/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors * Derived from Grbl * * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see . */ #ifndef STEPPER_H #define STEPPER_H #include "MarlinConfig.h" // Disable multiple steps per ISR //#define DISABLE_MULTI_STEPPING // // Estimate the amount of time the Stepper ISR will take to execute // #ifndef MINIMUM_STEPPER_PULSE #define MINIMUM_STEPPER_PULSE 0UL #endif #ifndef MAXIMUM_STEPPER_RATE #if MINIMUM_STEPPER_PULSE #define MAXIMUM_STEPPER_RATE (1000000UL / (2UL * (unsigned long)(MINIMUM_STEPPER_PULSE))) #else #define MAXIMUM_STEPPER_RATE 500000UL #endif #endif // The base ISR takes 752 cycles #define ISR_BASE_CYCLES 752UL // Linear advance base time is 32 cycles #if ENABLED(LIN_ADVANCE) #define ISR_LA_BASE_CYCLES 32UL #else #define ISR_LA_BASE_CYCLES 0UL #endif // S curve interpolation adds 160 cycles #if ENABLED(S_CURVE_ACCELERATION) #define ISR_S_CURVE_CYCLES 160UL #else #define ISR_S_CURVE_CYCLES 0UL #endif // Stepper Loop base cycles #define ISR_LOOP_BASE_CYCLES 32UL // To start the step pulse, in the worst case takes #define ISR_START_STEPPER_CYCLES 57UL // And each stepper (start + stop pulse) takes in worst case #define ISR_STEPPER_CYCLES 88UL // Add time for each stepper #ifdef HAS_X_STEP #define ISR_START_X_STEPPER_CYCLES ISR_START_STEPPER_CYCLES #define ISR_X_STEPPER_CYCLES ISR_STEPPER_CYCLES #else #define ISR_START_X_STEPPER_CYCLES 0UL #define ISR_X_STEPPER_CYCLES 0UL #endif #ifdef HAS_Y_STEP #define ISR_START_Y_STEPPER_CYCLES ISR_START_STEPPER_CYCLES #define ISR_Y_STEPPER_CYCLES ISR_STEPPER_CYCLES #else #define ISR_START_Y_STEPPER_CYCLES 0UL #define ISR_Y_STEPPER_CYCLES 0UL #endif #ifdef HAS_Z_STEP #define ISR_START_Z_STEPPER_CYCLES ISR_START_STEPPER_CYCLES #define ISR_Z_STEPPER_CYCLES ISR_STEPPER_CYCLES #else #define ISR_START_Z_STEPPER_CYCLES 0UL #define ISR_Z_STEPPER_CYCLES 0UL #endif // E is always interpolated, even for mixing extruders #define ISR_START_E_STEPPER_CYCLES ISR_START_STEPPER_CYCLES #define ISR_E_STEPPER_CYCLES ISR_STEPPER_CYCLES // If linear advance is disabled, then the loop also handles them #if DISABLED(LIN_ADVANCE) && ENABLED(MIXING_EXTRUDER) #define ISR_START_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_START_STEPPER_CYCLES)) #define ISR_MIXING_STEPPER_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES)) #else #define ISR_START_MIXING_STEPPER_CYCLES 0UL #define ISR_MIXING_STEPPER_CYCLES 0UL #endif // Calculate the minimum time to start all stepper pulses in the ISR loop #define MIN_ISR_START_LOOP_CYCLES (ISR_START_X_STEPPER_CYCLES + ISR_START_Y_STEPPER_CYCLES + ISR_START_Z_STEPPER_CYCLES + ISR_START_E_STEPPER_CYCLES + ISR_START_MIXING_STEPPER_CYCLES) // And the total minimum loop time, not including the base #define MIN_ISR_LOOP_CYCLES (ISR_X_STEPPER_CYCLES + ISR_Y_STEPPER_CYCLES + ISR_Z_STEPPER_CYCLES + ISR_E_STEPPER_CYCLES + ISR_MIXING_STEPPER_CYCLES) // Calculate the minimum MPU cycles needed per pulse to enforce, limited to the max stepper rate #define _MIN_STEPPER_PULSE_CYCLES(N) MAX((unsigned long)((F_CPU) / (MAXIMUM_STEPPER_RATE)), ((F_CPU) / 500000UL) * (N)) #if MINIMUM_STEPPER_PULSE #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES((unsigned long)(MINIMUM_STEPPER_PULSE)) #else #define MIN_STEPPER_PULSE_CYCLES _MIN_STEPPER_PULSE_CYCLES(1UL) #endif // Calculate the minimum ticks of the PULSE timer that must elapse with the step pulse enabled // adding the "start stepper pulse" code section execution cycles to account for that not all // pulses start at the beginning of the loop, so an extra time must be added to compensate so // the last generated pulse (usually the extruder stepper) has the right length #define MIN_PULSE_TICKS (((PULSE_TIMER_TICKS_PER_US) * (unsigned long)(MINIMUM_STEPPER_PULSE)) + ((MIN_ISR_START_LOOP_CYCLES) / (unsigned long)(PULSE_TIMER_PRESCALE))) // Calculate the extra ticks of the PULSE timer between step pulses #define ADDED_STEP_TICKS (((MIN_STEPPER_PULSE_CYCLES) / (PULSE_TIMER_PRESCALE)) - (MIN_PULSE_TICKS)) // But the user could be enforcing a minimum time, so the loop time is #define ISR_LOOP_CYCLES (ISR_LOOP_BASE_CYCLES + MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LOOP_CYCLES)) // If linear advance is enabled, then it is handled separately #if ENABLED(LIN_ADVANCE) // Estimate the minimum LA loop time #if ENABLED(MIXING_EXTRUDER) #define MIN_ISR_LA_LOOP_CYCLES ((MIXING_STEPPERS) * (ISR_STEPPER_CYCLES)) #else #define MIN_ISR_LA_LOOP_CYCLES ISR_STEPPER_CYCLES #endif // And the real loop time #define ISR_LA_LOOP_CYCLES MAX(MIN_STEPPER_PULSE_CYCLES, MIN_ISR_LA_LOOP_CYCLES) #else #define ISR_LA_LOOP_CYCLES 0UL #endif // Now estimate the total ISR execution time in cycles given a step per ISR multiplier #define ISR_EXECUTION_CYCLES(R) (((ISR_BASE_CYCLES + ISR_S_CURVE_CYCLES + (ISR_LOOP_CYCLES) * (R) + ISR_LA_BASE_CYCLES + ISR_LA_LOOP_CYCLES)) / (R)) // The maximum allowable stepping frequency when doing x128-x1 stepping (in Hz) #define MAX_STEP_ISR_FREQUENCY_128X ((F_CPU) / ISR_EXECUTION_CYCLES(128)) #define MAX_STEP_ISR_FREQUENCY_64X ((F_CPU) / ISR_EXECUTION_CYCLES(64)) #define MAX_STEP_ISR_FREQUENCY_32X ((F_CPU) / ISR_EXECUTION_CYCLES(32)) #define MAX_STEP_ISR_FREQUENCY_16X ((F_CPU) / ISR_EXECUTION_CYCLES(16)) #define MAX_STEP_ISR_FREQUENCY_8X ((F_CPU) / ISR_EXECUTION_CYCLES(8)) #define MAX_STEP_ISR_FREQUENCY_4X ((F_CPU) / ISR_EXECUTION_CYCLES(4)) #define MAX_STEP_ISR_FREQUENCY_2X ((F_CPU) / ISR_EXECUTION_CYCLES(2)) #define MAX_STEP_ISR_FREQUENCY_1X ((F_CPU) / ISR_EXECUTION_CYCLES(1)) // The minimum allowable frequency for step smoothing will be 1/10 of the maximum nominal frequency (in Hz) #define MIN_STEP_ISR_FREQUENCY MAX_STEP_ISR_FREQUENCY_1X // // Stepper class definition // #include "planner.h" #include "speed_lookuptable.h" #include "stepper_indirection.h" #include "language.h" #include "types.h" // intRes = intIn1 * intIn2 >> 16 // uses: // r26 to store 0 // r27 to store the byte 1 of the 24 bit result static FORCE_INLINE uint16_t MultiU16X8toH16(uint8_t charIn1, uint16_t intIn2) { register uint8_t tmp; register uint16_t intRes; __asm__ __volatile__ ( A("clr %[tmp]") A("mul %[charIn1], %B[intIn2]") A("movw %A[intRes], r0") A("mul %[charIn1], %A[intIn2]") A("add %A[intRes], r1") A("adc %B[intRes], %[tmp]") A("lsr r0") A("adc %A[intRes], %[tmp]") A("adc %B[intRes], %[tmp]") A("clr r1") : [intRes] "=&r" (intRes), [tmp] "=&r" (tmp) : [charIn1] "d" (charIn1), [intIn2] "d" (intIn2) : "cc" ); return intRes; } class Stepper { public: #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) static bool homing_dual_axis; #endif #if HAS_MOTOR_CURRENT_PWM #ifndef PWM_MOTOR_CURRENT #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT #endif static uint32_t motor_current_setting[3]; #endif private: static block_t* current_block; // A pointer to the block currently being traced static uint8_t last_direction_bits, // The next stepping-bits to be output axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner static bool abort_current_block; // Signals to the stepper that current block should be aborted #if DISABLED(MIXING_EXTRUDER) static uint8_t last_moved_extruder; // Last-moved extruder, as set when the last movement was fetched from planner #endif #if ENABLED(X_DUAL_ENDSTOPS) static bool locked_X_motor, locked_X2_motor; #endif #if ENABLED(Y_DUAL_ENDSTOPS) static bool locked_Y_motor, locked_Y2_motor; #endif #if ENABLED(Z_DUAL_ENDSTOPS) static bool locked_Z_motor, locked_Z2_motor; #endif static uint32_t acceleration_time, deceleration_time; // time measured in Stepper Timer ticks static uint8_t steps_per_isr; // Count of steps to perform per Stepper ISR call #if ENABLED(ADAPTIVE_STEP_SMOOTHING) static uint8_t oversampling_factor; // Oversampling factor (log2(multiplier)) to increase temporal resolution of axis #else static constexpr uint8_t oversampling_factor = 0; #endif // Delta error variables for the Bresenham line tracer static int32_t delta_error[NUM_AXIS]; static uint32_t advance_dividend[NUM_AXIS], advance_divisor, step_events_completed, // The number of step events executed in the current block accelerate_until, // The point from where we need to stop acceleration decelerate_after, // The point from where we need to start decelerating step_event_count; // The total event count for the current block // Mixing extruder mix delta_errors for bresenham tracing #if ENABLED(MIXING_EXTRUDER) static int32_t delta_error_m[MIXING_STEPPERS]; static uint32_t advance_dividend_m[MIXING_STEPPERS], advance_divisor_m; #define MIXING_STEPPERS_LOOP(VAR) \ for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) #else static int8_t active_extruder; // Active extruder #endif #if ENABLED(S_CURVE_ACCELERATION) static int32_t bezier_A, // A coefficient in Bézier speed curve bezier_B, // B coefficient in Bézier speed curve bezier_C; // C coefficient in Bézier speed curve static uint32_t bezier_F, // F coefficient in Bézier speed curve bezier_AV; // AV coefficient in Bézier speed curve static bool A_negative, // If A coefficient was negative bezier_2nd_half; // If Bézier curve has been initialized or not #endif static uint32_t nextMainISR; // time remaining for the next Step ISR #if ENABLED(LIN_ADVANCE) static uint32_t nextAdvanceISR, LA_isr_rate; static uint16_t LA_current_adv_steps, LA_final_adv_steps, LA_max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early". static int8_t LA_steps; static bool LA_use_advance_lead; #endif // LIN_ADVANCE static int32_t ticks_nominal; #if DISABLED(S_CURVE_ACCELERATION) static uint32_t acc_step_rate; // needed for deceleration start point #endif static volatile int32_t endstops_trigsteps[XYZ]; // // Positions of stepper motors, in step units // static volatile int32_t count_position[NUM_AXIS]; // // Current direction of stepper motors (+1 or -1) // static int8_t count_direction[NUM_AXIS]; public: // // Constructor / initializer // Stepper() { }; // Initialize stepper hardware static void init(); // Interrupt Service Routines // The ISR scheduler static void isr(); // The stepper pulse phase ISR static void stepper_pulse_phase_isr(); // The stepper block processing phase ISR static uint32_t stepper_block_phase_isr(); #if ENABLED(LIN_ADVANCE) // The Linear advance stepper ISR static uint32_t advance_isr(); #endif // Check if the given block is busy or not - Must not be called from ISR contexts static bool is_block_busy(const block_t* const block); // Get the position of a stepper, in steps static int32_t position(const AxisEnum axis); // Report the positions of the steppers, in steps static void report_positions(); // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. static void wake_up(); // Quickly stop all steppers FORCE_INLINE static void quick_stop() { abort_current_block = true; } // The direction of a single motor FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); } // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same. FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); } // The extruder associated to the last movement FORCE_INLINE static uint8_t movement_extruder() { return #if ENABLED(MIXING_EXTRUDER) 0 #else last_moved_extruder #endif ; } // Handle a triggered endstop static void endstop_triggered(const AxisEnum axis); // Triggered position of an axis in steps static int32_t triggered_position(const AxisEnum axis); #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digitalPotWrite(const int16_t address, const int16_t value); static void digipot_current(const uint8_t driver, const int16_t current); #endif #if HAS_MICROSTEPS static void microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2); static void microstep_mode(const uint8_t driver, const uint8_t stepping); static void microstep_readings(); #endif #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) FORCE_INLINE static void set_homing_dual_axis(const bool state) { homing_dual_axis = state; } #endif #if ENABLED(X_DUAL_ENDSTOPS) FORCE_INLINE static void set_x_lock(const bool state) { locked_X_motor = state; } FORCE_INLINE static void set_x2_lock(const bool state) { locked_X2_motor = state; } #endif #if ENABLED(Y_DUAL_ENDSTOPS) FORCE_INLINE static void set_y_lock(const bool state) { locked_Y_motor = state; } FORCE_INLINE static void set_y2_lock(const bool state) { locked_Y2_motor = state; } #endif #if ENABLED(Z_DUAL_ENDSTOPS) FORCE_INLINE static void set_z_lock(const bool state) { locked_Z_motor = state; } FORCE_INLINE static void set_z2_lock(const bool state) { locked_Z2_motor = state; } #endif #if ENABLED(BABYSTEPPING) static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif #if HAS_MOTOR_CURRENT_PWM static void refresh_motor_power(); #endif // Set the current position in steps inline static void set_position(const int32_t &a, const int32_t &b, const int32_t &c #if ENABLED(HANGPRINTER) , const int32_t &d #endif , const int32_t &e ) { planner.synchronize(); const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); _set_position(a, b, c #if ENABLED(HANGPRINTER) , d #endif , e ); if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } inline static void set_position(const AxisEnum a, const int32_t &v) { planner.synchronize(); const bool was_enabled = STEPPER_ISR_ENABLED(); if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); count_position[a] = v; if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } private: // Set the current position in steps static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c #if ENABLED(HANGPRINTER) , const int32_t &d #endif , const int32_t &e ); // Set direction bits for all steppers static void set_directions(); FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate, uint8_t scale, uint8_t* loops) { uint32_t timer; // Scale the frequency, as requested by the caller step_rate <<= scale; uint8_t multistep = 1; #if DISABLED(DISABLE_MULTI_STEPPING) // The stepping frequency limits for each multistepping rate static const uint32_t limit[] PROGMEM = { ( MAX_STEP_ISR_FREQUENCY_1X ), ( MAX_STEP_ISR_FREQUENCY_2X >> 1), ( MAX_STEP_ISR_FREQUENCY_4X >> 2), ( MAX_STEP_ISR_FREQUENCY_8X >> 3), ( MAX_STEP_ISR_FREQUENCY_16X >> 4), ( MAX_STEP_ISR_FREQUENCY_32X >> 5), ( MAX_STEP_ISR_FREQUENCY_64X >> 6), (MAX_STEP_ISR_FREQUENCY_128X >> 7) }; // Select the proper multistepping uint8_t idx = 0; while (idx < 7 && step_rate > (uint32_t)pgm_read_dword(&limit[idx])) { step_rate >>= 1; multistep <<= 1; ++idx; }; #else NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X)); #endif *loops = multistep; constexpr uint32_t min_step_rate = F_CPU / 500000U; NOLESS(step_rate, min_step_rate); step_rate -= min_step_rate; // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate const uint8_t tmp_step_rate = (step_rate & 0x00FF); const uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0], gain = (uint16_t)pgm_read_word_near(table_address + 2); timer = MultiU16X8toH16(tmp_step_rate, gain); timer = (uint16_t)pgm_read_word_near(table_address) - timer; } else { // lower step rates uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0]; table_address += ((step_rate) >> 1) & 0xFFFC; timer = (uint16_t)pgm_read_word_near(table_address) - (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3); } // (there is no need to limit the timer value here. All limits have been // applied above, and AVR is able to keep up at 30khz Stepping ISR rate) return timer; } #if ENABLED(S_CURVE_ACCELERATION) static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av); static int32_t _eval_bezier_curve(const uint32_t curr_step); #endif #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digipot_init(); #endif #if HAS_MICROSTEPS static void microstep_init(); #endif }; extern Stepper stepper; #endif // STEPPER_H