/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * planner.h * * Buffer movement commands and manage the acceleration profile plan * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud */ #ifndef PLANNER_H #define PLANNER_H #include "types.h" #include "enum.h" #include "Marlin.h" #if ABL_PLANAR #include "vector_3.h" #endif enum BlockFlagBit : char { // Recalculate trapezoids on entry junction. For optimization. BLOCK_BIT_RECALCULATE, // Nominal speed always reached. // i.e., The segment is long enough, so the nominal speed is reachable if accelerating // from a safe speed (in consideration of jerking from zero speed). BLOCK_BIT_NOMINAL_LENGTH, // The block is busy, being interpreted by the stepper ISR BLOCK_BIT_BUSY, // The block is segment 2+ of a longer move BLOCK_BIT_CONTINUED, // Sync the stepper counts from the block BLOCK_BIT_SYNC_POSITION }; enum BlockFlag : char { BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE), BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH), BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY), BLOCK_FLAG_CONTINUED = _BV(BLOCK_BIT_CONTINUED), BLOCK_FLAG_SYNC_POSITION = _BV(BLOCK_BIT_SYNC_POSITION) }; /** * struct block_t * * A single entry in the planner buffer. * Tracks linear movement over multiple axes. * * The "nominal" values are as-specified by gcode, and * may never actually be reached due to acceleration limits. */ typedef struct { uint8_t flag; // Block flags (See BlockFlag enum above) // Fields used by the motion planner to manage acceleration float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2 entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2 max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2 millimeters, // The total travel of this block in mm acceleration; // acceleration mm/sec^2 union { // Data used by all move blocks struct { // Fields used by the Bresenham algorithm for tracing the line uint32_t steps[NUM_AXIS]; // Step count along each axis }; // Data used by all sync blocks struct { int32_t position[NUM_AXIS]; // New position to force when this sync block is executed }; }; uint32_t step_event_count; // The number of step events required to complete this block uint8_t active_extruder; // The extruder to move (if E move) #if ENABLED(MIXING_EXTRUDER) uint32_t mix_steps[MIXING_STEPPERS]; // Scaled steps[E_AXIS] for the mixing steppers #endif // Settings for the trapezoid generator uint32_t accelerate_until, // The index of the step event on which to stop acceleration decelerate_after; // The index of the step event on which to start decelerating #if ENABLED(S_CURVE_ACCELERATION) uint32_t cruise_rate, // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase acceleration_time, // Acceleration time and deceleration time in STEP timer counts deceleration_time, acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used deceleration_time_inverse; #else uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation #endif uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) // Advance extrusion #if ENABLED(LIN_ADVANCE) bool use_advance_lead; uint16_t advance_speed, // STEP timer value for extruder speed offset ISR max_adv_steps, // max. advance steps to get cruising speed pressure (not always nominal_speed!) final_adv_steps; // advance steps due to exit speed float e_D_ratio; #endif uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec initial_rate, // The jerk-adjusted step rate at start of block final_rate, // The minimal rate at exit acceleration_steps_per_s2; // acceleration steps/sec^2 #if FAN_COUNT > 0 uint16_t fan_speed[FAN_COUNT]; #endif #if ENABLED(BARICUDA) uint8_t valve_pressure, e_to_p_pressure; #endif uint32_t segment_time_us; } block_t; #define HAS_POSITION_FLOAT (ENABLED(LIN_ADVANCE) || ENABLED(SCARA_FEEDRATE_SCALING)) #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1)) class Planner { public: /** * The move buffer, calculated in stepper steps * * block_buffer is a ring buffer... * * head,tail : indexes for write,read * head==tail : the buffer is empty * head!=tail : blocks are in the buffer * head==(tail-1)%size : the buffer is full * * Writer of head is Planner::buffer_segment(). * Reader of tail is Stepper::isr(). Always consider tail busy / read-only */ static block_t block_buffer[BLOCK_BUFFER_SIZE]; static volatile uint8_t block_buffer_head, // Index of the next block to be pushed block_buffer_tail; // Index of the busy block, if any static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks static uint8_t delay_before_delivering, // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks block_buffer_planned; // Index of the optimally planned block #if ENABLED(DISTINCT_E_FACTORS) static uint8_t last_extruder; // Respond to extruder change #endif static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder static float e_factor[EXTRUDERS]; // The flow percentage and volumetric multiplier combine to scale E movement #if DISABLED(NO_VOLUMETRICS) static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder volumetric_area_nominal, // Nominal cross-sectional area volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner // May be auto-adjusted by a filament width sensor #endif static uint32_t max_acceleration_mm_per_s2[XYZE_N], // (mm/s^2) M201 XYZE max_acceleration_steps_per_s2[XYZE_N], // (steps/s^2) Derived from mm_per_s2 min_segment_time_us; // (µs) M205 B static float max_feedrate_mm_s[XYZE_N], // (mm/s) M203 XYZE - Max speeds axis_steps_per_mm[XYZE_N], // (steps) M92 XYZE - Steps per millimeter steps_to_mm[XYZE_N], // (mm) Millimeters per step min_feedrate_mm_s, // (mm/s) M205 S - Minimum linear feedrate acceleration, // (mm/s^2) M204 S - Normal acceleration. DEFAULT ACCELERATION for all printing moves. retract_acceleration, // (mm/s^2) M204 R - Retract acceleration. Filament pull-back and push-forward while standing still in the other axes travel_acceleration, // (mm/s^2) M204 T - Travel acceleration. DEFAULT ACCELERATION for all NON printing moves. min_travel_feedrate_mm_s; // (mm/s) M205 T - Minimum travel feedrate #if ENABLED(JUNCTION_DEVIATION) static float junction_deviation_mm; // (mm) M205 J #if ENABLED(LIN_ADVANCE) static float max_e_jerk_factor; // Calculated from junction_deviation_mm #endif #else static float max_jerk[XYZE]; // (mm/s^2) M205 XYZE - The largest speed change requiring no acceleration. #endif #if HAS_LEVELING static bool leveling_active; // Flag that bed leveling is enabled #if ABL_PLANAR static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) static float z_fade_height, inverse_z_fade_height; #endif #else static constexpr bool leveling_active = false; #endif #if ENABLED(LIN_ADVANCE) static float extruder_advance_K; #endif #if HAS_POSITION_FLOAT static float position_float[XYZE]; #endif #if ENABLED(SKEW_CORRECTION) #if ENABLED(SKEW_CORRECTION_GCODE) static float xy_skew_factor; #else static constexpr float xy_skew_factor = XY_SKEW_FACTOR; #endif #if ENABLED(SKEW_CORRECTION_FOR_Z) #if ENABLED(SKEW_CORRECTION_GCODE) static float xz_skew_factor, yz_skew_factor; #else static constexpr float xz_skew_factor = XZ_SKEW_FACTOR, yz_skew_factor = YZ_SKEW_FACTOR; #endif #else static constexpr float xz_skew_factor = 0, yz_skew_factor = 0; #endif #endif #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) static bool abort_on_endstop_hit; #endif private: /** * The current position of the tool in absolute steps * Recalculated if any axis_steps_per_mm are changed by gcode */ static int32_t position[NUM_AXIS]; /** * Speed of previous path line segment */ static float previous_speed[NUM_AXIS]; /** * Nominal speed of previous path line segment (mm/s)^2 */ static float previous_nominal_speed_sqr; /** * Limit where 64bit math is necessary for acceleration calculation */ static uint32_t cutoff_long; #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) static float last_fade_z; #endif #if ENABLED(DISABLE_INACTIVE_EXTRUDER) /** * Counters to manage disabling inactive extruders */ static uint8_t g_uc_extruder_last_move[EXTRUDERS]; #endif // DISABLE_INACTIVE_EXTRUDER #ifdef XY_FREQUENCY_LIMIT // Used for the frequency limit #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT) // Old direction bits. Used for speed calculations static unsigned char old_direction_bits; // Segment times (in µs). Used for speed calculations static uint32_t axis_segment_time_us[2][3]; #endif #if ENABLED(ULTRA_LCD) volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs #endif public: /** * Instance Methods */ Planner(); void init(); /** * Static (class) Methods */ static void reset_acceleration_rates(); static void refresh_positioning(); FORCE_INLINE static void refresh_e_factor(const uint8_t e) { e_factor[e] = (flow_percentage[e] * 0.01 #if DISABLED(NO_VOLUMETRICS) * volumetric_multiplier[e] #endif ); } // Manage fans, paste pressure, etc. static void check_axes_activity(); // Update multipliers based on new diameter measurements static void calculate_volumetric_multipliers(); #if ENABLED(FILAMENT_WIDTH_SENSOR) void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio); #endif #if DISABLED(NO_VOLUMETRICS) FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) { filament_size[e] = v; // make sure all extruders have some sane value for the filament size for (uint8_t i = 0; i < COUNT(filament_size); i++) if (!filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; } #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) /** * Get the Z leveling fade factor based on the given Z height, * re-calculating only when needed. * * Returns 1.0 if planner.z_fade_height is 0.0. * Returns 0.0 if Z is past the specified 'Fade Height'. */ inline static float fade_scaling_factor_for_z(const float &rz) { static float z_fade_factor = 1.0; if (z_fade_height) { if (rz >= z_fade_height) return 0.0; if (last_fade_z != rz) { last_fade_z = rz; z_fade_factor = 1.0 - rz * inverse_z_fade_height; } return z_fade_factor; } return 1.0; } FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; } FORCE_INLINE static void set_z_fade_height(const float &zfh) { z_fade_height = zfh > 0 ? zfh : 0; inverse_z_fade_height = RECIPROCAL(z_fade_height); force_fade_recalc(); } FORCE_INLINE static bool leveling_active_at_z(const float &rz) { return !z_fade_height || rz < z_fade_height; } #else FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) { UNUSED(rz); return 1.0; } FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; } #endif #if ENABLED(SKEW_CORRECTION) FORCE_INLINE static void skew(float &cx, float &cy, const float &cz) { if (WITHIN(cx, X_MIN_POS + 1, X_MAX_POS) && WITHIN(cy, Y_MIN_POS + 1, Y_MAX_POS)) { const float sx = cx - cy * xy_skew_factor - cz * (xz_skew_factor - (xy_skew_factor * yz_skew_factor)), sy = cy - cz * yz_skew_factor; if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) { cx = sx; cy = sy; } } } FORCE_INLINE static void unskew(float &cx, float &cy, const float &cz) { if (WITHIN(cx, X_MIN_POS, X_MAX_POS) && WITHIN(cy, Y_MIN_POS, Y_MAX_POS)) { const float sx = cx + cy * xy_skew_factor + cz * xz_skew_factor, sy = cy + cz * yz_skew_factor; if (WITHIN(sx, X_MIN_POS, X_MAX_POS) && WITHIN(sy, Y_MIN_POS, Y_MAX_POS)) { cx = sx; cy = sy; } } } #endif // SKEW_CORRECTION #if PLANNER_LEVELING || HAS_UBL_AND_CURVES /** * Apply leveling to transform a cartesian position * as it will be given to the planner and steppers. */ static void apply_leveling(float &rx, float &ry, float &rz); FORCE_INLINE static void apply_leveling(float (&raw)[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); } #endif #if PLANNER_LEVELING #define ARG_X float rx #define ARG_Y float ry #define ARG_Z float rz static void unapply_leveling(float raw[XYZ]); #else #define ARG_X const float &rx #define ARG_Y const float &ry #define ARG_Z const float &rz #endif // Number of moves currently in the planner FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); } // Remove all blocks from the buffer FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; } // Check if movement queue is full FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); } // Get count of movement slots free FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); } /** * Planner::get_next_free_block * * - Get the next head indices (passed by reference) * - Wait for the number of spaces to open up in the planner * - Return the first head block */ FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, const uint8_t count=1) { // Wait until there are enough slots free while (moves_free() < count) { idle(); } // Return the first available block next_buffer_head = next_block_index(block_buffer_head); return &block_buffer[block_buffer_head]; } /** * Planner::_buffer_steps * * Add a new linear movement to the buffer (in terms of steps). * * target - target position in steps units * fr_mm_s - (target) speed of the move * extruder - target extruder * millimeters - the length of the movement, if known * * Returns true if movement was buffered, false otherwise */ static bool _buffer_steps(const int32_t (&target)[XYZE] #if HAS_POSITION_FLOAT , const float (&target_float)[XYZE] #endif , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0 ); /** * Planner::_populate_block * * Fills a new linear movement in the block (in terms of steps). * * target - target position in steps units * fr_mm_s - (target) speed of the move * extruder - target extruder * millimeters - the length of the movement, if known * * Returns true is movement is acceptable, false otherwise */ static bool _populate_block(block_t * const block, bool split_move, const int32_t (&target)[XYZE] #if HAS_POSITION_FLOAT , const float (&target_float)[XYZE] #endif , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0 ); /** * Planner::buffer_sync_block * Add a block to the buffer that just updates the position */ static void buffer_sync_block(); /** * Planner::buffer_segment * * Add a new linear movement to the buffer in axis units. * * Leveling and kinematics should be applied ahead of calling this. * * a,b,c,e - target positions in mm and/or degrees * fr_mm_s - (target) speed of the move * extruder - target extruder * millimeters - the length of the movement, if known */ static bool buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0); static void _set_position_mm(const float &a, const float &b, const float &c, const float &e); /** * Add a new linear movement to the buffer. * The target is NOT translated to delta/scara * * Leveling will be applied to input on cartesians. * Kinematic machines should call buffer_line_kinematic (for leveled moves). * (Cartesians may also call buffer_line_kinematic.) * * rx,ry,rz,e - target position in mm or degrees * fr_mm_s - (target) speed of the move (mm/s) * extruder - target extruder * millimeters - the length of the movement, if known */ FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { #if PLANNER_LEVELING && IS_CARTESIAN apply_leveling(rx, ry, rz); #endif return buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters); } /** * Add a new linear movement to the buffer. * The target is cartesian, it's translated to delta/scara if * needed. * * cart - x,y,z,e CARTESIAN target in mm * fr_mm_s - (target) speed of the move (mm/s) * extruder - target extruder * millimeters - the length of the movement, if known */ FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { #if PLANNER_LEVELING float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] }; apply_leveling(raw); #else const float (&raw)[XYZE] = cart; #endif #if IS_KINEMATIC inverse_kinematics(raw); return buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); #else return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); #endif } /** * Set the planner.position and individual stepper positions. * Used by G92, G28, G29, and other procedures. * * Multiplies by axis_steps_per_mm[] and does necessary conversion * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions. * * Clears previous speed values. */ FORCE_INLINE static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) { #if PLANNER_LEVELING && IS_CARTESIAN apply_leveling(rx, ry, rz); #endif _set_position_mm(rx, ry, rz, e); } static void set_position_mm_kinematic(const float (&cart)[XYZE]); static void set_position_mm(const AxisEnum axis, const float &v); FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); } FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); } /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. */ static float get_axis_position_mm(const AxisEnum axis); // SCARA AB axes are in degrees, not mm #if IS_SCARA FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); } #endif // Called to force a quick stop of the machine (for example, when an emergency // stop is required, or when endstops are hit) static void quick_stop(); // Called when an endstop is triggered. Causes the machine to stop inmediately static void endstop_triggered(const AxisEnum axis); // Triggered position of an axis in mm (not core-savvy) static float triggered_position_mm(const AxisEnum axis); // Block until all buffered steps are executed / cleaned static void synchronize(); // Wait for moves to finish and disable all steppers static void finish_and_disable(); // Periodic tick to handle cleaning timeouts // Called from the Temperature ISR at ~1kHz static void tick() { if (cleaning_buffer_counter) { --cleaning_buffer_counter; #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND) if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); #endif } } /** * Does the buffer have any blocks queued? */ FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); } /** * The current block. NULL if the buffer is empty. * This also marks the block as busy. * WARNING: Called from Stepper ISR context! */ static block_t* get_current_block() { // Get the number of moves in the planner queue so far uint8_t nr_moves = movesplanned(); // If there are any moves queued ... if (nr_moves) { // If there is still delay of delivery of blocks running, decrement it if (delay_before_delivering) { --delay_before_delivering; // If the number of movements queued is less than 3, and there is still time // to wait, do not deliver anything if (nr_moves < 3 && delay_before_delivering) return NULL; delay_before_delivering = 0; } // If we are here, there is no excuse to deliver the block block_t * const block = &block_buffer[block_buffer_tail]; // No trapezoid calculated? Don't execute yet. if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return NULL; #if ENABLED(ULTRA_LCD) block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it. #endif // Mark the block as busy, so the planner does not attempt to replan it SBI(block->flag, BLOCK_BIT_BUSY); return block; } // The queue became empty #if ENABLED(ULTRA_LCD) clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero. #endif return NULL; } /** * "Discard" the block and "release" the memory. * Called when the current block is no longer needed. * NB: There MUST be a current block to call this function!! */ FORCE_INLINE static void discard_current_block() { if (has_blocks_queued()) { // Discard non-empty buffer. uint8_t block_index = next_block_index( block_buffer_tail ); // Push block_buffer_planned pointer, if encountered. if (!has_blocks_queued()) block_buffer_planned = block_index; block_buffer_tail = block_index; } } #if ENABLED(ULTRA_LCD) static uint16_t block_buffer_runtime() { // Protect the access to the variable. Only required for AVR, as // any 32bit CPU offers atomic access to 32bit variables bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); millis_t bbru = block_buffer_runtime_us; // Reenable Stepper ISR if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); // To translate µs to ms a division by 1000 would be required. // We introduce 2.4% error here by dividing by 1024. // Doesn't matter because block_buffer_runtime_us is already too small an estimation. bbru >>= 10; // limit to about a minute. NOMORE(bbru, 0xFFFFul); return bbru; } static void clear_block_buffer_runtime() { // Protect the access to the variable. Only required for AVR, as // any 32bit CPU offers atomic access to 32bit variables bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); block_buffer_runtime_us = 0; // Reenable Stepper ISR if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } #endif #if ENABLED(AUTOTEMP) static float autotemp_min, autotemp_max, autotemp_factor; static bool autotemp_enabled; static void getHighESpeed(); static void autotemp_M104_M109(); #endif #if ENABLED(JUNCTION_DEVIATION) FORCE_INLINE static void recalculate_max_e_jerk_factor() { #if ENABLED(LIN_ADVANCE) max_e_jerk_factor = SQRT(SQRT(0.5) * junction_deviation_mm * RECIPROCAL(1.0 - SQRT(0.5))); #endif } #endif private: /** * Get the index of the next / previous block in the ring buffer */ static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); } static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); } /** * Calculate the distance (not time) it takes to accelerate * from initial_rate to target_rate using the given acceleration: */ static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) { if (accel == 0) return 0; // accel was 0, set acceleration distance to 0 return (sq(target_rate) - sq(initial_rate)) / (accel * 2); } /** * Return the point at which you must start braking (at the rate of -'accel') if * you start at 'initial_rate', accelerate (until reaching the point), and want to end at * 'final_rate' after traveling 'distance'. * * This is used to compute the intersection point between acceleration and deceleration * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed) */ static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) { if (accel == 0) return 0; // accel was 0, set intersection distance to 0 return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4); } /** * Calculate the maximum allowable speed squared at this point, in order * to reach 'target_velocity_sqr' using 'acceleration' within a given * 'distance'. */ static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) { return target_velocity_sqr - 2 * accel * distance; } #if ENABLED(S_CURVE_ACCELERATION) /** * Calculate the speed reached given initial speed, acceleration and distance */ static float final_speed(const float &initial_velocity, const float &accel, const float &distance) { return SQRT(sq(initial_velocity) + 2 * accel * distance); } #endif static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor); static void reverse_pass_kernel(block_t* const current, const block_t * const next); static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index); static void reverse_pass(); static void forward_pass(); static void recalculate_trapezoids(); static void recalculate(); #if ENABLED(JUNCTION_DEVIATION) #if ENABLED(JUNCTION_DEVIATION_INCLUDE_E) #define JD_AXES XYZE #else #define JD_AXES XYZ #endif FORCE_INLINE static void normalize_junction_vector(float (&vector)[JD_AXES]) { float magnitude_sq = 0.0; for (uint8_t idx = 0; idx < JD_AXES; idx++) if (vector[idx]) magnitude_sq += sq(vector[idx]); const float inv_magnitude = 1.0 / SQRT(magnitude_sq); for (uint8_t idx = 0; idx < JD_AXES; idx++) vector[idx] *= inv_magnitude; } FORCE_INLINE static float limit_value_by_axis_maximum(const float &max_value, float (&unit_vec)[JD_AXES]) { float limit_value = max_value; for (uint8_t idx = 0; idx < JD_AXES; idx++) if (unit_vec[idx]) // Avoid divide by zero NOMORE(limit_value, ABS(max_acceleration_mm_per_s2[idx] / unit_vec[idx])); return limit_value; } #endif // JUNCTION_DEVIATION }; #define PLANNER_XY_FEEDRATE() (MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) extern Planner planner; #endif // PLANNER_H