; delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS]; delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS]; delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS]; delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS]; #endif #else float delta_mm[ABCE]; delta_mm[A_AXIS] = da * steps_to_mm[A_AXIS]; delta_mm[B_AXIS] = db * steps_to_mm[B_AXIS]; delta_mm[C_AXIS] = dc * steps_to_mm[C_AXIS]; #endif delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N]; if (block->steps[A_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[B_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[C_AXIS] < MIN_STEPS_PER_SEGMENT) { block->millimeters = ABS(delta_mm[E_AXIS]); } else if (!millimeters) { block->millimeters = SQRT( #if CORE_IS_XY sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS]) #elif CORE_IS_XZ sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD]) #elif CORE_IS_YZ sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD]) #else sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS]) #endif ); } else block->millimeters = millimeters; const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides // Calculate inverse time for this move. No divide by zero due to previous checks. // Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0. float inverse_secs = fr_mm_s * inverse_millimeters; const uint8_t moves_queued = movesplanned(); // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT) // Segment time im micro seconds uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs); #endif #if ENABLED(SLOWDOWN) if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { if (segment_time_us < min_segment_time_us) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued); inverse_secs = 1000000.0 / nst; #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD) segment_time_us = nst; #endif } } #endif #if ENABLED(ULTRA_LCD) CRITICAL_SECTION_START block_buffer_runtime_us += segment_time_us; CRITICAL_SECTION_END #endif block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0 block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0 #if ENABLED(FILAMENT_WIDTH_SENSOR) static float filwidth_e_count = 0, filwidth_delay_dist = 0; //FMM update ring buffer used for delay with filament measurements if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10; // increment counters with next move in e axis filwidth_e_count += delta_mm[E_AXIS]; filwidth_delay_dist += delta_mm[E_AXIS]; // Only get new measurements on forward E movement if (!UNEAR_ZERO(filwidth_e_count)) { // Loop the delay distance counter (modulus by the mm length) while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM; // Convert into an index into the measurement array filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1); // If the index has changed (must have gone forward)... if (filwidth_delay_index[0] != filwidth_delay_index[1]) { filwidth_e_count = 0; // Reset the E movement counter const int8_t meas_sample = thermalManager.widthFil_to_size_ratio(); do { filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement } while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill? } } } #endif // Calculate and limit speed in mm/sec for each axis float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed LOOP_XYZE(i) { const float cs = ABS((current_speed[i] = delta_mm[i] * inverse_secs)); #if ENABLED(DISTINCT_E_FACTORS) if (i == E_AXIS) i += extruder; #endif if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs); } // Max segment time in µs. #ifdef XY_FREQUENCY_LIMIT // Check and limit the xy direction change frequency const unsigned char direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; segment_time_us = LROUND((float)segment_time_us / speed_factor); uint32_t xs0 = axis_segment_time_us[X_AXIS][0], xs1 = axis_segment_time_us[X_AXIS][1], xs2 = axis_segment_time_us[X_AXIS][2], ys0 = axis_segment_time_us[Y_AXIS][0], ys1 = axis_segment_time_us[Y_AXIS][1], ys2 = axis_segment_time_us[Y_AXIS][2]; if (TEST(direction_change, X_AXIS)) { xs2 = axis_segment_time_us[X_AXIS][2] = xs1; xs1 = axis_segment_time_us[X_AXIS][1] = xs0; xs0 = 0; } xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us; if (TEST(direction_change, Y_AXIS)) { ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1]; ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0]; ys0 = 0; } ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us; const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2), max_y_segment_time = MAX3(ys0, ys1, ys2), min_xy_segment_time = MIN(max_x_segment_time, max_y_segment_time); if (min_xy_segment_time < MAX_FREQ_TIME_US) { const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US); NOMORE(speed_factor, low_sf); } #endif // XY_FREQUENCY_LIMIT // Correct the speed if (speed_factor < 1.0) { LOOP_XYZE(i) current_speed[i] *= speed_factor; block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. const float steps_per_mm = block->step_event_count * inverse_millimeters; uint32_t accel; if (!block->steps[A_AXIS] && !block->steps[B_AXIS] && !block->steps[C_AXIS]) { // convert to: acceleration steps/sec^2 accel = CEIL(retract_acceleration * steps_per_mm); #if ENABLED(LIN_ADVANCE) block->use_advance_lead = false; #endif } else { #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \ if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \ } \ }while(0) #define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \ if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \ const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \ if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \ } \ }while(0) // Start with print or travel acceleration accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm); #if ENABLED(LIN_ADVANCE) /** * * Use LIN_ADVANCE for blocks if all these are true: * * esteps : This is a print move, because we checked for A, B, C steps before. * * extruder_advance_K : There is an advance factor set. * * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) */ block->use_advance_lead = esteps && extruder_advance_K && de > 0; if (block->use_advance_lead) { block->e_D_ratio = (target_float[E_AXIS] - position_float[E_AXIS]) / #if IS_KINEMATIC block->millimeters #else SQRT(sq(target_float[X_AXIS] - position_float[X_AXIS]) + sq(target_float[Y_AXIS] - position_float[Y_AXIS]) + sq(target_float[Z_AXIS] - position_float[Z_AXIS])) #endif ; // Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance! // This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament. if (block->e_D_ratio > 3.0) block->use_advance_lead = false; else { const uint32_t max_accel_steps_per_s2 = max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm; #if ENABLED(LA_DEBUG) if (accel > max_accel_steps_per_s2) SERIAL_ECHOLNPGM("Acceleration limited."); #endif NOMORE(accel, max_accel_steps_per_s2); } } #endif #if ENABLED(DISTINCT_E_FACTORS) #define ACCEL_IDX extruder #else #define ACCEL_IDX 0 #endif // Limit acceleration per axis if (block->step_event_count <= cutoff_long) { LIMIT_ACCEL_LONG(A_AXIS, 0); LIMIT_ACCEL_LONG(B_AXIS, 0); LIMIT_ACCEL_LONG(C_AXIS, 0); LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX); } else { LIMIT_ACCEL_FLOAT(A_AXIS, 0); LIMIT_ACCEL_FLOAT(B_AXIS, 0); LIMIT_ACCEL_FLOAT(C_AXIS, 0); LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX); } } block->acceleration_steps_per_s2 = accel; block->acceleration = accel / steps_per_mm; #if DISABLED(BEZIER_JERK_CONTROL) block->acceleration_rate = (long)(accel * (4096.0 * 4096.0 / (HAL_STEPPER_TIMER_RATE))); // * 8.388608 #endif #if ENABLED(LIN_ADVANCE) if (block->use_advance_lead) { block->advance_speed = (HAL_STEPPER_TIMER_RATE) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS_N]); #if ENABLED(LA_DEBUG) if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio) SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed."); if (block->advance_speed < 200) SERIAL_ECHOLNPGM("eISR running at > 10kHz."); #endif } #endif float vmax_junction; // Initial limit on the segment entry velocity #if ENABLED(JUNCTION_DEVIATION) /** * Compute maximum allowable entry speed at junction by centripetal acceleration approximation. * Let a circle be tangent to both previous and current path line segments, where the junction * deviation is defined as the distance from the junction to the closest edge of the circle, * colinear with the circle center. The circular segment joining the two paths represents the * path of centripetal acceleration. Solve for max velocity based on max acceleration about the * radius of the circle, defined indirectly by junction deviation. This may be also viewed as * path width or max_jerk in the previous Grbl version. This approach does not actually deviate * from path, but used as a robust way to compute cornering speeds, as it takes into account the * nonlinearities of both the junction angle and junction velocity. * * NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path * mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact * stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here * is exactly the same. Instead of motioning all the way to junction point, the machine will * just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform * a continuous mode path, but ARM-based microcontrollers most certainly do. * * NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be * changed dynamically during operation nor can the line move geometry. This must be kept in * memory in the event of a feedrate override changing the nominal speeds of blocks, which can * change the overall maximum entry speed conditions of all blocks. */ // Unit vector of previous path line segment static float previous_unit_vec[ #if ENABLED(JUNCTION_DEVIATION_INCLUDE_E) XYZE #else XYZ #endif ]; float unit_vec[] = { delta_mm[A_AXIS] * inverse_millimeters, delta_mm[B_AXIS] * inverse_millimeters, delta_mm[C_AXIS] * inverse_millimeters #if ENABLED(JUNCTION_DEVIATION_INCLUDE_E) , delta_mm[E_AXIS] * inverse_millimeters #endif }; // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. float junction_cos_theta = -previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] -previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] -previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] #if ENABLED(JUNCTION_DEVIATION_INCLUDE_E) -previous_unit_vec[E_AXIS] * unit_vec[E_AXIS] #endif ; // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta). if (junction_cos_theta > 0.999999) { // For a 0 degree acute junction, just set minimum junction speed. vmax_junction = MINIMUM_PLANNER_SPEED; } else { junction_cos_theta = MAX(junction_cos_theta, -0.999999); // Check for numerical round-off to avoid divide by zero. const float sin_theta_d2 = SQRT(0.5 * (1.0 - junction_cos_theta)); // Trig half angle identity. Always positive. // TODO: Technically, the acceleration used in calculation needs to be limited by the minimum of the // two junctions. However, this shouldn't be a significant problem except in extreme circumstances. vmax_junction = SQRT((block->acceleration * JUNCTION_DEVIATION_FACTOR * sin_theta_d2) / (1.0 - sin_theta_d2)); } vmax_junction = MIN3(vmax_junction, block->nominal_speed, previous_nominal_speed); } else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later. vmax_junction = 0.0; COPY(previous_unit_vec, unit_vec); #else // Classic Jerk Limiting /** * Adapted from Průša MKS firmware * https://github.com/prusa3d/Prusa-Firmware * * Start with a safe speed (from which the machine may halt to stop immediately). */ // Exit speed limited by a jerk to full halt of a previous last segment static float previous_safe_speed; float safe_speed = block->nominal_speed; uint8_t limited = 0; LOOP_XYZE(i) { const float jerk = ABS(current_speed[i]), maxj = max_jerk[i]; if (jerk > maxj) { if (limited) { const float mjerk = maxj * block->nominal_speed; if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; } else { ++limited; safe_speed = maxj; } } } if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { // Estimate a maximum velocity allowed at a joint of two successive segments. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // then the machine is not coasting anymore and the safe entry / exit velocities shall be used. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. vmax_junction = MIN(block->nominal_speed, previous_nominal_speed); // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. float v_factor = 1; limited = 0; // Now limit the jerk in all axes. const float smaller_speed_factor = vmax_junction / previous_nominal_speed; LOOP_XYZE(axis) { // Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop. float v_exit = previous_speed[axis] * smaller_speed_factor, v_entry = current_speed[axis]; if (limited) { v_exit *= v_factor; v_entry *= v_factor; } // Calculate jerk depending on whether the axis is coasting in the same direction or reversing. const float jerk = (v_exit > v_entry) ? // coasting axis reversal ( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : MAX(v_exit, -v_entry) ) : // v_exit <= v_entry coasting axis reversal ( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : MAX(-v_exit, v_entry) ); if (jerk > max_jerk[axis]) { v_factor *= max_jerk[axis] / jerk; ++limited; } } if (limited) vmax_junction *= v_factor; // Now the transition velocity is known, which maximizes the shared exit / entry velocity while // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints. const float vmax_junction_threshold = vmax_junction * 0.99f; if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) vmax_junction = safe_speed; } else vmax_junction = safe_speed; previous_safe_speed = safe_speed; #endif // Classic Jerk Limiting // Max entry speed of this block equals the max exit speed of the previous block. block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); // If stepper ISR is disabled, this indicates buffer_segment wants to add a split block. // In this case start with the max. allowed speed to avoid an interrupted first move. block->entry_speed = STEPPER_ISR_ENABLED() ? MINIMUM_PLANNER_SPEED : MIN(vmax_junction, v_allowable); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. block->flag |= block->nominal_speed <= v_allowable ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE; // Update previous path unit_vector and nominal speed COPY(previous_speed, current_speed); previous_nominal_speed = block->nominal_speed; // Move buffer head block_buffer_head = next_buffer_head; // Update the position (only when a move was queued) static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!"); COPY(position, target); #if HAS_POSITION_FLOAT COPY(position_float, target_float); #endif recalculate(); } // _buffer_steps() /** * Planner::buffer_sync_block * Add a block to the buffer that just updates the position */ void Planner::buffer_sync_block() { // Wait for the next available block uint8_t next_buffer_head; block_t * const block = get_next_free_block(next_buffer_head); block->flag = BLOCK_FLAG_SYNC_POSITION; block->steps[A_AXIS] = position[A_AXIS]; block->steps[B_AXIS] = position[B_AXIS]; block->steps[C_AXIS] = position[C_AXIS]; block->steps[E_AXIS] = position[E_AXIS]; #if ENABLED(LIN_ADVANCE) block->use_advance_lead = false; #endif block->nominal_speed = block->entry_speed = block->max_entry_speed = block->millimeters = block->acceleration = 0; block->step_event_count = block->nominal_rate = block->initial_rate = block->final_rate = block->acceleration_steps_per_s2 = block->segment_time_us = 0; block_buffer_head = next_buffer_head; stepper.wake_up(); } // buffer_sync_block() /** * Planner::buffer_segment * * Add a new linear movement to the buffer in axis units. * * Leveling and kinematics should be applied ahead of calling this. * * a,b,c,e - target positions in mm and/or degrees * fr_mm_s - (target) speed of the move * extruder - target extruder * millimeters - the length of the movement, if known */ void Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/) { // When changing extruders recalculate steps corresponding to the E position #if ENABLED(DISTINCT_E_FACTORS) if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]); last_extruder = extruder; } #endif // The target position of the tool in absolute steps // Calculate target position in absolute steps const int32_t target[ABCE] = { LROUND(a * axis_steps_per_mm[A_AXIS]), LROUND(b * axis_steps_per_mm[B_AXIS]), LROUND(c * axis_steps_per_mm[C_AXIS]), LROUND(e * axis_steps_per_mm[E_AXIS_N]) }; #if HAS_POSITION_FLOAT const float target_float[XYZE] = { a, b, c, e }; #endif // DRYRUN prevents E moves from taking place if (DEBUGGING(DRYRUN)) { position[E_AXIS] = target[E_AXIS]; #if HAS_POSITION_FLOAT position_float[E_AXIS] = e; #endif } /* <-- add a slash to enable SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s); #if IS_KINEMATIC SERIAL_ECHOPAIR(" A:", a); SERIAL_ECHOPAIR(" (", position[A_AXIS]); SERIAL_ECHOPAIR("->", target[A_AXIS]); SERIAL_ECHOPAIR(") B:", b); #else SERIAL_ECHOPAIR(" X:", a); SERIAL_ECHOPAIR(" (", position[X_AXIS]); SERIAL_ECHOPAIR("->", target[X_AXIS]); SERIAL_ECHOPAIR(") Y:", b); #endif SERIAL_ECHOPAIR(" (", position[Y_AXIS]); SERIAL_ECHOPAIR("->", target[Y_AXIS]); #if ENABLED(DELTA) SERIAL_ECHOPAIR(") C:", c); #else SERIAL_ECHOPAIR(") Z:", c); #endif SERIAL_ECHOPAIR(" (", position[Z_AXIS]); SERIAL_ECHOPAIR("->", target[Z_AXIS]); SERIAL_ECHOPAIR(") E:", e); SERIAL_ECHOPAIR(" (", position[E_AXIS]); SERIAL_ECHOPAIR("->", target[E_AXIS]); SERIAL_ECHOLNPGM(")"); //*/ // Always split the first move into two (if not homing or probing) if (!has_blocks_queued()) { #define _BETWEEN(A) (position[_AXIS(A)] + target[_AXIS(A)]) >> 1 const int32_t between[ABCE] = { _BETWEEN(A), _BETWEEN(B), _BETWEEN(C), _BETWEEN(E) }; #if HAS_POSITION_FLOAT #define _BETWEEN_F(A) (position_float[_AXIS(A)] + target_float[_AXIS(A)]) * 0.5 const float between_float[ABCE] = { _BETWEEN_F(A), _BETWEEN_F(B), _BETWEEN_F(C), _BETWEEN_F(E) }; #endif DISABLE_STEPPER_DRIVER_INTERRUPT(); _buffer_steps(between #if HAS_POSITION_FLOAT , between_float #endif , fr_mm_s, extruder, millimeters * 0.5 ); const uint8_t next = block_buffer_head; _buffer_steps(target #if HAS_POSITION_FLOAT , target_float #endif , fr_mm_s, extruder, millimeters * 0.5 ); SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED); ENABLE_STEPPER_DRIVER_INTERRUPT(); } else _buffer_steps(target #if HAS_POSITION_FLOAT , target_float #endif , fr_mm_s, extruder, millimeters ); stepper.wake_up(); } // buffer_segment() /** * Directly set the planner XYZ position (and stepper positions) * converting mm (or angles for SCARA) into steps. * * On CORE machines stepper ABC will be translated from the given XYZ. */ void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) { #if ENABLED(DISTINCT_E_FACTORS) #define _EINDEX (E_AXIS + active_extruder) last_extruder = active_extruder; #else #define _EINDEX E_AXIS #endif position[A_AXIS] = LROUND(a * axis_steps_per_mm[A_AXIS]), position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]), position[C_AXIS] = LROUND(c * axis_steps_per_mm[C_AXIS]), position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]); #if HAS_POSITION_FLOAT position_float[A_AXIS] = a; position_float[B_AXIS] = b; position_float[C_AXIS] = c; position_float[E_AXIS] = e; #endif previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. ZERO(previous_speed); buffer_sync_block(); } void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) { #if PLANNER_LEVELING float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] }; apply_leveling(raw); #else const float (&raw)[XYZE] = cart; #endif #if IS_KINEMATIC inverse_kinematics(raw); _set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS]); #else _set_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS]); #endif } /** * Sync from the stepper positions. (e.g., after an interrupted move) */ void Planner::sync_from_steppers() { LOOP_XYZE(i) { position[i] = stepper.position((AxisEnum)i); #if HAS_POSITION_FLOAT position_float[i] = position[i] * steps_to_mm[i #if ENABLED(DISTINCT_E_FACTORS) + (i == E_AXIS ? active_extruder : 0) #endif ]; #endif } } /** * Setters for planner position (also setting stepper position). */ void Planner::set_position_mm(const AxisEnum axis, const float &v) { #if ENABLED(DISTINCT_E_FACTORS) const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0); last_extruder = active_extruder; #else const uint8_t axis_index = axis; #endif position[axis] = LROUND(v * axis_steps_per_mm[axis_index]); #if HAS_POSITION_FLOAT position_float[axis] = v; #endif previous_speed[axis] = 0.0; buffer_sync_block(); } // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 void Planner::reset_acceleration_rates() { #if ENABLED(DISTINCT_E_FACTORS) #define AXIS_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder) #else #define AXIS_CONDITION true #endif uint32_t highest_rate = 1; LOOP_XYZE_N(i) { max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i]; if (AXIS_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]); } cutoff_long = 4294967295UL / highest_rate; // 0xFFFFFFFFUL } // Recalculate position, steps_to_mm if axis_steps_per_mm changes! void Planner::refresh_positioning() { LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i]; set_position_mm_kinematic(current_position); reset_acceleration_rates(); } #if ENABLED(AUTOTEMP) void Planner::autotemp_M104_M109() { if ((autotemp_enabled = parser.seen('F'))) autotemp_factor = parser.value_float(); if (parser.seen('S')) autotemp_min = parser.value_celsius(); if (parser.seen('B')) autotemp_max = parser.value_celsius(); } #endif