/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #ifndef MARLIN_H #define MARLIN_H #include #include #include #include #include #include #include #include #include #include "MarlinConfig.h" #ifdef DEBUG_GCODE_PARSER #include "gcode.h" #endif #include "enum.h" #include "types.h" #include "fastio.h" #include "utility.h" #include "serial.h" #if ENABLED(PRINTCOUNTER) #include "printcounter.h" #else #include "stopwatch.h" #endif void idle( #if ENABLED(ADVANCED_PAUSE_FEATURE) bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout #endif ); void manage_inactivity(bool ignore_stepper_queue = false); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) extern bool extruder_duplication_enabled; #endif #if HAS_X2_ENABLE #define enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0) #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #elif HAS_X_ENABLE #define enable_X() X_ENABLE_WRITE( X_ENABLE_ON) #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #else #define enable_X() NOOP #define disable_X() NOOP #endif #if HAS_Y2_ENABLE #define enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0) #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #elif HAS_Y_ENABLE #define enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON) #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #else #define enable_Y() NOOP #define disable_Y() NOOP #endif #if HAS_Z2_ENABLE #define enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0) #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #elif HAS_Z_ENABLE #define enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON) #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #else #define enable_Z() NOOP #define disable_Z() NOOP #endif #if ENABLED(MIXING_EXTRUDER) /** * Mixing steppers synchronize their enable (and direction) together */ #if MIXING_STEPPERS > 3 #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); } #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); } #elif MIXING_STEPPERS > 2 #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); } #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); } #else #define enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); } #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); } #endif #define enable_E1() NOOP #define disable_E1() NOOP #define enable_E2() NOOP #define disable_E2() NOOP #define enable_E3() NOOP #define disable_E3() NOOP #define enable_E4() NOOP #define disable_E4() NOOP #else // !MIXING_EXTRUDER #if HAS_E0_ENABLE #define enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON) #define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E0() NOOP #define disable_E0() NOOP #endif #if E_STEPPERS > 1 && HAS_E1_ENABLE #define enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON) #define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E1() NOOP #define disable_E1() NOOP #endif #if E_STEPPERS > 2 && HAS_E2_ENABLE #define enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON) #define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E2() NOOP #define disable_E2() NOOP #endif #if E_STEPPERS > 3 && HAS_E3_ENABLE #define enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON) #define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E3() NOOP #define disable_E3() NOOP #endif #if E_STEPPERS > 4 && HAS_E4_ENABLE #define enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON) #define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_E4() NOOP #define disable_E4() NOOP #endif #endif // !MIXING_EXTRUDER #if ENABLED(G38_PROBE_TARGET) extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active #endif /** * The axis order in all axis related arrays is X, Y, Z, E */ #define _AXIS(AXIS) AXIS ##_AXIS void enable_all_steppers(); void disable_e_steppers(); void disable_all_steppers(); void FlushSerialRequestResend(); void ok_to_send(); void kill(const char*); void quickstop_stepper(); #if ENABLED(FILAMENT_RUNOUT_SENSOR) void handle_filament_runout(); #endif extern uint8_t marlin_debug_flags; #define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F)) extern bool Running; inline bool IsRunning() { return Running; } inline bool IsStopped() { return !Running; } bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure. void enqueue_and_echo_commands_P(const char * const cmd); // Set one or more commands to be prioritized over the next Serial/SD command. void clear_command_queue(); extern millis_t previous_cmd_ms; inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); } #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val); #endif /** * Feedrate scaling and conversion */ extern int16_t feedrate_percentage; #define MMM_TO_MMS(MM_M) ((MM_M)/60.0) #define MMS_TO_MMM(MM_S) ((MM_S)*60.0) #define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01) extern bool axis_relative_modes[]; extern bool volumetric_enabled; extern int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern bool axis_known_position[XYZ]; extern bool axis_homed[XYZ]; extern volatile bool wait_for_heatup; #if HAS_RESUME_CONTINUE extern volatile bool wait_for_user; #endif extern float current_position[NUM_AXIS]; // Workspace offsets #if HAS_WORKSPACE_OFFSET #if HAS_HOME_OFFSET extern float home_offset[XYZ]; #endif #if HAS_POSITION_SHIFT extern float position_shift[XYZ]; #endif #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT extern float workspace_offset[XYZ]; #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS] #elif HAS_HOME_OFFSET #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS] #elif HAS_POSITION_SHIFT #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS] #else #define WORKSPACE_OFFSET(AXIS) 0 #endif #define LOGICAL_POSITION(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS)) #define RAW_POSITION(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS)) #if HAS_POSITION_SHIFT || DISABLED(DELTA) #define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS) #define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS) #define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS) #else #define LOGICAL_X_POSITION(POS) (POS) #define LOGICAL_Y_POSITION(POS) (POS) #define RAW_X_POSITION(POS) (POS) #define RAW_Y_POSITION(POS) (POS) #endif #define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS) #define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS) #define RAW_CURRENT_POSITION(A) RAW_##A##_POSITION(current_position[A##_AXIS]) // Hotend Offsets #if HOTENDS > 1 extern float hotend_offset[XYZ][HOTENDS]; #endif // Software Endstops extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ]; #if HAS_SOFTWARE_ENDSTOPS extern bool soft_endstops_enabled; void clamp_to_software_endstops(float target[XYZ]); #else #define soft_endstops_enabled false #define clamp_to_software_endstops(x) NOOP #endif #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) void update_software_endstops(const AxisEnum axis); #endif #if IS_KINEMATIC extern float delta[ABC]; void inverse_kinematics(const float logical[XYZ]); #endif #if ENABLED(DELTA) extern float endstop_adj[ABC], delta_radius, delta_diagonal_rod, delta_calibration_radius, delta_segments_per_second, delta_tower_angle_trim[ABC], delta_clip_start_height; void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]); #elif IS_SCARA void forward_kinematics_SCARA(const float &a, const float &b); #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) extern int bilinear_grid_spacing[2], bilinear_start[2]; extern float bilinear_grid_factor[2], z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; float bilinear_z_offset(const float logical[XYZ]); #endif #if ENABLED(AUTO_BED_LEVELING_UBL) typedef struct { double A, B, D; } linear_fit; linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int); #endif #if HAS_LEVELING bool leveling_is_valid(); bool leveling_is_active(); void set_bed_leveling_enabled(const bool enable=true); void reset_bed_level(); #endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) void set_z_fade_height(const float zfh); #endif #if ENABLED(Z_DUAL_ENDSTOPS) extern float z_endstop_adj; #endif #if HAS_BED_PROBE extern float zprobe_zoffset; void refresh_zprobe_zoffset(const bool no_babystep=false); #define DEPLOY_PROBE() set_probe_deployed(true) #define STOW_PROBE() set_probe_deployed(false) #else #define DEPLOY_PROBE() #define STOW_PROBE() #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) extern MarlinBusyState busy_state; #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0) #else #define KEEPALIVE_STATE(n) NOOP #endif #if FAN_COUNT > 0 extern int16_t fanSpeeds[FAN_COUNT]; #if ENABLED(PROBING_FANS_OFF) extern bool fans_paused; extern int16_t paused_fanSpeeds[FAN_COUNT]; #endif #endif #if ENABLED(BARICUDA) extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) extern bool filament_sensor; // Flag that filament sensor readings should control extrusion extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75 filament_width_meas; // Measured filament diameter extern uint8_t meas_delay_cm, // Delay distance measurement_delay[]; // Ring buffer to delay measurement extern int8_t filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) extern AdvancedPauseMenuResponse advanced_pause_menu_response; #endif #if ENABLED(PID_EXTRUSION_SCALING) extern int lpq_len; #endif #if ENABLED(FWRETRACT) extern bool autoretract_enabled; // M209 S - Autoretract switch extern float retract_length, // M207 S - G10 Retract length retract_feedrate_mm_s, // M207 F - G10 Retract feedrate retract_zlift, // M207 Z - G10 Retract hop size retract_recover_length, // M208 S - G11 Recover length retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate swap_retract_length, // M207 W - G10 Swap Retract length swap_retract_recover_length, // M208 W - G11 Swap Recover length swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate #endif // Print job timer #if ENABLED(PRINTCOUNTER) extern PrintCounter print_job_timer; #else extern Stopwatch print_job_timer; #endif // Handling multiple extruders pins extern uint8_t active_extruder; #if HAS_TEMP_HOTEND || HAS_TEMP_BED void print_heaterstates(); #endif #if ENABLED(MIXING_EXTRUDER) extern float mixing_factor[MIXING_STEPPERS]; #endif void calculate_volumetric_multipliers(); /** * Blocking movement and shorthand functions */ void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s=0.0); void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0); void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0); void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0); #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE) bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true); #endif /** * position_is_reachable family of functions */ #if IS_KINEMATIC // (DELTA or SCARA) #if IS_SCARA extern const float L1, L2; #endif inline bool position_is_reachable_raw_xy(const float &rx, const float &ry) { #if ENABLED(DELTA) return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS); #elif IS_SCARA #if MIDDLE_DEAD_ZONE_R > 0 const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2); #else return HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y) <= sq(L1 + L2); #endif #else // CARTESIAN // To be migrated from MakerArm branch in future #endif } inline bool position_is_reachable_by_probe_raw_xy(const float &rx, const float &ry) { // Both the nozzle and the probe must be able to reach the point. // This won't work on SCARA since the probe offset rotates with the arm. return position_is_reachable_raw_xy(rx, ry) && position_is_reachable_raw_xy(rx - X_PROBE_OFFSET_FROM_EXTRUDER, ry - Y_PROBE_OFFSET_FROM_EXTRUDER); } #else // CARTESIAN inline bool position_is_reachable_raw_xy(const float &rx, const float &ry) { // Add 0.001 margin to deal with float imprecision return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001) && WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001); } inline bool position_is_reachable_by_probe_raw_xy(const float &rx, const float &ry) { // Add 0.001 margin to deal with float imprecision return WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001) && WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001); } #endif // CARTESIAN FORCE_INLINE bool position_is_reachable_by_probe_xy(const float &lx, const float &ly) { return position_is_reachable_by_probe_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)); } FORCE_INLINE bool position_is_reachable_xy(const float &lx, const float &ly) { return position_is_reachable_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly)); } #endif // MARLIN_H