/** * Marlin 3D Printer Firmware * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * About Marlin * * This firmware is a mashup between Sprinter and grbl. * - https://github.com/kliment/Sprinter * - https://github.com/simen/grbl/tree */ /** * ----------------- * G-Codes in Marlin * ----------------- * * Helpful G-code references: * - http://linuxcnc.org/handbook/gcode/g-code.html * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes * * Help to document Marlin's G-codes online: * - http://reprap.org/wiki/G-code * - https://github.com/MarlinFirmware/MarlinDocumentation * * ----------------- * * "G" Codes * * G0 -> G1 * G1 - Coordinated Movement X Y Z E * G2 - CW ARC * G3 - CCW ARC * G4 - Dwell S or P * G5 - Cubic B-spline with XYZE destination and IJPQ offsets * G10 - Retract filament according to settings of M207 (Requires FWRETRACT) * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT) * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE) * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES) * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES) * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES) * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT) * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT) * G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION) * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE) * G28 - Home one or more axes * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling) * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location) * G31 - Dock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only) * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION) * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET) * G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL) * G90 - Use Absolute Coordinates * G91 - Use Relative Coordinates * G92 - Set current position to coordinates given * * "M" Codes * * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) * M1 -> M0 * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise * M5 - Turn laser/spindle off * M17 - Enable/Power all stepper motors * M18 - Disable all stepper motors; same as M84 * M20 - List SD card. (Requires SDSUPPORT) * M21 - Init SD card. (Requires SDSUPPORT) * M22 - Release SD card. (Requires SDSUPPORT) * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT) * M24 - Start/resume SD print. (Requires SDSUPPORT) * M25 - Pause SD print. (Requires SDSUPPORT) * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT) * M27 - Report SD print status. (Requires SDSUPPORT) * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT) * M29 - Stop SD write. (Requires SDSUPPORT) * M30 - Delete file from SD: "M30 /path/file.gco" * M31 - Report time since last M109 or SD card start to serial. * M32 - Select file and start SD print: "M32 [S] !/path/file.gco#". (Requires SDSUPPORT) * Use P to run other files as sub-programs: "M32 P !filename#" * The '#' is necessary when calling from within sd files, as it stops buffer prereading * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT) * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA) * M42 - Change pin status via gcode: M42 P S. LED pin assumed if P is omitted. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins * M48 - Measure Z Probe repeatability: M48 P X Y V E L. (Requires Z_MIN_PROBE_REPEATABILITY_TEST) * M75 - Start the print job timer. * M76 - Pause the print job timer. * M77 - Stop the print job timer. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER) * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0) * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0) * M82 - Set E codes absolute (default). * M83 - Set E codes relative while in Absolute (G90) mode. * M84 - Disable steppers until next move, or use S to specify an idle * duration after which steppers should turn off. S0 disables the timeout. * M85 - Set inactivity shutdown timer with parameter S. To disable set zero (default) * M92 - Set planner.axis_steps_per_mm for one or more axes. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER) * M104 - Set extruder target temp. * M105 - Report current temperatures. * M106 - Fan on. * M107 - Fan off. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER) * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling * If AUTOTEMP is enabled, S B F. Exit autotemp by any M109 without F * M110 - Set the current line number. (Used by host printing) * M111 - Set debug flags: "M111 S". See flag bits defined in enum.h. * M112 - Emergency stop. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE) * M114 - Report current position. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT) * M117 - Display a message on the controller screen. (Requires an LCD) * M118 - Display a message in the host console. * M119 - Report endstops status. * M120 - Enable endstops detection. * M121 - Disable endstops detection. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE) * M126 - Solenoid Air Valve Open. (Requires BARICUDA) * M127 - Solenoid Air Valve Closed. (Requires BARICUDA) * M128 - EtoP Open. (Requires BARICUDA) * M129 - EtoP Closed. (Requires BARICUDA) * M140 - Set bed target temp. S * M145 - Set heatup values for materials on the LCD. H B F for S (0=PLA, 1=ABS) * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT) * M150 - Set Status LED Color as R U B. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632) * M155 - Auto-report temperatures with interval of S. (Requires AUTO_REPORT_TEMPERATURES) * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER) * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS) * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER) * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! ** * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. ** * M200 - Set filament diameter, D, setting E axis units to cubic. (Use S0 to revert to linear units.) * M201 - Set max acceleration in units/s^2 for print moves: "M201 X Y Z E" * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X Y Z E" ** UNUSED IN MARLIN! ** * M203 - Set maximum feedrate: "M203 X Y Z E" in units/sec. * M204 - Set default acceleration in units/sec^2: P R T * M205 - Set advanced settings. Current units apply: S T minimum speeds B X, Y, Z, E * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA) * M207 - Set Retract Length: S, Feedrate: F, and Z lift: Z. (Requires FWRETRACT) * M208 - Set Recover (unretract) Additional (!) Length: S and Feedrate: F. (Requires FWRETRACT) * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT) Every normal extrude-only move will be classified as retract depending on the direction. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS) * M218 - Set a tool offset: "M218 T X Y". (Requires 2 or more extruders) * M220 - Set Feedrate Percentage: "M220 S" (i.e., "FR" on the LCD) * M221 - Set Flow Percentage: "M221 S" * M226 - Wait until a pin is in a given state: "M226 P S" * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN) * M250 - Set LCD contrast: "M250 C" (0-63). (Requires LCD support) * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS) * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS) * M280 - Set servo position absolute: "M280 P S". (Requires servos) * M300 - Play beep sound S P * M301 - Set PID parameters P I and D. (Requires PIDTEMP) * M302 - Allow cold extrudes, or set the minimum extrude S. (Requires PREVENT_COLD_EXTRUSION) * M303 - PID relay autotune S sets the target temperature. Default 150C. (Requires PIDTEMP) * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED) * M350 - Set microstepping mode. (Requires digital microstepping pins.) * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.) * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN) * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID) * M381 - Disable all solenoids. (Requires EXT_SOLENOID) * M400 - Finish all moves. * M401 - Lower Z probe. (Requires a probe) * M402 - Raise Z probe. (Requires a probe) * M404 - Display or set the Nominal Filament Width: "W". (Requires FILAMENT_WIDTH_SENSOR) * M405 - Enable Filament Sensor flow control. "M405 D". (Requires FILAMENT_WIDTH_SENSOR) * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR) * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR) * M410 - Quickstop. Abort all planned moves. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL) * M421 - Set a single Z coordinate in the Mesh Leveling grid. X Y Z (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL) * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA) * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS) * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS) * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! ** * M503 - Print the current settings (in memory): "M503 S". S0 specifies compact output. * M540 - Enable/disable SD card abort on endstop hit: "M540 S". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) * M600 - Pause for filament change: "M600 X Y Z E L". (Requires ADVANCED_PAUSE_FEATURE) * M665 - Set delta configurations: "M665 L R S A B C I J K" (Requires DELTA) * M666 - Set delta endstop adjustment. (Requires DELTA) * M605 - Set dual x-carriage movement mode: "M605 S [X] [R]". (Requires DUAL_X_CARRIAGE) * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.) * M860 - Report the position of position encoder modules. * M861 - Report the status of position encoder modules. * M862 - Perform an axis continuity test for position encoder modules. * M863 - Perform steps-per-mm calibration for position encoder modules. * M864 - Change position encoder module I2C address. * M865 - Check position encoder module firmware version. * M866 - Report or reset position encoder module error count. * M867 - Enable/disable or toggle error correction for position encoder modules. * M868 - Report or set position encoder module error correction threshold. * M869 - Report position encoder module error. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE) * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130) * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots) * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN) * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT) * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT) * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130) * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130) * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD) * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING) * * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration) * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration) * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position) * * ************ Custom codes - This can change to suit future G-code regulations * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT) * M999 - Restart after being stopped by error * * "T" Codes * * T0-T3 - Select an extruder (tool) by index: "T F" * */ #include "Marlin.h" #include "ultralcd.h" #include "planner.h" #include "stepper.h" #include "endstops.h" #include "temperature.h" #include "cardreader.h" #include "configuration_store.h" #include "language.h" #include "pins_arduino.h" #include "math.h" #include "nozzle.h" #include "duration_t.h" #include "types.h" #include "gcode.h" #if HAS_ABL #include "vector_3.h" #if ENABLED(AUTO_BED_LEVELING_LINEAR) #include "least_squares_fit.h" #endif #elif ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif #if ENABLED(BEZIER_CURVE_SUPPORT) #include "planner_bezier.h" #endif #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) #include "buzzer.h" #endif #if ENABLED(USE_WATCHDOG) #include "watchdog.h" #endif #if ENABLED(MAX7219_DEBUG) #include "Max7219_Debug_LEDs.h" #endif #if ENABLED(NEOPIXEL_RGBW_LED) #include #endif #if ENABLED(BLINKM) #include "blinkm.h" #include "Wire.h" #endif #if ENABLED(PCA9632) #include "pca9632.h" #endif #if HAS_SERVOS #include "servo.h" #endif #if HAS_DIGIPOTSS #include #endif #if ENABLED(DAC_STEPPER_CURRENT) #include "stepper_dac.h" #endif #if ENABLED(EXPERIMENTAL_I2CBUS) #include "twibus.h" #endif #if ENABLED(I2C_POSITION_ENCODERS) #include "I2CPositionEncoder.h" #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #include "endstop_interrupts.h" #endif #if ENABLED(M100_FREE_MEMORY_WATCHER) void gcode_M100(); void M100_dump_routine(const char * const title, const char *start, const char *end); #endif #if ENABLED(SDSUPPORT) CardReader card; #endif #if ENABLED(EXPERIMENTAL_I2CBUS) TWIBus i2c; #endif #if ENABLED(G38_PROBE_TARGET) bool G38_move = false, G38_endstop_hit = false; #endif #if ENABLED(AUTO_BED_LEVELING_UBL) #include "ubl.h" extern bool defer_return_to_status; unified_bed_leveling ubl; #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \ && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \ && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \ && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \ || isnan(ubl.z_values[0][0])) #endif bool Running = true; uint8_t marlin_debug_flags = DEBUG_NONE; /** * Cartesian Current Position * Used to track the logical position as moves are queued. * Used by 'line_to_current_position' to do a move after changing it. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'. */ float current_position[XYZE] = { 0.0 }; /** * Cartesian Destination * A temporary position, usually applied to 'current_position'. * Set with 'gcode_get_destination' or 'set_destination_to_current'. * 'line_to_destination' sets 'current_position' to 'destination'. */ float destination[XYZE] = { 0.0 }; /** * axis_homed * Flags that each linear axis was homed. * XYZ on cartesian, ABC on delta, ABZ on SCARA. * * axis_known_position * Flags that the position is known in each linear axis. Set when homed. * Cleared whenever a stepper powers off, potentially losing its position. */ bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false }; /** * GCode line number handling. Hosts may opt to include line numbers when * sending commands to Marlin, and lines will be checked for sequentiality. * M110 N sets the current line number. */ static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; /** * GCode Command Queue * A simple ring buffer of BUFSIZE command strings. * * Commands are copied into this buffer by the command injectors * (immediate, serial, sd card) and they are processed sequentially by * the main loop. The process_next_command function parses the next * command and hands off execution to individual handler functions. */ uint8_t commands_in_queue = 0; // Count of commands in the queue static uint8_t cmd_queue_index_r = 0, // Ring buffer read position cmd_queue_index_w = 0; // Ring buffer write position #if ENABLED(M100_FREE_MEMORY_WATCHER) char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption #else // This can be collapsed back to the way it was soon. static char command_queue[BUFSIZE][MAX_CMD_SIZE]; #endif /** * Next Injected Command pointer. NULL if no commands are being injected. * Used by Marlin internally to ensure that commands initiated from within * are enqueued ahead of any pending serial or sd card commands. */ static const char *injected_commands_P = NULL; #if ENABLED(TEMPERATURE_UNITS_SUPPORT) TempUnit input_temp_units = TEMPUNIT_C; #endif /** * Feed rates are often configured with mm/m * but the planner and stepper like mm/s units. */ static const float homing_feedrate_mm_s[] PROGMEM = { #if ENABLED(DELTA) MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z), #else MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY), #endif MMM_TO_MMS(HOMING_FEEDRATE_Z), 0 }; FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); } float feedrate_mm_s = MMM_TO_MMS(1500.0); static float saved_feedrate_mm_s; int16_t feedrate_percentage = 100, saved_feedrate_percentage, flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Initialized by settings.load() bool axis_relative_modes[] = AXIS_RELATIVE_MODES, volumetric_enabled; float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS]; #if HAS_WORKSPACE_OFFSET #if HAS_POSITION_SHIFT // The distance that XYZ has been offset by G92. Reset by G28. float position_shift[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET // This offset is added to the configured home position. // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[XYZ] = { 0 }; #endif #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT // The above two are combined to save on computes float workspace_offset[XYZ] = { 0 }; #endif #endif // Software Endstops are based on the configured limits. #if HAS_SOFTWARE_ENDSTOPS bool soft_endstops_enabled = true; #endif float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS }; #if FAN_COUNT > 0 int16_t fanSpeeds[FAN_COUNT] = { 0 }; #if ENABLED(PROBING_FANS_OFF) bool fans_paused = false; int16_t paused_fanSpeeds[FAN_COUNT] = { 0 }; #endif #endif // The active extruder (tool). Set with T command. uint8_t active_extruder = 0; // Relative Mode. Enable with G91, disable with G90. static bool relative_mode = false; // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop volatile bool wait_for_heatup = true; // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop #if HAS_RESUME_CONTINUE volatile bool wait_for_user = false; #endif const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' }; // Number of characters read in the current line of serial input static int serial_count = 0; // Inactivity shutdown millis_t previous_cmd_ms = 0; static millis_t max_inactive_time = 0; static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL; // Print Job Timer #if ENABLED(PRINTCOUNTER) PrintCounter print_job_timer = PrintCounter(); #else Stopwatch print_job_timer = Stopwatch(); #endif // Buzzer - I2C on the LCD or a BEEPER_PIN #if ENABLED(LCD_USE_I2C_BUZZER) #define BUZZ(d,f) lcd_buzz(d, f) #elif PIN_EXISTS(BEEPER) Buzzer buzzer; #define BUZZ(d,f) buzzer.tone(d, f) #else #define BUZZ(d,f) NOOP #endif static uint8_t target_extruder; #if HAS_BED_PROBE float zprobe_zoffset; // Initialized by settings.load() #endif #if HAS_ABL float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s #elif defined(XY_PROBE_SPEED) #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED) #else #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE() #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(DELTA) #define ADJUST_DELTA(V) \ if (planner.abl_enabled) { \ const float zadj = bilinear_z_offset(V); \ delta[A_AXIS] += zadj; \ delta[B_AXIS] += zadj; \ delta[C_AXIS] += zadj; \ } #else #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); } #endif #elif IS_KINEMATIC #define ADJUST_DELTA(V) NOOP #endif #if ENABLED(Z_DUAL_ENDSTOPS) float z_endstop_adj; #endif // Extruder offsets #if HOTENDS > 1 float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load() #endif #if HAS_Z_SERVO_ENDSTOP const int z_servo_angle[2] = Z_SERVO_ANGLES; #endif #if ENABLED(BARICUDA) uint8_t baricuda_valve_pressure = 0, baricuda_e_to_p_pressure = 0; #endif #if ENABLED(FWRETRACT) // Initialized by settings.load()... bool autoretract_enabled, // M209 S - Autoretract switch retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted float retract_length, // M207 S - G10 Retract length retract_feedrate_mm_s, // M207 F - G10 Retract feedrate retract_zlift, // M207 Z - G10 Retract hop size retract_recover_length, // M208 S - G11 Recover length retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate swap_retract_length, // M207 W - G10 Swap Retract length swap_retract_recover_length, // M208 W - G11 Swap Recover length swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate #if EXTRUDERS > 1 bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted #else constexpr bool retracted_swap[1] = { false }; #endif #endif // FWRETRACT #if HAS_POWER_SWITCH bool powersupply_on = #if ENABLED(PS_DEFAULT_OFF) false #else true #endif ; #endif #if ENABLED(DELTA) float delta[ABC], endstop_adj[ABC] = { 0 }; // Initialized by settings.load() float delta_radius, delta_tower_angle_trim[ABC], delta_tower[ABC][2], delta_diagonal_rod, delta_calibration_radius, delta_diagonal_rod_2_tower[ABC], delta_segments_per_second, delta_clip_start_height = Z_MAX_POS; float delta_safe_distance_from_top(); #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) int bilinear_grid_spacing[2], bilinear_start[2]; float bilinear_grid_factor[2], z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; #endif #if IS_SCARA // Float constants for SCARA calculations const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2, L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2, L2_2 = sq(float(L2)); float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND, delta[ABC]; #endif float cartes[XYZ] = { 0 }; #if ENABLED(FILAMENT_WIDTH_SENSOR) bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100 int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) static bool filament_ran_out = false; #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) AdvancedPauseMenuResponse advanced_pause_menu_response; #endif #if ENABLED(MIXING_EXTRUDER) float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0. #if MIXING_VIRTUAL_TOOLS > 1 float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS]; #endif #endif static bool send_ok[BUFSIZE]; #if HAS_SERVOS Servo servo[NUM_SERVOS]; #define MOVE_SERVO(I, P) servo[I].move(P) #if HAS_Z_SERVO_ENDSTOP #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0]) #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1]) #endif #endif #ifdef CHDK millis_t chdkHigh = 0; bool chdkActive = false; #endif #ifdef AUTOMATIC_CURRENT_CONTROL bool auto_current_control = 0; #endif #if ENABLED(PID_EXTRUSION_SCALING) int lpq_len = 20; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) MarlinBusyState busy_state = NOT_BUSY; static millis_t next_busy_signal_ms = 0; uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL; #else #define host_keepalive() NOOP #endif #if ENABLED(I2C_POSITION_ENCODERS) I2CPositionEncodersMgr I2CPEM; uint8_t blockBufferIndexRef = 0; millis_t lastUpdateMillis; #endif #if ENABLED(CNC_WORKSPACE_PLANES) static WorkspacePlane workspace_plane = PLANE_XY; #endif FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); } FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); } #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \ typedef void __void_##CONFIG##__ XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM); XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); /** * *************************************************************************** * ******************************** FUNCTIONS ******************************** * *************************************************************************** */ void stop(); void get_available_commands(); void process_next_command(); void prepare_move_to_destination(); void get_cartesian_from_steppers(); void set_current_from_steppers_for_axis(const AxisEnum axis); #if ENABLED(ARC_SUPPORT) void plan_arc(float target[XYZE], float* offset, uint8_t clockwise); #endif #if ENABLED(BEZIER_CURVE_SUPPORT) void plan_cubic_move(const float offset[4]); #endif void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false); void report_current_position(); void report_current_position_detail(); #if ENABLED(DEBUG_LEVELING_FEATURE) void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) { serialprintPGM(prefix); SERIAL_CHAR('('); SERIAL_ECHO(x); SERIAL_ECHOPAIR(", ", y); SERIAL_ECHOPAIR(", ", z); SERIAL_CHAR(')'); if (suffix) serialprintPGM(suffix); else SERIAL_EOL(); } void print_xyz(const char* prefix, const char* suffix, const float xyz[]) { print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]); } #if HAS_ABL void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) { print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z); } #endif #define DEBUG_POS(SUFFIX,VAR) do { \ print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0) #endif /** * sync_plan_position * * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); #endif planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } #if IS_KINEMATIC inline void sync_plan_position_kinematic() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position); #endif planner.set_position_mm_kinematic(current_position); } #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic() #else #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position() #endif #if ENABLED(SDSUPPORT) #include "SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } #else extern "C" { extern char __bss_end; extern char __heap_start; extern void* __brkval; int freeMemory() { int free_memory; if ((int)__brkval == 0) free_memory = ((int)&free_memory) - ((int)&__bss_end); else free_memory = ((int)&free_memory) - ((int)__brkval); return free_memory; } } #endif // !SDSUPPORT #if ENABLED(DIGIPOT_I2C) extern void digipot_i2c_set_current(uint8_t channel, float current); extern void digipot_i2c_init(); #endif /** * Inject the next "immediate" command, when possible, onto the front of the queue. * Return true if any immediate commands remain to inject. */ static bool drain_injected_commands_P() { if (injected_commands_P != NULL) { size_t i = 0; char c, cmd[30]; strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1); cmd[sizeof(cmd) - 1] = '\0'; while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command cmd[i] = '\0'; if (enqueue_and_echo_command(cmd)) // success? injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done } return (injected_commands_P != NULL); // return whether any more remain } /** * Record one or many commands to run from program memory. * Aborts the current queue, if any. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards */ void enqueue_and_echo_commands_P(const char * const pgcode) { injected_commands_P = pgcode; drain_injected_commands_P(); // first command executed asap (when possible) } /** * Clear the Marlin command queue */ void clear_command_queue() { cmd_queue_index_r = cmd_queue_index_w; commands_in_queue = 0; } /** * Once a new command is in the ring buffer, call this to commit it */ inline void _commit_command(bool say_ok) { send_ok[cmd_queue_index_w] = say_ok; if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0; commands_in_queue++; } /** * Copy a command from RAM into the main command buffer. * Return true if the command was successfully added. * Return false for a full buffer, or if the 'command' is a comment. */ inline bool _enqueuecommand(const char* cmd, bool say_ok=false) { if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false; strcpy(command_queue[cmd_queue_index_w], cmd); _commit_command(say_ok); return true; } /** * Enqueue with Serial Echo */ bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) { if (_enqueuecommand(cmd, say_ok)) { SERIAL_ECHO_START(); SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd); SERIAL_CHAR('"'); SERIAL_EOL(); return true; } return false; } void setup_killpin() { #if HAS_KILL SET_INPUT_PULLUP(KILL_PIN); #endif } #if ENABLED(FILAMENT_RUNOUT_SENSOR) void setup_filrunoutpin() { #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT) SET_INPUT_PULLUP(FIL_RUNOUT_PIN); #else SET_INPUT(FIL_RUNOUT_PIN); #endif } #endif void setup_powerhold() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if HAS_POWER_SWITCH #if ENABLED(PS_DEFAULT_OFF) OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); #else OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); #endif #endif } void suicide() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, LOW); #endif } void servo_init() { #if NUM_SERVOS >= 1 && HAS_SERVO_0 servo[0].attach(SERVO0_PIN); servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position. #endif #if NUM_SERVOS >= 2 && HAS_SERVO_1 servo[1].attach(SERVO1_PIN); servo[1].detach(); #endif #if NUM_SERVOS >= 3 && HAS_SERVO_2 servo[2].attach(SERVO2_PIN); servo[2].detach(); #endif #if NUM_SERVOS >= 4 && HAS_SERVO_3 servo[3].attach(SERVO3_PIN); servo[3].detach(); #endif #if HAS_Z_SERVO_ENDSTOP /** * Set position of Z Servo Endstop * * The servo might be deployed and positioned too low to stow * when starting up the machine or rebooting the board. * There's no way to know where the nozzle is positioned until * homing has been done - no homing with z-probe without init! * */ STOW_Z_SERVO(); #endif } /** * Stepper Reset (RigidBoard, et.al.) */ #if HAS_STEPPER_RESET void disableStepperDrivers() { OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips } void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups #endif #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0 void i2c_on_receive(int bytes) { // just echo all bytes received to serial i2c.receive(bytes); } void i2c_on_request() { // just send dummy data for now i2c.reply("Hello World!\n"); } #endif #if HAS_COLOR_LEDS #if ENABLED(NEOPIXEL_RGBW_LED) Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEO_GRBW + NEO_KHZ800); void set_neopixel_color(const uint32_t color) { for (uint16_t i = 0; i < pixels.numPixels(); ++i) pixels.setPixelColor(i, color); pixels.show(); } void setup_neopixel() { pixels.setBrightness(255); // 0 - 255 range pixels.begin(); pixels.show(); // initialize to all off #if ENABLED(NEOPIXEL_STARTUP_TEST) delay(2000); set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red delay(2000); set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green delay(2000); set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue delay(2000); #endif set_neopixel_color(pixels.Color(0, 0, 0, 255)); // white } #endif // NEOPIXEL_RGBW_LED void set_led_color( const uint8_t r, const uint8_t g, const uint8_t b #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED) , const uint8_t w = 0 #if ENABLED(NEOPIXEL_RGBW_LED) , bool isSequence = false #endif #endif ) { #if ENABLED(NEOPIXEL_RGBW_LED) const uint32_t color = pixels.Color(r, g, b, w); static uint16_t nextLed = 0; if (!isSequence) set_neopixel_color(color); else { pixels.setPixelColor(nextLed, color); pixels.show(); if (++nextLed >= pixels.numPixels()) nextLed = 0; return; } #endif #if ENABLED(BLINKM) // This variant uses i2c to send the RGB components to the device. SendColors(r, g, b); #endif #if ENABLED(RGB_LED) || ENABLED(RGBW_LED) // This variant uses 3 separate pins for the RGB components. // If the pins can do PWM then their intensity will be set. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW); WRITE(RGB_LED_G_PIN, g ? HIGH : LOW); WRITE(RGB_LED_B_PIN, b ? HIGH : LOW); analogWrite(RGB_LED_R_PIN, r); analogWrite(RGB_LED_G_PIN, g); analogWrite(RGB_LED_B_PIN, b); #if ENABLED(RGBW_LED) WRITE(RGB_LED_W_PIN, w ? HIGH : LOW); analogWrite(RGB_LED_W_PIN, w); #endif #endif #if ENABLED(PCA9632) // Update I2C LED driver PCA9632_SetColor(r, g, b); #endif } #endif // HAS_COLOR_LEDS void gcode_line_error(const char* err, bool doFlush = true) { SERIAL_ERROR_START(); serialprintPGM(err); SERIAL_ERRORLN(gcode_LastN); //Serial.println(gcode_N); if (doFlush) FlushSerialRequestResend(); serial_count = 0; } /** * Get all commands waiting on the serial port and queue them. * Exit when the buffer is full or when no more characters are * left on the serial port. */ inline void get_serial_commands() { static char serial_line_buffer[MAX_CMD_SIZE]; static bool serial_comment_mode = false; // If the command buffer is empty for too long, // send "wait" to indicate Marlin is still waiting. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 static millis_t last_command_time = 0; const millis_t ms = millis(); if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) { SERIAL_ECHOLNPGM(MSG_WAIT); last_command_time = ms; } #endif /** * Loop while serial characters are incoming and the queue is not full */ while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) { char serial_char = MYSERIAL.read(); /** * If the character ends the line */ if (serial_char == '\n' || serial_char == '\r') { serial_comment_mode = false; // end of line == end of comment if (!serial_count) continue; // skip empty lines serial_line_buffer[serial_count] = 0; // terminate string serial_count = 0; //reset buffer char* command = serial_line_buffer; while (*command == ' ') command++; // skip any leading spaces char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line *apos = strchr(command, '*'); if (npos) { bool M110 = strstr_P(command, PSTR("M110")) != NULL; if (M110) { char* n2pos = strchr(command + 4, 'N'); if (n2pos) npos = n2pos; } gcode_N = strtol(npos + 1, NULL, 10); if (gcode_N != gcode_LastN + 1 && !M110) { gcode_line_error(PSTR(MSG_ERR_LINE_NO)); return; } if (apos) { byte checksum = 0, count = 0; while (command[count] != '*') checksum ^= command[count++]; if (strtol(apos + 1, NULL, 10) != checksum) { gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH)); return; } // if no errors, continue parsing } else { gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM)); return; } gcode_LastN = gcode_N; // if no errors, continue parsing } else if (apos) { // No '*' without 'N' gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false); return; } // Movement commands alert when stopped if (IsStopped()) { char* gpos = strchr(command, 'G'); if (gpos) { const int codenum = strtol(gpos + 1, NULL, 10); switch (codenum) { case 0: case 1: case 2: case 3: SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); break; } } } #if DISABLED(EMERGENCY_PARSER) // If command was e-stop process now if (strcmp(command, "M108") == 0) { wait_for_heatup = false; #if ENABLED(ULTIPANEL) wait_for_user = false; #endif } if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED)); if (strcmp(command, "M410") == 0) { quickstop_stepper(); } #endif #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 last_command_time = ms; #endif // Add the command to the queue _enqueuecommand(serial_line_buffer, true); } else if (serial_count >= MAX_CMD_SIZE - 1) { // Keep fetching, but ignore normal characters beyond the max length // The command will be injected when EOL is reached } else if (serial_char == '\\') { // Handle escapes if (MYSERIAL.available() > 0) { // if we have one more character, copy it over serial_char = MYSERIAL.read(); if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } // otherwise do nothing } else { // it's not a newline, carriage return or escape char if (serial_char == ';') serial_comment_mode = true; if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } } // queue has space, serial has data } #if ENABLED(SDSUPPORT) /** * Get commands from the SD Card until the command buffer is full * or until the end of the file is reached. The special character '#' * can also interrupt buffering. */ inline void get_sdcard_commands() { static bool stop_buffering = false, sd_comment_mode = false; if (!card.sdprinting) return; /** * '#' stops reading from SD to the buffer prematurely, so procedural * macro calls are possible. If it occurs, stop_buffering is triggered * and the buffer is run dry; this character _can_ occur in serial com * due to checksums, however, no checksums are used in SD printing. */ if (commands_in_queue == 0) stop_buffering = false; uint16_t sd_count = 0; bool card_eof = card.eof(); while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) { const int16_t n = card.get(); char sd_char = (char)n; card_eof = card.eof(); if (card_eof || n == -1 || sd_char == '\n' || sd_char == '\r' || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode) ) { if (card_eof) { SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED); card.printingHasFinished(); #if ENABLED(PRINTER_EVENT_LEDS) LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS); set_led_color(0, 255, 0); // Green #if HAS_RESUME_CONTINUE enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue! #else safe_delay(1000); #endif set_led_color(0, 0, 0); // OFF #endif card.checkautostart(true); } else if (n == -1) { SERIAL_ERROR_START(); SERIAL_ECHOLNPGM(MSG_SD_ERR_READ); } if (sd_char == '#') stop_buffering = true; sd_comment_mode = false; // for new command if (!sd_count) continue; // skip empty lines (and comment lines) command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string sd_count = 0; // clear sd line buffer _commit_command(false); } else if (sd_count >= MAX_CMD_SIZE - 1) { /** * Keep fetching, but ignore normal characters beyond the max length * The command will be injected when EOL is reached */ } else { if (sd_char == ';') sd_comment_mode = true; if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char; } } } #endif // SDSUPPORT /** * Add to the circular command queue the next command from: * - The command-injection queue (injected_commands_P) * - The active serial input (usually USB) * - The SD card file being actively printed */ void get_available_commands() { // if any immediate commands remain, don't get other commands yet if (drain_injected_commands_P()) return; get_serial_commands(); #if ENABLED(SDSUPPORT) get_sdcard_commands(); #endif } /** * Set target_extruder from the T parameter or the active_extruder * * Returns TRUE if the target is invalid */ bool get_target_extruder_from_command(const uint16_t code) { if (parser.seenval('T')) { const int8_t e = parser.value_byte(); if (e >= EXTRUDERS) { SERIAL_ECHO_START(); SERIAL_CHAR('M'); SERIAL_ECHO(code); SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e); return true; } target_extruder = e; } else target_extruder = active_extruder; return false; } #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) bool extruder_duplication_enabled = false; // Used in Dual X mode 2 #endif #if ENABLED(DUAL_X_CARRIAGE) static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; static float x_home_pos(const int extruder) { if (extruder == 0) return LOGICAL_X_POSITION(base_home_pos(X_AXIS)); else /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage position when homed - otherwise X2_HOME_POS is used. * This allows soft recalibration of the second extruder home position * without firmware reflash (through the M218 command). */ return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS); } static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; } static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1 static bool active_extruder_parked = false; // used in mode 1 & 2 static float raised_parked_position[XYZE]; // used in mode 1 static millis_t delayed_move_time = 0; // used in mode 1 static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2 #endif // DUAL_X_CARRIAGE #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) /** * Software endstops can be used to monitor the open end of * an axis that has a hardware endstop on the other end. Or * they can prevent axes from moving past endstops and grinding. * * To keep doing their job as the coordinate system changes, * the software endstop positions must be refreshed to remain * at the same positions relative to the machine. */ void update_software_endstops(const AxisEnum axis) { const float offs = 0.0 #if HAS_HOME_OFFSET + home_offset[axis] #endif #if HAS_POSITION_SHIFT + position_shift[axis] #endif ; #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT workspace_offset[axis] = offs; #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { // In Dual X mode hotend_offset[X] is T1's home position float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS); if (active_extruder != 0) { // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) soft_endstop_min[X_AXIS] = X2_MIN_POS + offs; soft_endstop_max[X_AXIS] = dual_max_x + offs; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { // In Duplication Mode, T0 can move as far left as X_MIN_POS // but not so far to the right that T1 would move past the end soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs; soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs; } else { // In other modes, T0 can move from X_MIN_POS to X_MAX_POS soft_endstop_min[axis] = base_min_pos(axis) + offs; soft_endstop_max[axis] = base_max_pos(axis) + offs; } } #elif ENABLED(DELTA) soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs); soft_endstop_max[axis] = base_max_pos(axis) + offs; #else soft_endstop_min[axis] = base_min_pos(axis) + offs; soft_endstop_max[axis] = base_max_pos(axis) + offs; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("For ", axis_codes[axis]); #if HAS_HOME_OFFSET SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]); #endif #if HAS_POSITION_SHIFT SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]); #endif SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]); SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]); } #endif #if ENABLED(DELTA) if (axis == Z_AXIS) delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top(); #endif } #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE #if HAS_M206_COMMAND /** * Change the home offset for an axis, update the current * position and the software endstops to retain the same * relative distance to the new home. * * Since this changes the current_position, code should * call sync_plan_position soon after this. */ static void set_home_offset(const AxisEnum axis, const float v) { current_position[axis] += v - home_offset[axis]; home_offset[axis] = v; update_software_endstops(axis); } #endif // HAS_M206_COMMAND /** * Set an axis' current position to its home position (after homing). * * For Core and Cartesian robots this applies one-to-one when an * individual axis has been homed. * * DELTA should wait until all homing is done before setting the XYZ * current_position to home, because homing is a single operation. * In the case where the axis positions are already known and previously * homed, DELTA could home to X or Y individually by moving either one * to the center. However, homing Z always homes XY and Z. * * SCARA should wait until all XY homing is done before setting the XY * current_position to home, because neither X nor Y is at home until * both are at home. Z can however be homed individually. * * Callers must sync the planner position after calling this! */ static void set_axis_is_at_home(const AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif axis_known_position[axis] = axis_homed[axis] = true; #if HAS_POSITION_SHIFT position_shift[axis] = 0; update_software_endstops(axis); #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { current_position[X_AXIS] = x_home_pos(active_extruder); return; } #endif #if ENABLED(MORGAN_SCARA) /** * Morgan SCARA homes XY at the same time */ if (axis == X_AXIS || axis == Y_AXIS) { float homeposition[XYZ]; LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i); // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]); // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]); /** * Get Home position SCARA arm angles using inverse kinematics, * and calculate homing offset using forward kinematics */ inverse_kinematics(homeposition); forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]); // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]); // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]); current_position[axis] = LOGICAL_POSITION(cartes[axis], axis); /** * SCARA home positions are based on configuration since the actual * limits are determined by the inverse kinematic transform. */ soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis)); soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis)); } else #endif { current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis); } /** * Z Probe Z Homing? Account for the probe's Z offset. */ #if HAS_BED_PROBE && Z_HOME_DIR < 0 if (axis == Z_AXIS) { #if HOMING_Z_WITH_PROBE current_position[Z_AXIS] -= zprobe_zoffset; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***"); SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset); } #endif #elif ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***"); #endif } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { #if HAS_HOME_OFFSET SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]); SERIAL_ECHOLNPAIR("] = ", home_offset[axis]); #endif DEBUG_POS("", current_position); SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif #if ENABLED(I2C_POSITION_ENCODERS) I2CPEM.homed(axis); #endif } /** * Some planner shorthand inline functions */ inline float get_homing_bump_feedrate(const AxisEnum axis) { static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR; uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]); if (hbd < 1) { hbd = 10; SERIAL_ECHO_START(); SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1"); } return homing_feedrate(axis) / hbd; } /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ inline void line_to_current_position() { planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder); } /** * Move the planner to the position stored in the destination array, which is * used by G0/G1/G2/G3/G5 and many other functions to set a destination. */ inline void line_to_destination(const float fr_mm_s) { planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder); } inline void line_to_destination() { line_to_destination(feedrate_mm_s); } inline void set_current_to_destination() { COPY(current_position, destination); } inline void set_destination_to_current() { COPY(destination, current_position); } #if IS_KINEMATIC /** * Calculate delta, start a line, and set current_position to destination */ void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination); #endif refresh_cmd_timeout(); #if UBL_DELTA // ubl segmented line will do z-only moves in single segment ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s)); #else if ( current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS] && current_position[Z_AXIS] == destination[Z_AXIS] && current_position[E_AXIS] == destination[E_AXIS] ) return; planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder); #endif set_current_to_destination(); } #endif // IS_KINEMATIC /** * Plan a move to (X, Y, Z) and set the current_position * The final current_position may not be the one that was requested */ void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) { const float old_feedrate_mm_s = feedrate_mm_s; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz); #endif #if ENABLED(DELTA) if (!position_is_reachable_xy(lx, ly)) return; feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; set_destination_to_current(); // sync destination at the start #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination); #endif // when in the danger zone if (current_position[Z_AXIS] > delta_clip_start_height) { if (lz > delta_clip_start_height) { // staying in the danger zone destination[X_AXIS] = lx; // move directly (uninterpolated) destination[Y_AXIS] = ly; destination[Z_AXIS] = lz; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); #endif return; } else { destination[Z_AXIS] = delta_clip_start_height; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); #endif } } if (lz > current_position[Z_AXIS]) { // raising? destination[Z_AXIS] = lz; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); #endif } destination[X_AXIS] = lx; destination[Y_AXIS] = ly; prepare_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position); #endif if (lz < current_position[Z_AXIS]) { // lowering? destination[Z_AXIS] = lz; prepare_uninterpolated_move_to_destination(); // set_current_to_destination #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); #endif } #elif IS_SCARA if (!position_is_reachable_xy(lx, ly)) return; set_destination_to_current(); // If Z needs to raise, do it before moving XY if (destination[Z_AXIS] < lz) { destination[Z_AXIS] = lz; prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS)); } destination[X_AXIS] = lx; destination[Y_AXIS] = ly; prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S); // If Z needs to lower, do it after moving XY if (destination[Z_AXIS] > lz) { destination[Z_AXIS] = lz; prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS)); } #else // If Z needs to raise, do it before moving XY if (current_position[Z_AXIS] < lz) { feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS); current_position[Z_AXIS] = lz; line_to_current_position(); } feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; current_position[X_AXIS] = lx; current_position[Y_AXIS] = ly; line_to_current_position(); // If Z needs to lower, do it after moving XY if (current_position[Z_AXIS] > lz) { feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS); current_position[Z_AXIS] = lz; line_to_current_position(); } #endif stepper.synchronize(); feedrate_mm_s = old_feedrate_mm_s; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to"); #endif } void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s); } void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s); } void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) { do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s); } // // Prepare to do endstop or probe moves // with custom feedrates. // // - Save current feedrates // - Reset the rate multiplier // - Reset the command timeout // - Enable the endstops (for endstop moves) // static void setup_for_endstop_or_probe_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position); #endif saved_feedrate_mm_s = feedrate_mm_s; saved_feedrate_percentage = feedrate_percentage; feedrate_percentage = 100; refresh_cmd_timeout(); } static void clean_up_after_endstop_or_probe_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position); #endif feedrate_mm_s = saved_feedrate_mm_s; feedrate_percentage = saved_feedrate_percentage; refresh_cmd_timeout(); } #if HAS_BED_PROBE /** * Raise Z to a minimum height to make room for a probe to move */ inline void do_probe_raise(const float z_raise) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("do_probe_raise(", z_raise); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif float z_dest = z_raise; if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset; if (z_dest > current_position[Z_AXIS]) do_blocking_move_to_z(z_dest); } #endif // HAS_BED_PROBE #if HAS_AXIS_UNHOMED_ERR bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) { #if ENABLED(HOME_AFTER_DEACTIVATE) const bool xx = x && !axis_known_position[X_AXIS], yy = y && !axis_known_position[Y_AXIS], zz = z && !axis_known_position[Z_AXIS]; #else const bool xx = x && !axis_homed[X_AXIS], yy = y && !axis_homed[Y_AXIS], zz = z && !axis_homed[Z_AXIS]; #endif if (xx || yy || zz) { SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_HOME " "); if (xx) SERIAL_ECHOPGM(MSG_X); if (yy) SERIAL_ECHOPGM(MSG_Y); if (zz) SERIAL_ECHOPGM(MSG_Z); SERIAL_ECHOLNPGM(" " MSG_FIRST); #if ENABLED(ULTRA_LCD) lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : ""); #endif return true; } return false; } #endif #if ENABLED(Z_PROBE_SLED) #ifndef SLED_DOCKING_OFFSET #define SLED_DOCKING_OFFSET 0 #endif /** * Method to dock/undock a sled designed by Charles Bell. * * stow[in] If false, move to MAX_X and engage the solenoid * If true, move to MAX_X and release the solenoid */ static void dock_sled(bool stow) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("dock_sled(", stow); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif // Dock sled a bit closer to ensure proper capturing do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0)); #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID) WRITE(SOL1_PIN, !stow); // switch solenoid #endif } #elif ENABLED(Z_PROBE_ALLEN_KEY) FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) { do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s); } void run_deploy_moves_script() { #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0 #endif const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z }; do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0 #endif const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z }; do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0 #endif const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z }; do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0 #endif const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z }; do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z) #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0 #endif const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z }; do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE)); #endif } void run_stow_moves_script() { #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0 #endif const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z }; do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0 #endif const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z }; do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0 #endif const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z }; do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0 #endif const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z }; do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE)); #endif #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z) #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS] #endif #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0 #endif const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z }; do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE)); #endif } #endif #if ENABLED(PROBING_FANS_OFF) void fans_pause(const bool p) { if (p != fans_paused) { fans_paused = p; if (p) for (uint8_t x = 0; x < FAN_COUNT; x++) { paused_fanSpeeds[x] = fanSpeeds[x]; fanSpeeds[x] = 0; } else for (uint8_t x = 0; x < FAN_COUNT; x++) fanSpeeds[x] = paused_fanSpeeds[x]; } } #endif // PROBING_FANS_OFF #if HAS_BED_PROBE // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST) #if ENABLED(Z_MIN_PROBE_ENDSTOP) #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING) #else #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING) #endif #endif #if QUIET_PROBING void probing_pause(const bool p) { #if ENABLED(PROBING_HEATERS_OFF) thermalManager.pause(p); #endif #if ENABLED(PROBING_FANS_OFF) fans_pause(p); #endif if (p) safe_delay( #if DELAY_BEFORE_PROBING > 25 DELAY_BEFORE_PROBING #else 25 #endif ); } #endif // QUIET_PROBING #if ENABLED(BLTOUCH) void bltouch_command(int angle) { MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait safe_delay(BLTOUCH_DELAY); } bool set_bltouch_deployed(const bool deploy) { if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered bltouch_command(BLTOUCH_RESET); // try to reset it. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to bltouch_command(BLTOUCH_STOW); // clear the triggered condition. safe_delay(1500); // Wait for internal self-test to complete. // (Measured completion time was 0.65 seconds // after reset, deploy, and stow sequence) if (TEST_BLTOUCH()) { // If it still claims to be triggered... SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH); stop(); // punt! return true; } } bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif return false; } #endif // BLTOUCH // returns false for ok and true for failure bool set_probe_deployed(bool deploy) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("set_probe_deployed", current_position); SERIAL_ECHOLNPAIR("deploy: ", deploy); } #endif if (endstops.z_probe_enabled == deploy) return false; // Make room for probe do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE); #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY) #if ENABLED(Z_PROBE_SLED) #define _AUE_ARGS true, false, false #else #define _AUE_ARGS #endif if (axis_unhomed_error(_AUE_ARGS)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED); stop(); return true; } #endif const float oldXpos = current_position[X_AXIS], oldYpos = current_position[Y_AXIS]; #ifdef _TRIGGERED_WHEN_STOWED_TEST // If endstop is already false, the Z probe is deployed if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions. // Would a goto be less ugly? //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity // for a triggered when stowed manual probe. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early // otherwise an Allen-Key probe can't be stowed. #endif #if ENABLED(SOLENOID_PROBE) #if HAS_SOLENOID_1 WRITE(SOL1_PIN, deploy); #endif #elif ENABLED(Z_PROBE_SLED) dock_sled(!deploy); #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH) MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]); #elif ENABLED(Z_PROBE_ALLEN_KEY) deploy ? run_deploy_moves_script() : run_stow_moves_script(); #endif #ifdef _TRIGGERED_WHEN_STOWED_TEST } // _TRIGGERED_WHEN_STOWED_TEST == deploy if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed? if (IsRunning()) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Z-Probe failed"); LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } stop(); return true; } // _TRIGGERED_WHEN_STOWED_TEST == deploy #endif do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy endstops.enable_z_probe(deploy); return false; } /** * @brief Used by run_z_probe to do a single Z probe move. * * @param z Z destination * @param fr_mm_s Feedrate in mm/s * @return true to indicate an error */ static bool do_probe_move(const float z, const float fr_mm_m) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position); #endif // Deploy BLTouch at the start of any probe #if ENABLED(BLTOUCH) if (set_bltouch_deployed(true)) return true; #endif #if QUIET_PROBING probing_pause(true); #endif // Move down until probe triggered do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m)); // Check to see if the probe was triggered const bool probe_triggered = TEST(Endstops::endstop_hit_bits, #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) Z_MIN #else Z_MIN_PROBE #endif ); #if QUIET_PROBING probing_pause(false); #endif // Retract BLTouch immediately after a probe if it was triggered #if ENABLED(BLTOUCH) if (probe_triggered && set_bltouch_deployed(false)) return true; #endif // Clear endstop flags endstops.hit_on_purpose(); // Get Z where the steppers were interrupted set_current_from_steppers_for_axis(Z_AXIS); // Tell the planner where we actually are SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position); #endif return !probe_triggered; } /** * @details Used by probe_pt to do a single Z probe. * Leaves current_position[Z_AXIS] at the height where the probe triggered. * * @param short_move Flag for a shorter probe move towards the bed * @return The raw Z position where the probe was triggered */ static float run_z_probe(const bool short_move=true) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position); #endif // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding refresh_cmd_timeout(); #if ENABLED(PROBE_DOUBLE_TOUCH) // Do a first probe at the fast speed if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN; #if ENABLED(DEBUG_LEVELING_FEATURE) float first_probe_z = current_position[Z_AXIS]; if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z); #endif // move up to make clearance for the probe do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST)); #else // If the nozzle is above the travel height then // move down quickly before doing the slow probe float z = Z_CLEARANCE_DEPLOY_PROBE; if (zprobe_zoffset < 0) z -= zprobe_zoffset; if (z < current_position[Z_AXIS]) { // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe if (!do_probe_move(z, Z_PROBE_SPEED_FAST)) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST)); } #endif // move down slowly to find bed if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position); #endif // Debug: compare probe heights #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]); SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]); } #endif return RAW_CURRENT_POSITION(Z) + zprobe_zoffset #if ENABLED(DELTA) + home_offset[Z_AXIS] // Account for delta height adjustment #endif ; } /** * - Move to the given XY * - Deploy the probe, if not already deployed * - Probe the bed, get the Z position * - Depending on the 'stow' flag * - Stow the probe, or * - Raise to the BETWEEN height * - Return the probed Z position */ float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> probe_pt(", lx); SERIAL_ECHOPAIR(", ", ly); SERIAL_ECHOPAIR(", ", stow ? "" : "no "); SERIAL_ECHOLNPGM("stow)"); DEBUG_POS("", current_position); } #endif const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER); if (printable ? !position_is_reachable_xy(nx, ny) : !position_is_reachable_by_probe_xy(lx, ly) ) return NAN; const float old_feedrate_mm_s = feedrate_mm_s; #if ENABLED(DELTA) if (current_position[Z_AXIS] > delta_clip_start_height) do_blocking_move_to_z(delta_clip_start_height); #endif #if HAS_SOFTWARE_ENDSTOPS // Store the status of the soft endstops and disable if we're probing a non-printable location static bool enable_soft_endstops = soft_endstops_enabled; if (!printable) soft_endstops_enabled = false; #endif feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S; // Move the probe to the given XY do_blocking_move_to_xy(nx, ny); float measured_z = NAN; if (!DEPLOY_PROBE()) { measured_z = run_z_probe(printable); if (!stow) do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST)); else if (STOW_PROBE()) measured_z = NAN; } #if HAS_SOFTWARE_ENDSTOPS // Restore the soft endstop status soft_endstops_enabled = enable_soft_endstops; #endif if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Bed X: "); SERIAL_PROTOCOL_F(lx, 3); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL_F(ly, 3); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL_F(measured_z, 3); SERIAL_EOL(); } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt"); #endif feedrate_mm_s = old_feedrate_mm_s; if (isnan(measured_z)) { LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED); SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED); } return measured_z; } #endif // HAS_BED_PROBE #if HAS_LEVELING bool leveling_is_valid() { return #if ENABLED(MESH_BED_LEVELING) mbl.has_mesh() #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) !!bilinear_grid_spacing[X_AXIS] #elif ENABLED(AUTO_BED_LEVELING_UBL) true #else // 3POINT, LINEAR true #endif ; } bool leveling_is_active() { return #if ENABLED(MESH_BED_LEVELING) mbl.active() #elif ENABLED(AUTO_BED_LEVELING_UBL) ubl.state.active #else planner.abl_enabled #endif ; } /** * Turn bed leveling on or off, fixing the current * position as-needed. * * Disable: Current position = physical position * Enable: Current position = "unleveled" physical position */ void set_bed_leveling_enabled(const bool enable/*=true*/) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) const bool can_change = (!enable || leveling_is_valid()); #else constexpr bool can_change = true; #endif if (can_change && enable != leveling_is_active()) { #if ENABLED(MESH_BED_LEVELING) if (!enable) planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]); const bool enabling = enable && leveling_is_valid(); mbl.set_active(enabling); if (enabling) planner.unapply_leveling(current_position); #elif ENABLED(AUTO_BED_LEVELING_UBL) #if PLANNER_LEVELING if (ubl.state.active) { // leveling from on to off // change unleveled current_position to physical current_position without moving steppers. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]); ubl.state.active = false; // disable only AFTER calling apply_leveling } else { // leveling from off to on ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored // change physical current_position to unleveled current_position without moving steppers. planner.unapply_leveling(current_position); } #else ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move. #endif #else // ABL #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Force bilinear_z_offset to re-calculate next time const float reset[XYZ] = { -9999.999, -9999.999, 0 }; (void)bilinear_z_offset(reset); #endif // Enable or disable leveling compensation in the planner planner.abl_enabled = enable; if (!enable) // When disabling just get the current position from the steppers. // This will yield the smallest error when first converted back to steps. set_current_from_steppers_for_axis( #if ABL_PLANAR ALL_AXES #else Z_AXIS #endif ); else // When enabling, remove compensation from the current position, // so compensation will give the right stepper counts. planner.unapply_leveling(current_position); #endif // ABL } } #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) void set_z_fade_height(const float zfh) { const bool level_active = leveling_is_active(); #if ENABLED(AUTO_BED_LEVELING_UBL) if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position planner.z_fade_height = zfh; planner.inverse_z_fade_height = RECIPROCAL(zfh); if (level_active) set_bed_leveling_enabled(true); // turn back on after changing fade height #else planner.z_fade_height = zfh; planner.inverse_z_fade_height = RECIPROCAL(zfh); if (level_active) { set_current_from_steppers_for_axis( #if ABL_PLANAR ALL_AXES #else Z_AXIS #endif ); } #endif } #endif // LEVELING_FADE_HEIGHT /** * Reset calibration results to zero. */ void reset_bed_level() { set_bed_leveling_enabled(false); #if ENABLED(MESH_BED_LEVELING) if (leveling_is_valid()) { mbl.reset(); mbl.set_has_mesh(false); } #else #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level"); #endif #if ABL_PLANAR planner.bed_level_matrix.set_to_identity(); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] = bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0; for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) z_values[x][y] = NAN; #elif ENABLED(AUTO_BED_LEVELING_UBL) ubl.reset(); #endif #endif } #endif // HAS_LEVELING #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING) /** * Enable to produce output in JSON format suitable * for SCAD or JavaScript mesh visualizers. * * Visualize meshes in OpenSCAD using the included script. * * buildroot/shared/scripts/MarlinMesh.scad */ //#define SCAD_MESH_OUTPUT /** * Print calibration results for plotting or manual frame adjustment. */ static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) { #ifndef SCAD_MESH_OUTPUT for (uint8_t x = 0; x < sx; x++) { for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++) SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL((int)x); } SERIAL_EOL(); #endif #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array #endif for (uint8_t y = 0; y < sy; y++) { #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLPGM(" ["); // open sub-array #else if (y < 10) SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL((int)y); #endif for (uint8_t x = 0; x < sx; x++) { SERIAL_PROTOCOLCHAR(' '); const float offset = fn(x, y); if (!isnan(offset)) { if (offset >= 0) SERIAL_PROTOCOLCHAR('+'); SERIAL_PROTOCOL_F(offset, precision); } else { #ifdef SCAD_MESH_OUTPUT for (uint8_t i = 3; i < precision + 3; i++) SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOLPGM("NAN"); #else for (uint8_t i = 0; i < precision + 3; i++) SERIAL_PROTOCOLCHAR(i ? '=' : ' '); #endif } #ifdef SCAD_MESH_OUTPUT if (x < sx - 1) SERIAL_PROTOCOLCHAR(','); #endif } #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOLCHAR(']'); // close sub-array if (y < sy - 1) SERIAL_PROTOCOLCHAR(','); #endif SERIAL_EOL(); } #ifdef SCAD_MESH_OUTPUT SERIAL_PROTOCOLPGM("];"); // close 2D array #endif SERIAL_EOL(); } #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) /** * Extrapolate a single point from its neighbors */ static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("Extrapolate ["); if (x < 10) SERIAL_CHAR(' '); SERIAL_ECHO((int)x); SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' '); SERIAL_CHAR(' '); if (y < 10) SERIAL_CHAR(' '); SERIAL_ECHO((int)y); SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' '); SERIAL_CHAR(']'); } #endif if (!isnan(z_values[x][y])) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)"); #endif return; // Don't overwrite good values. } SERIAL_EOL(); // Get X neighbors, Y neighbors, and XY neighbors const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir; float a1 = z_values[x1][y ], a2 = z_values[x2][y ], b1 = z_values[x ][y1], b2 = z_values[x ][y2], c1 = z_values[x1][y1], c2 = z_values[x2][y2]; // Treat far unprobed points as zero, near as equal to far if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2; if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2; if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2; const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2; // Take the average instead of the median z_values[x][y] = (a + b + c) / 3.0; // Median is robust (ignores outliers). // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c) // : ((c < b) ? b : (a < c) ? a : c); } //Enable this if your SCARA uses 180° of total area //#define EXTRAPOLATE_FROM_EDGE #if ENABLED(EXTRAPOLATE_FROM_EDGE) #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y #define HALF_IN_X #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X #define HALF_IN_Y #endif #endif /** * Fill in the unprobed points (corners of circular print surface) * using linear extrapolation, away from the center. */ static void extrapolate_unprobed_bed_level() { #ifdef HALF_IN_X constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1; #else constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center xlen = ctrx1; #endif #ifdef HALF_IN_Y constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1; #else constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center ylen = ctry1; #endif for (uint8_t xo = 0; xo <= xlen; xo++) for (uint8_t yo = 0; yo <= ylen; yo++) { uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo; #ifndef HALF_IN_X const uint8_t x1 = ctrx1 - xo; #endif #ifndef HALF_IN_Y const uint8_t y1 = ctry1 - yo; #ifndef HALF_IN_X extrapolate_one_point(x1, y1, +1, +1); // left-below + + #endif extrapolate_one_point(x2, y1, -1, +1); // right-below - + #endif #ifndef HALF_IN_X extrapolate_one_point(x1, y2, +1, -1); // left-above + - #endif extrapolate_one_point(x2, y2, -1, -1); // right-above - - } } static void print_bilinear_leveling_grid() { SERIAL_ECHOLNPGM("Bilinear Leveling Grid:"); print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3, [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; } ); } #if ENABLED(ABL_BILINEAR_SUBDIVISION) #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1 #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1 #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2) #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2) float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y]; int bilinear_grid_spacing_virt[2] = { 0 }; float bilinear_grid_factor_virt[2] = { 0 }; static void print_bilinear_leveling_grid_virt() { SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:"); print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5, [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; } ); } #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I)) float bed_level_virt_coord(const uint8_t x, const uint8_t y) { uint8_t ep = 0, ip = 1; if (!x || x == ABL_TEMP_POINTS_X - 1) { if (x) { ep = GRID_MAX_POINTS_X - 1; ip = GRID_MAX_POINTS_X - 2; } if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2)) return LINEAR_EXTRAPOLATION( z_values[ep][y - 1], z_values[ip][y - 1] ); else return LINEAR_EXTRAPOLATION( bed_level_virt_coord(ep + 1, y), bed_level_virt_coord(ip + 1, y) ); } if (!y || y == ABL_TEMP_POINTS_Y - 1) { if (y) { ep = GRID_MAX_POINTS_Y - 1; ip = GRID_MAX_POINTS_Y - 2; } if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2)) return LINEAR_EXTRAPOLATION( z_values[x - 1][ep], z_values[x - 1][ip] ); else return LINEAR_EXTRAPOLATION( bed_level_virt_coord(x, ep + 1), bed_level_virt_coord(x, ip + 1) ); } return z_values[x - 1][y - 1]; } static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) { return ( p[i-1] * -t * sq(1 - t) + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t)) + p[i+1] * t * (1 + 4 * t - 3 * sq(t)) - p[i+2] * sq(t) * (1 - t) ) * 0.5; } static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) { float row[4], column[4]; for (uint8_t i = 0; i < 4; i++) { for (uint8_t j = 0; j < 4; j++) { column[j] = bed_level_virt_coord(i + x - 1, j + y - 1); } row[i] = bed_level_virt_cmr(column, 1, ty); } return bed_level_virt_cmr(row, 1, tx); } void bed_level_virt_interpolate() { bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS); bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS); bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]); bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]); for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++) for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) { if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1)) continue; z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] = bed_level_virt_2cmr( x + 1, y + 1, (float)tx / (BILINEAR_SUBDIVISIONS), (float)ty / (BILINEAR_SUBDIVISIONS) ); } } #endif // ABL_BILINEAR_SUBDIVISION // Refresh after other values have been updated void refresh_bed_level() { bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]); bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]); #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif } #endif // AUTO_BED_LEVELING_BILINEAR /** * Home an individual linear axis */ static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]); SERIAL_ECHOPAIR(", ", distance); SERIAL_ECHOPAIR(", ", fr_mm_s); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) const bool deploy_bltouch = (axis == Z_AXIS && distance < 0); if (deploy_bltouch) set_bltouch_deployed(true); #endif #if QUIET_PROBING if (axis == Z_AXIS) probing_pause(true); #endif // Tell the planner we're at Z=0 current_position[axis] = 0; #if IS_SCARA SYNC_PLAN_POSITION_KINEMATIC(); current_position[axis] = distance; inverse_kinematics(current_position); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder); #else sync_plan_position(); current_position[axis] = distance; planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder); #endif stepper.synchronize(); #if QUIET_PROBING if (axis == Z_AXIS) probing_pause(false); #endif #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH) if (deploy_bltouch) set_bltouch_deployed(false); #endif endstops.hit_on_purpose(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif } /** * TMC2130 specific sensorless homing using stallGuard2. * stallGuard2 only works when in spreadCycle mode. * spreadCycle and stealthChop are mutually exclusive. */ #if ENABLED(SENSORLESS_HOMING) void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) { #if ENABLED(STEALTHCHOP) if (enable) { st.coolstep_min_speed(1024UL * 1024UL - 1UL); st.stealthChop(0); } else { st.coolstep_min_speed(0); st.stealthChop(1); } #endif st.diag1_stall(enable ? 1 : 0); } #endif /** * Home an individual "raw axis" to its endstop. * This applies to XYZ on Cartesian and Core robots, and * to the individual ABC steppers on DELTA and SCARA. * * At the end of the procedure the axis is marked as * homed and the current position of that axis is updated. * Kinematic robots should wait till all axes are homed * before updating the current position. */ #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) static void homeaxis(const AxisEnum axis) { #if IS_SCARA // Only Z homing (with probe) is permitted if (axis != Z_AXIS) { BUZZ(100, 880); return; } #else #define CAN_HOME(A) \ (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0))) if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif const int axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) (axis == X_AXIS) ? x_home_dir(active_extruder) : #endif home_dir(axis); // Homing Z towards the bed? Deploy the Z probe or endstop. #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && DEPLOY_PROBE()) return; #endif // Set a flag for Z motor locking #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) stepper.set_homing_flag(true); #endif // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX); #endif #if ENABLED(Y_IS_TMC2130) if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY); #endif #endif // Fast move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:"); #endif do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir); // When homing Z with probe respect probe clearance const float bump = axis_home_dir * ( #if HOMING_Z_WITH_PROBE (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) : #endif home_bump_mm(axis) ); // If a second homing move is configured... if (bump) { // Move away from the endstop by the axis HOME_BUMP_MM #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:"); #endif do_homing_move(axis, -bump); // Slow move towards endstop until triggered #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:"); #endif do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis)); } #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) { float adj = FABS(z_endstop_adj); bool lockZ1; if (axis_home_dir > 0) { adj = -adj; lockZ1 = (z_endstop_adj > 0); } else lockZ1 = (z_endstop_adj < 0); if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true); // Move to the adjusted endstop height do_homing_move(axis, adj); if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false); stepper.set_homing_flag(false); } // Z_AXIS #endif #if IS_SCARA set_axis_is_at_home(axis); SYNC_PLAN_POSITION_KINEMATIC(); #elif ENABLED(DELTA) // Delta has already moved all three towers up in G28 // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. // retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps if (endstop_adj[axis] * Z_HOME_DIR <= 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:"); #endif do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR); } #else // For cartesian/core machines, // set the axis to its home position set_axis_is_at_home(axis); sync_plan_position(); destination[axis] = current_position[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif #endif // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) #if ENABLED(X_IS_TMC2130) if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false); #endif #if ENABLED(Y_IS_TMC2130) if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false); #endif #endif // Put away the Z probe #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS && STOW_PROBE()) return; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]); SERIAL_CHAR(')'); SERIAL_EOL(); } #endif } // homeaxis() #if ENABLED(FWRETRACT) /** * Retract or recover according to firmware settings * * This function handles retract/recover moves for G10 and G11, * plus auto-retract moves sent from G0/G1 when E-only moves are done. * * To simplify the logic, doubled retract/recover moves are ignored. * * Note: Z lift is done transparently to the planner. Aborting * a print between G10 and G11 may corrupt the Z position. * * Note: Auto-retract will apply the set Z hop in addition to any Z hop * included in the G-code. Use M207 Z0 to to prevent double hop. */ void retract(const bool retracting #if EXTRUDERS > 1 , bool swapping = false #endif ) { static float hop_height, // Remember where the Z height started hop_amount = 0.0; // Total amount lifted, for use in recover // Simply never allow two retracts or recovers in a row if (retracted[active_extruder] == retracting) return; #if EXTRUDERS < 2 bool swapping = false; #endif if (!retracting) swapping = retracted_swap[active_extruder]; /* // debugging SERIAL_ECHOLNPAIR("retracting ", retracting); SERIAL_ECHOLNPAIR("swapping ", swapping); SERIAL_ECHOLNPAIR("active extruder ", active_extruder); for (uint8_t i = 0; i < EXTRUDERS; ++i) { SERIAL_ECHOPAIR("retracted[", i); SERIAL_ECHOLNPAIR("] ", retracted[i]); SERIAL_ECHOPAIR("retracted_swap[", i); SERIAL_ECHOLNPAIR("] ", retracted_swap[i]); } SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]); SERIAL_ECHOLNPAIR("hop_amount ", hop_amount); //*/ const bool has_zhop = retract_zlift > 0.01; // Is there a hop set? const float old_feedrate_mm_s = feedrate_mm_s; const int16_t old_flow = flow_percentage[active_extruder]; // Don't apply flow multiplication to retract/recover flow_percentage[active_extruder] = 100; // The current position will be the destination for E and Z moves set_destination_to_current(); stepper.synchronize(); // Wait for all moves to finish if (retracting) { // Remember the Z height since G-code may include its own Z-hop // For best results turn off Z hop if G-code already includes it hop_height = destination[Z_AXIS]; // Retract by moving from a faux E position back to the current E position feedrate_mm_s = retract_feedrate_mm_s; current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder]; sync_plan_position_e(); prepare_move_to_destination(); // Is a Z hop set, and has the hop not yet been done? if (has_zhop) { hop_amount += retract_zlift; // Carriage is raised for retraction hop current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position prepare_move_to_destination(); // Raise up to the old current pos } } else { // If a hop was done and Z hasn't changed, undo the Z hop if (hop_amount && NEAR(hop_height, destination[Z_AXIS])) { current_position[Z_AXIS] += hop_amount; // Pretend current pos is higher. Next move lowers Z. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position prepare_move_to_destination(); // Lower to the old current pos hop_amount = 0.0; } // A retract multiplier has been added here to get faster swap recovery feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s; const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length; current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; sync_plan_position_e(); prepare_move_to_destination(); // Recover E } // Restore flow and feedrate flow_percentage[active_extruder] = old_flow; feedrate_mm_s = old_feedrate_mm_s; // The active extruder is now retracted or recovered retracted[active_extruder] = retracting; // If swap retract/recover then update the retracted_swap flag too #if EXTRUDERS > 1 if (swapping) retracted_swap[active_extruder] = retracting; #endif /* // debugging SERIAL_ECHOLNPAIR("retracting ", retracting); SERIAL_ECHOLNPAIR("swapping ", swapping); SERIAL_ECHOLNPAIR("active_extruder ", active_extruder); for (uint8_t i = 0; i < EXTRUDERS; ++i) { SERIAL_ECHOPAIR("retracted[", i); SERIAL_ECHOLNPAIR("] ", retracted[i]); SERIAL_ECHOPAIR("retracted_swap[", i); SERIAL_ECHOLNPAIR("] ", retracted_swap[i]); } SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]); SERIAL_ECHOLNPAIR("hop_amount ", hop_amount); //*/ } // retract() #endif // FWRETRACT #if ENABLED(MIXING_EXTRUDER) void normalize_mix() { float mix_total = 0.0; for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]); // Scale all values if they don't add up to ~1.0 if (!NEAR(mix_total, 1.0)) { SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling."); for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total; } } #if ENABLED(DIRECT_MIXING_IN_G1) // Get mixing parameters from the GCode // The total "must" be 1.0 (but it will be normalized) // If no mix factors are given, the old mix is preserved void gcode_get_mix() { const char* mixing_codes = "ABCDHI"; byte mix_bits = 0; for (uint8_t i = 0; i < MIXING_STEPPERS; i++) { if (parser.seenval(mixing_codes[i])) { SBI(mix_bits, i); float v = parser.value_float(); NOLESS(v, 0.0); mixing_factor[i] = RECIPROCAL(v); } } // If any mixing factors were included, clear the rest // If none were included, preserve the last mix if (mix_bits) { for (uint8_t i = 0; i < MIXING_STEPPERS; i++) if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0; normalize_mix(); } } #endif #endif /** * *************************************************************************** * ***************************** G-CODE HANDLING ***************************** * *************************************************************************** */ /** * Set XYZE destination and feedrate from the current GCode command * * - Set destination from included axis codes * - Set to current for missing axis codes * - Set the feedrate, if included */ void gcode_get_destination() { LOOP_XYZE(i) { if (parser.seen(axis_codes[i])) destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); else destination[i] = current_position[i]; } if (parser.linearval('F') > 0.0) feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate()); #if ENABLED(PRINTCOUNTER) if (!DEBUGGING(DRYRUN)) print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]); #endif // Get ABCDHI mixing factors #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1) gcode_get_mix(); #endif } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * Output a "busy" message at regular intervals * while the machine is not accepting commands. */ void host_keepalive() { const millis_t ms = millis(); if (host_keepalive_interval && busy_state != NOT_BUSY) { if (PENDING(ms, next_busy_signal_ms)) return; switch (busy_state) { case IN_HANDLER: case IN_PROCESS: SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING); break; case PAUSED_FOR_USER: SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER); break; case PAUSED_FOR_INPUT: SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT); break; default: break; } } next_busy_signal_ms = ms + host_keepalive_interval * 1000UL; } #endif // HOST_KEEPALIVE_FEATURE /************************************************** ***************** GCode Handlers ***************** **************************************************/ /** * G0, G1: Coordinated movement of X Y Z E axes */ inline void gcode_G0_G1( #if IS_SCARA bool fast_move=false #endif ) { if (IsRunning()) { gcode_get_destination(); // For X Y Z E F #if ENABLED(FWRETRACT) if (MIN_AUTORETRACT <= MAX_AUTORETRACT) { // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) { const float echange = destination[E_AXIS] - current_position[E_AXIS]; // Is this a retract or recover move? if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) { current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations sync_plan_position_e(); // AND from the planner return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored) } } } #endif // FWRETRACT #if IS_SCARA fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination(); #else prepare_move_to_destination(); #endif } } /** * G2: Clockwise Arc * G3: Counterclockwise Arc * * This command has two forms: IJ-form and R-form. * * - I specifies an X offset. J specifies a Y offset. * At least one of the IJ parameters is required. * X and Y can be omitted to do a complete circle. * The given XY is not error-checked. The arc ends * based on the angle of the destination. * Mixing I or J with R will throw an error. * * - R specifies the radius. X or Y is required. * Omitting both X and Y will throw an error. * X or Y must differ from the current XY. * Mixing R with I or J will throw an error. * * - P specifies the number of full circles to do * before the specified arc move. * * Examples: * * G2 I10 ; CW circle centered at X+10 * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12 */ #if ENABLED(ARC_SUPPORT) inline void gcode_G2_G3(bool clockwise) { if (IsRunning()) { #if ENABLED(SF_ARC_FIX) const bool relative_mode_backup = relative_mode; relative_mode = true; #endif gcode_get_destination(); #if ENABLED(SF_ARC_FIX) relative_mode = relative_mode_backup; #endif float arc_offset[2] = { 0.0, 0.0 }; if (parser.seenval('R')) { const float r = parser.value_linear_units(), p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS], p2 = destination[X_AXIS], q2 = destination[Y_AXIS]; if (r && (p2 != p1 || q2 != q1)) { const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1 dx = p2 - p1, dy = q2 - q1, // X and Y differences d = HYPOT(dx, dy), // Linear distance between the points h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc arc_offset[0] = cx - p1; arc_offset[1] = cy - q1; } } else { if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units(); if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units(); } if (arc_offset[0] || arc_offset[1]) { #if ENABLED(ARC_P_CIRCLES) // P indicates number of circles to do int8_t circles_to_do = parser.byteval('P'); if (!WITHIN(circles_to_do, 0, 100)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS); } while (circles_to_do--) plan_arc(current_position, arc_offset, clockwise); #endif // Send the arc to the planner plan_arc(destination, arc_offset, clockwise); refresh_cmd_timeout(); } else { // Bad arguments SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS); } } } #endif // ARC_SUPPORT void dwell(millis_t time) { refresh_cmd_timeout(); time += previous_cmd_ms; while (PENDING(millis(), time)) idle(); } /** * G4: Dwell S or P */ inline void gcode_G4() { millis_t dwell_ms = 0; if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait stepper.synchronize(); if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL); dwell(dwell_ms); } #if ENABLED(BEZIER_CURVE_SUPPORT) /** * Parameters interpreted according to: * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline * However I, J omission is not supported at this point; all * parameters can be omitted and default to zero. */ /** * G5: Cubic B-spline */ inline void gcode_G5() { if (IsRunning()) { #if ENABLED(CNC_WORKSPACE_PLANES) if (workspace_plane != PLANE_XY) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE); return; } #endif gcode_get_destination(); const float offset[] = { parser.linearval('I'), parser.linearval('J'), parser.linearval('P'), parser.linearval('Q') }; plan_cubic_move(offset); } } #endif // BEZIER_CURVE_SUPPORT #if ENABLED(FWRETRACT) /** * G10 - Retract filament according to settings of M207 */ inline void gcode_G10() { #if EXTRUDERS > 1 const bool rs = parser.boolval('S'); retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false #endif retract(true #if EXTRUDERS > 1 , rs #endif ); } /** * G11 - Recover filament according to settings of M208 */ inline void gcode_G11() { retract(false); } #endif // FWRETRACT #if ENABLED(NOZZLE_CLEAN_FEATURE) /** * G12: Clean the nozzle */ inline void gcode_G12() { // Don't allow nozzle cleaning without homing first if (axis_unhomed_error()) return; const uint8_t pattern = parser.ushortval('P', 0), strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES), objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES); const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS); Nozzle::clean(pattern, strokes, radius, objects); } #endif #if ENABLED(CNC_WORKSPACE_PLANES) void report_workspace_plane() { SERIAL_ECHO_START(); SERIAL_ECHOPGM("Workspace Plane "); serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n")); } /** * G17: Select Plane XY * G18: Select Plane ZX * G19: Select Plane YZ */ inline void gcode_G17() { workspace_plane = PLANE_XY; } inline void gcode_G18() { workspace_plane = PLANE_ZX; } inline void gcode_G19() { workspace_plane = PLANE_YZ; } #endif // CNC_WORKSPACE_PLANES #if ENABLED(INCH_MODE_SUPPORT) /** * G20: Set input mode to inches */ inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); } /** * G21: Set input mode to millimeters */ inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); } #endif #if ENABLED(NOZZLE_PARK_FEATURE) /** * G27: Park the nozzle */ inline void gcode_G27() { // Don't allow nozzle parking without homing first if (axis_unhomed_error()) return; Nozzle::park(parser.ushortval('P')); } #endif // NOZZLE_PARK_FEATURE #if ENABLED(QUICK_HOME) static void quick_home_xy() { // Pretend the current position is 0,0 current_position[X_AXIS] = current_position[Y_AXIS] = 0.0; sync_plan_position(); const int x_axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) x_home_dir(active_extruder) #else home_dir(X_AXIS) #endif ; const float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS), mlratio = mlx > mly ? mly / mlx : mlx / mly, fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0); do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s); endstops.hit_on_purpose(); // clear endstop hit flags current_position[X_AXIS] = current_position[Y_AXIS] = 0.0; } #endif // QUICK_HOME #if ENABLED(DEBUG_LEVELING_FEATURE) void log_machine_info() { SERIAL_ECHOPGM("Machine Type: "); #if ENABLED(DELTA) SERIAL_ECHOLNPGM("Delta"); #elif IS_SCARA SERIAL_ECHOLNPGM("SCARA"); #elif IS_CORE SERIAL_ECHOLNPGM("Core"); #else SERIAL_ECHOLNPGM("Cartesian"); #endif SERIAL_ECHOPGM("Probe: "); #if ENABLED(PROBE_MANUALLY) SERIAL_ECHOLNPGM("PROBE_MANUALLY"); #elif ENABLED(FIX_MOUNTED_PROBE) SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE"); #elif ENABLED(BLTOUCH) SERIAL_ECHOLNPGM("BLTOUCH"); #elif HAS_Z_SERVO_ENDSTOP SERIAL_ECHOLNPGM("SERVO PROBE"); #elif ENABLED(Z_PROBE_SLED) SERIAL_ECHOLNPGM("Z_PROBE_SLED"); #elif ENABLED(Z_PROBE_ALLEN_KEY) SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY"); #else SERIAL_ECHOLNPGM("NONE"); #endif #if HAS_BED_PROBE SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER); SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER); SERIAL_ECHOPAIR(" Z:", zprobe_zoffset); #if X_PROBE_OFFSET_FROM_EXTRUDER > 0 SERIAL_ECHOPGM(" (Right"); #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0 SERIAL_ECHOPGM(" (Left"); #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0 SERIAL_ECHOPGM(" (Middle"); #else SERIAL_ECHOPGM(" (Aligned With"); #endif #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0 SERIAL_ECHOPGM("-Back"); #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0 SERIAL_ECHOPGM("-Front"); #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0 SERIAL_ECHOPGM("-Center"); #endif if (zprobe_zoffset < 0) SERIAL_ECHOPGM(" & Below"); else if (zprobe_zoffset > 0) SERIAL_ECHOPGM(" & Above"); else SERIAL_ECHOPGM(" & Same Z as"); SERIAL_ECHOLNPGM(" Nozzle)"); #endif #if HAS_ABL SERIAL_ECHOPGM("Auto Bed Leveling: "); #if ENABLED(AUTO_BED_LEVELING_LINEAR) SERIAL_ECHOPGM("LINEAR"); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) SERIAL_ECHOPGM("BILINEAR"); #elif ENABLED(AUTO_BED_LEVELING_3POINT) SERIAL_ECHOPGM("3POINT"); #elif ENABLED(AUTO_BED_LEVELING_UBL) SERIAL_ECHOPGM("UBL"); #endif if (leveling_is_active()) { SERIAL_ECHOLNPGM(" (enabled)"); #if ABL_PLANAR const float diff[XYZ] = { stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS], stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS], stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS] }; SERIAL_ECHOPGM("ABL Adjustment X"); if (diff[X_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[X_AXIS]); SERIAL_ECHOPGM(" Y"); if (diff[Y_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[Y_AXIS]); SERIAL_ECHOPGM(" Z"); if (diff[Z_AXIS] > 0) SERIAL_CHAR('+'); SERIAL_ECHO(diff[Z_AXIS]); #elif ENABLED(AUTO_BED_LEVELING_UBL) SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position)); #endif } else SERIAL_ECHOLNPGM(" (disabled)"); SERIAL_EOL(); #elif ENABLED(MESH_BED_LEVELING) SERIAL_ECHOPGM("Mesh Bed Leveling"); if (leveling_is_active()) { float lz = current_position[Z_AXIS]; planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz); SERIAL_ECHOLNPGM(" (enabled)"); SERIAL_ECHOPAIR("MBL Adjustment Z", lz); } else SERIAL_ECHOPGM(" (disabled)"); SERIAL_EOL(); #endif // MESH_BED_LEVELING } #endif // DEBUG_LEVELING_FEATURE #if ENABLED(DELTA) /** * A delta can only safely home all axes at the same time * This is like quick_home_xy() but for 3 towers. */ inline bool home_delta() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position); #endif // Init the current position of all carriages to 0,0,0 ZERO(current_position); sync_plan_position(); // Move all carriages together linearly until an endstop is hit. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10); feedrate_mm_s = homing_feedrate(X_AXIS); line_to_current_position(); stepper.synchronize(); // If an endstop was not hit, then damage can occur if homing is continued. // This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is // not set correctly. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) { LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED); SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED); return false; } endstops.hit_on_purpose(); // clear endstop hit flags // At least one carriage has reached the top. // Now re-home each carriage separately. HOMEAXIS(A); HOMEAXIS(B); HOMEAXIS(C); // Set all carriages to their home positions // Do this here all at once for Delta, because // XYZ isn't ABC. Applying this per-tower would // give the impression that they are the same. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i); SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position); #endif return true; } #endif // DELTA #if ENABLED(Z_SAFE_HOMING) inline void home_z_safely() { // Disallow Z homing if X or Y are unknown if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) { LCD_MESSAGEPGM(MSG_ERR_Z_HOMING); SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING); return; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>"); #endif SYNC_PLAN_POSITION_KINEMATIC(); /** * Move the Z probe (or just the nozzle) to the safe homing point */ destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT); destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT); destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height #if HOMING_Z_WITH_PROBE destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER; destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER; #endif if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination); #endif // This causes the carriage on Dual X to unpark #if ENABLED(DUAL_X_CARRIAGE) active_extruder_parked = false; #endif do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]); HOMEAXIS(Z); } else { LCD_MESSAGEPGM(MSG_ZPROBE_OUT); SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT); } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING"); #endif } #endif // Z_SAFE_HOMING #if ENABLED(PROBE_MANUALLY) bool g29_in_progress = false; #else constexpr bool g29_in_progress = false; #endif /** * G28: Home all axes according to settings * * Parameters * * None Home to all axes with no parameters. * With QUICK_HOME enabled XY will home together, then Z. * * Cartesian parameters * * X Home to the X endstop * Y Home to the Y endstop * Z Home to the Z endstop * */ inline void gcode_G28(const bool always_home_all) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_G28"); log_machine_info(); } #endif // Wait for planner moves to finish! stepper.synchronize(); // Cancel the active G29 session #if ENABLED(PROBE_MANUALLY) g29_in_progress = false; #endif // Disable the leveling matrix before homing #if HAS_LEVELING #if ENABLED(AUTO_BED_LEVELING_UBL) const bool ubl_state_at_entry = leveling_is_active(); #endif set_bed_leveling_enabled(false); #endif #if ENABLED(CNC_WORKSPACE_PLANES) workspace_plane = PLANE_XY; #endif // Always home with tool 0 active #if HOTENDS > 1 const uint8_t old_tool_index = active_extruder; tool_change(0, 0, true); #endif #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) extruder_duplication_enabled = false; #endif setup_for_endstop_or_probe_move(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)"); #endif endstops.enable(true); // Enable endstops for next homing move #if ENABLED(DELTA) home_delta(); UNUSED(always_home_all); #else // NOT DELTA const bool homeX = always_home_all || parser.seen('X'), homeY = always_home_all || parser.seen('Y'), homeZ = always_home_all || parser.seen('Z'), home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ); set_destination_to_current(); #if Z_HOME_DIR > 0 // If homing away from BED do Z first if (home_all || homeZ) { HOMEAXIS(Z); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position); #endif } #else if (home_all || homeX || homeY) { // Raise Z before homing any other axes and z is not already high enough (never lower z) destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT); if (destination[Z_AXIS] > current_position[Z_AXIS]) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]); #endif do_blocking_move_to_z(destination[Z_AXIS]); } } #endif #if ENABLED(QUICK_HOME) if (home_all || (homeX && homeY)) quick_home_xy(); #endif #if ENABLED(HOME_Y_BEFORE_X) // Home Y if (home_all || homeY) { HOMEAXIS(Y); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position); #endif } #endif // Home X if (home_all || homeX) { #if ENABLED(DUAL_X_CARRIAGE) // Always home the 2nd (right) extruder first active_extruder = 1; HOMEAXIS(X); // Remember this extruder's position for later tool change inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]); // Home the 1st (left) extruder active_extruder = 0; HOMEAXIS(X); // Consider the active extruder to be parked COPY(raised_parked_position, current_position); delayed_move_time = 0; active_extruder_parked = true; #else HOMEAXIS(X); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position); #endif } #if DISABLED(HOME_Y_BEFORE_X) // Home Y if (home_all || homeY) { HOMEAXIS(Y); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position); #endif } #endif // Home Z last if homing towards the bed #if Z_HOME_DIR < 0 if (home_all || homeZ) { #if ENABLED(Z_SAFE_HOMING) home_z_safely(); #else HOMEAXIS(Z); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position); #endif } // home_all || homeZ #endif // Z_HOME_DIR < 0 SYNC_PLAN_POSITION_KINEMATIC(); #endif // !DELTA (gcode_G28) endstops.not_homing(); #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE) // move to a height where we can use the full xy-area do_blocking_move_to_z(delta_clip_start_height); #endif #if ENABLED(AUTO_BED_LEVELING_UBL) set_bed_leveling_enabled(ubl_state_at_entry); #endif clean_up_after_endstop_or_probe_move(); // Restore the active tool after homing #if HOTENDS > 1 tool_change(old_tool_index, 0, #if ENABLED(PARKING_EXTRUDER) false // fetch the previous toolhead #else true #endif ); #endif lcd_refresh(); report_current_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28"); #endif } // G28 void home_all_axes() { gcode_G28(true); } #if HAS_PROBING_PROCEDURE void out_of_range_error(const char* p_edge) { SERIAL_PROTOCOLPGM("?Probe "); serialprintPGM(p_edge); SERIAL_PROTOCOLLNPGM(" position out of range."); } #endif #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY) #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING) extern bool lcd_wait_for_move; #endif inline void _manual_goto_xy(const float &x, const float &y) { const float old_feedrate_mm_s = feedrate_mm_s; #if MANUAL_PROBE_HEIGHT > 0 const float prev_z = current_position[Z_AXIS]; feedrate_mm_s = homing_feedrate(Z_AXIS); current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT); line_to_current_position(); #endif feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED); current_position[X_AXIS] = LOGICAL_X_POSITION(x); current_position[Y_AXIS] = LOGICAL_Y_POSITION(y); line_to_current_position(); #if MANUAL_PROBE_HEIGHT > 0 feedrate_mm_s = homing_feedrate(Z_AXIS); current_position[Z_AXIS] = prev_z; // move back to the previous Z. line_to_current_position(); #endif feedrate_mm_s = old_feedrate_mm_s; stepper.synchronize(); #if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING) lcd_wait_for_move = false; #endif } #endif #if ENABLED(MESH_BED_LEVELING) // Save 130 bytes with non-duplication of PSTR void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); } void mbl_mesh_report() { SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y)); SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5); SERIAL_PROTOCOLLNPGM("\nMeasured points:"); print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5, [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; } ); } void mesh_probing_done() { mbl.set_has_mesh(true); home_all_axes(); set_bed_leveling_enabled(true); #if ENABLED(MESH_G28_REST_ORIGIN) current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS); set_destination_to_current(); line_to_destination(homing_feedrate(Z_AXIS)); stepper.synchronize(); #endif } /** * G29: Mesh-based Z probe, probes a grid and produces a * mesh to compensate for variable bed height * * Parameters With MESH_BED_LEVELING: * * S0 Produce a mesh report * S1 Start probing mesh points * S2 Probe the next mesh point * S3 Xn Yn Zn.nn Manually modify a single point * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed. * S5 Reset and disable mesh * * The S0 report the points as below * * +----> X-axis 1-n * | * | * v Y-axis 1-n * */ inline void gcode_G29() { static int mbl_probe_index = -1; #if HAS_SOFTWARE_ENDSTOPS static bool enable_soft_endstops; #endif const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport); if (!WITHIN(state, 0, 5)) { SERIAL_PROTOCOLLNPGM("S out of range (0-5)."); return; } int8_t px, py; switch (state) { case MeshReport: if (leveling_is_valid()) { SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF); mbl_mesh_report(); } else SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data."); break; case MeshStart: mbl.reset(); mbl_probe_index = 0; enqueue_and_echo_commands_P(PSTR("G28\nG29 S2")); break; case MeshNext: if (mbl_probe_index < 0) { SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first."); return; } // For each G29 S2... if (mbl_probe_index == 0) { #if HAS_SOFTWARE_ENDSTOPS // For the initial G29 S2 save software endstop state enable_soft_endstops = soft_endstops_enabled; #endif } else { // For G29 S2 after adjusting Z. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]); #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif } // If there's another point to sample, move there with optional lift. if (mbl_probe_index < GRID_MAX_POINTS) { mbl.zigzag(mbl_probe_index, px, py); _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]); #if HAS_SOFTWARE_ENDSTOPS // Disable software endstops to allow manual adjustment // If G29 is not completed, they will not be re-enabled soft_endstops_enabled = false; #endif mbl_probe_index++; } else { // One last "return to the bed" (as originally coded) at completion current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT; line_to_current_position(); stepper.synchronize(); // After recording the last point, activate home and activate mbl_probe_index = -1; SERIAL_PROTOCOLLNPGM("Mesh probing done."); BUZZ(100, 659); BUZZ(100, 698); mesh_probing_done(); } break; case MeshSet: if (parser.seenval('X')) { px = parser.value_int() - 1; if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) { SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ")."); return; } } else { SERIAL_CHAR('X'); echo_not_entered(); return; } if (parser.seenval('Y')) { py = parser.value_int() - 1; if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) { SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ")."); return; } } else { SERIAL_CHAR('Y'); echo_not_entered(); return; } if (parser.seenval('Z')) { mbl.z_values[px][py] = parser.value_linear_units(); } else { SERIAL_CHAR('Z'); echo_not_entered(); return; } break; case MeshSetZOffset: if (parser.seenval('Z')) { mbl.z_offset = parser.value_linear_units(); } else { SERIAL_CHAR('Z'); echo_not_entered(); return; } break; case MeshReset: reset_bed_level(); break; } // switch(state) report_current_position(); } #elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL) #if ABL_GRID #if ENABLED(PROBE_Y_FIRST) #define PR_OUTER_VAR xCount #define PR_OUTER_END abl_grid_points_x #define PR_INNER_VAR yCount #define PR_INNER_END abl_grid_points_y #else #define PR_OUTER_VAR yCount #define PR_OUTER_END abl_grid_points_y #define PR_INNER_VAR xCount #define PR_INNER_END abl_grid_points_x #endif #endif /** * G29: Detailed Z probe, probes the bed at 3 or more points. * Will fail if the printer has not been homed with G28. * * Enhanced G29 Auto Bed Leveling Probe Routine * * D Dry-Run mode. Just evaluate the bed Topology - Don't apply * or alter the bed level data. Useful to check the topology * after a first run of G29. * * J Jettison current bed leveling data * * V Set the verbose level (0-4). Example: "G29 V3" * * Parameters With LINEAR leveling only: * * P Set the size of the grid that will be probed (P x P points). * Example: "G29 P4" * * X Set the X size of the grid that will be probed (X x Y points). * Example: "G29 X7 Y5" * * Y Set the Y size of the grid that will be probed (X x Y points). * * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report. * This is useful for manual bed leveling and finding flaws in the bed (to * assist with part placement). * Not supported by non-linear delta printer bed leveling. * * Parameters With LINEAR and BILINEAR leveling only: * * S Set the XY travel speed between probe points (in units/min) * * F Set the Front limit of the probing grid * B Set the Back limit of the probing grid * L Set the Left limit of the probing grid * R Set the Right limit of the probing grid * * Parameters with DEBUG_LEVELING_FEATURE only: * * C Make a totally fake grid with no actual probing. * For use in testing when no probing is possible. * * Parameters with BILINEAR leveling only: * * Z Supply an additional Z probe offset * * Extra parameters with PROBE_MANUALLY: * * To do manual probing simply repeat G29 until the procedure is complete. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort. * * Q Query leveling and G29 state * * A Abort current leveling procedure * * Extra parameters with BILINEAR only: * * W Write a mesh point. (If G29 is idle.) * I X index for mesh point * J Y index for mesh point * X X for mesh point, overrides I * Y Y for mesh point, overrides J * Z Z for mesh point. Otherwise, raw current Z. * * Without PROBE_MANUALLY: * * E By default G29 will engage the Z probe, test the bed, then disengage. * Include "E" to engage/disengage the Z probe for each sample. * There's no extra effect if you have a fixed Z probe. * */ inline void gcode_G29() { // G29 Q is also available if debugging #if ENABLED(DEBUG_LEVELING_FEATURE) const bool query = parser.seen('Q'); const uint8_t old_debug_flags = marlin_debug_flags; if (query) marlin_debug_flags |= DEBUG_LEVELING; if (DEBUGGING(LEVELING)) { DEBUG_POS(">>> gcode_G29", current_position); log_machine_info(); } marlin_debug_flags = old_debug_flags; #if DISABLED(PROBE_MANUALLY) if (query) return; #endif #endif #if ENABLED(PROBE_MANUALLY) const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY) const bool faux = parser.boolval('C'); #elif ENABLED(PROBE_MANUALLY) const bool faux = no_action; #else bool constexpr faux = false; #endif // Don't allow auto-leveling without homing first if (axis_unhomed_error()) return; // Define local vars 'static' for manual probing, 'auto' otherwise #if ENABLED(PROBE_MANUALLY) #define ABL_VAR static #else #define ABL_VAR #endif ABL_VAR int verbose_level; ABL_VAR float xProbe, yProbe, measured_z; ABL_VAR bool dryrun, abl_should_enable; #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR) ABL_VAR int abl_probe_index; #endif #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY) ABL_VAR bool enable_soft_endstops = true; #endif #if ABL_GRID #if ENABLED(PROBE_MANUALLY) ABL_VAR uint8_t PR_OUTER_VAR; ABL_VAR int8_t PR_INNER_VAR; #endif ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position; ABL_VAR float xGridSpacing = 0, yGridSpacing = 0; #if ENABLED(AUTO_BED_LEVELING_LINEAR) ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X, abl_grid_points_y = GRID_MAX_POINTS_Y; ABL_VAR bool do_topography_map; #else // Bilinear uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X, abl_grid_points_y = GRID_MAX_POINTS_Y; #endif #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY) #if ENABLED(AUTO_BED_LEVELING_LINEAR) ABL_VAR int abl2; #else // Bilinear int constexpr abl2 = GRID_MAX_POINTS; #endif #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) ABL_VAR float zoffset; #elif ENABLED(AUTO_BED_LEVELING_LINEAR) ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points mean; #endif #elif ENABLED(AUTO_BED_LEVELING_3POINT) int constexpr abl2 = 3; // Probe at 3 arbitrary points ABL_VAR vector_3 points[3] = { vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0), vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0), vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0) }; #endif // AUTO_BED_LEVELING_3POINT #if ENABLED(AUTO_BED_LEVELING_LINEAR) struct linear_fit_data lsf_results; incremental_LSF_reset(&lsf_results); #endif /** * On the initial G29 fetch command parameters. */ if (!g29_in_progress) { #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR) abl_probe_index = -1; #endif abl_should_enable = leveling_is_active(); #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (parser.seen('W')) { if (!leveling_is_valid()) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("No bilinear grid"); return; } const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z)); if (!WITHIN(z, -10, 10)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Bad Z value"); return; } const float x = parser.floatval('X', NAN), y = parser.floatval('Y', NAN); int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1); if (!isnan(x) && !isnan(y)) { // Get nearest i / j from x / y i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing; j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing; i = constrain(i, 0, GRID_MAX_POINTS_X - 1); j = constrain(j, 0, GRID_MAX_POINTS_Y - 1); } if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) { set_bed_leveling_enabled(false); z_values[i][j] = z; #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif set_bed_leveling_enabled(abl_should_enable); } return; } // parser.seen('W') #endif #if HAS_LEVELING // Jettison bed leveling data if (parser.seen('J')) { reset_bed_level(); return; } #endif verbose_level = parser.intval('V'); if (!WITHIN(verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4)."); return; } dryrun = parser.boolval('D') #if ENABLED(PROBE_MANUALLY) || no_action #endif ; #if ENABLED(AUTO_BED_LEVELING_LINEAR) do_topography_map = verbose_level > 2 || parser.boolval('T'); // X and Y specify points in each direction, overriding the default // These values may be saved with the completed mesh abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X); abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y); if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int(); if (abl_grid_points_x < 2 || abl_grid_points_y < 2) { SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum)."); return; } abl2 = abl_grid_points_x * abl_grid_points_y; #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) zoffset = parser.linearval('Z'); #endif #if ABL_GRID xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED)); left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION)); right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION)); front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION)); back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION)); const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X), left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE), right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X), right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE, front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y), front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE), back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y), back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE; if (left_out || right_out || front_out || back_out) { if (left_out) { out_of_range_error(PSTR("(L)eft")); left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE); } if (right_out) { out_of_range_error(PSTR("(R)ight")); right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE; } if (front_out) { out_of_range_error(PSTR("(F)ront")); front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE); } if (back_out) { out_of_range_error(PSTR("(B)ack")); back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE; } return; } // probe at the points of a lattice grid xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1); yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1); #endif // ABL_GRID if (verbose_level > 0) { SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling"); if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode"); } stepper.synchronize(); // Disable auto bed leveling during G29 planner.abl_enabled = false; if (!dryrun) { // Re-orient the current position without leveling // based on where the steppers are positioned. set_current_from_steppers_for_axis(ALL_AXES); // Sync the planner to where the steppers stopped SYNC_PLAN_POSITION_KINEMATIC(); } #if HAS_BED_PROBE // Deploy the probe. Probe will raise if needed. if (DEPLOY_PROBE()) { planner.abl_enabled = abl_should_enable; return; } #endif if (!faux) setup_for_endstop_or_probe_move(); #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(PROBE_MANUALLY) if (!no_action) #endif if ( xGridSpacing != bilinear_grid_spacing[X_AXIS] || yGridSpacing != bilinear_grid_spacing[Y_AXIS] || left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS]) || front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) ) { if (dryrun) { // Before reset bed level, re-enable to correct the position planner.abl_enabled = abl_should_enable; } // Reset grid to 0.0 or "not probed". (Also disables ABL) reset_bed_level(); // Initialize a grid with the given dimensions bilinear_grid_spacing[X_AXIS] = xGridSpacing; bilinear_grid_spacing[Y_AXIS] = yGridSpacing; bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position); bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position); // Can't re-enable (on error) until the new grid is written abl_should_enable = false; } #endif // AUTO_BED_LEVELING_BILINEAR #if ENABLED(AUTO_BED_LEVELING_3POINT) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling"); #endif // Probe at 3 arbitrary points points[0].z = points[1].z = points[2].z = 0; #endif // AUTO_BED_LEVELING_3POINT } // !g29_in_progress #if ENABLED(PROBE_MANUALLY) // For manual probing, get the next index to probe now. // On the first probe this will be incremented to 0. if (!no_action) { ++abl_probe_index; g29_in_progress = true; } // Abort current G29 procedure, go back to idle state if (seenA && g29_in_progress) { SERIAL_PROTOCOLLNPGM("Manual G29 aborted"); #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif planner.abl_enabled = abl_should_enable; g29_in_progress = false; #if ENABLED(LCD_BED_LEVELING) lcd_wait_for_move = false; #endif } // Query G29 status if (verbose_level || seenQ) { SERIAL_PROTOCOLPGM("Manual G29 "); if (g29_in_progress) { SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2)); SERIAL_PROTOCOLLNPAIR(" of ", abl2); } else SERIAL_PROTOCOLLNPGM("idle"); } if (no_action) return; if (abl_probe_index == 0) { // For the initial G29 save software endstop state #if HAS_SOFTWARE_ENDSTOPS enable_soft_endstops = soft_endstops_enabled; #endif } else { // For G29 after adjusting Z. // Save the previous Z before going to the next point measured_z = current_position[Z_AXIS]; #if ENABLED(AUTO_BED_LEVELING_LINEAR) mean += measured_z; eqnBVector[abl_probe_index] = measured_z; eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe; eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe; eqnAMatrix[abl_probe_index + 2 * abl2] = 1; incremental_LSF(&lsf_results, xProbe, yProbe, measured_z); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) z_values[xCount][yCount] = measured_z + zoffset; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_PROTOCOLPAIR("Save X", xCount); SERIAL_PROTOCOLPAIR(" Y", yCount); SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset); } #endif #elif ENABLED(AUTO_BED_LEVELING_3POINT) points[abl_probe_index].z = measured_z; #endif } // // If there's another point to sample, move there with optional lift. // #if ABL_GRID // Skip any unreachable points while (abl_probe_index < abl2) { // Set xCount, yCount based on abl_probe_index, with zig-zag PR_OUTER_VAR = abl_probe_index / PR_INNER_END; PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END); // Probe in reverse order for every other row/column bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1); if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR; const float xBase = xCount * xGridSpacing + left_probe_bed_position, yBase = yCount * yGridSpacing + front_probe_bed_position; xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5)); yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5)); #if ENABLED(AUTO_BED_LEVELING_LINEAR) indexIntoAB[xCount][yCount] = abl_probe_index; #endif // Keep looping till a reachable point is found if (position_is_reachable_xy(xProbe, yProbe)) break; ++abl_probe_index; } // Is there a next point to move to? if (abl_probe_index < abl2) { _manual_goto_xy(xProbe, yProbe); // Can be used here too! #if HAS_SOFTWARE_ENDSTOPS // Disable software endstops to allow manual adjustment // If G29 is not completed, they will not be re-enabled soft_endstops_enabled = false; #endif return; } else { // Leveling done! Fall through to G29 finishing code below SERIAL_PROTOCOLLNPGM("Grid probing done."); // Re-enable software endstops, if needed #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif } #elif ENABLED(AUTO_BED_LEVELING_3POINT) // Probe at 3 arbitrary points if (abl_probe_index < 3) { xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x); yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y); #if HAS_SOFTWARE_ENDSTOPS // Disable software endstops to allow manual adjustment // If G29 is not completed, they will not be re-enabled soft_endstops_enabled = false; #endif return; } else { SERIAL_PROTOCOLLNPGM("3-point probing done."); // Re-enable software endstops, if needed #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif if (!dryrun) { vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal(); if (planeNormal.z < 0) { planeNormal.x *= -1; planeNormal.y *= -1; planeNormal.z *= -1; } planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); // Can't re-enable (on error) until the new grid is written abl_should_enable = false; } } #endif // AUTO_BED_LEVELING_3POINT #else // !PROBE_MANUALLY { const bool stow_probe_after_each = parser.boolval('E'); #if ABL_GRID bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION // Outer loop is Y with PROBE_Y_FIRST disabled for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) { int8_t inStart, inStop, inInc; if (zig) { // away from origin inStart = 0; inStop = PR_INNER_END; inInc = 1; } else { // towards origin inStart = PR_INNER_END - 1; inStop = -1; inInc = -1; } zig ^= true; // zag // Inner loop is Y with PROBE_Y_FIRST enabled for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) { float xBase = left_probe_bed_position + xGridSpacing * xCount, yBase = front_probe_bed_position + yGridSpacing * yCount; xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5)); yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5)); #if ENABLED(AUTO_BED_LEVELING_LINEAR) indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0... #endif #if IS_KINEMATIC // Avoid probing outside the round or hexagonal area if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue; #endif measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); if (isnan(measured_z)) { planner.abl_enabled = abl_should_enable; break; } #if ENABLED(AUTO_BED_LEVELING_LINEAR) mean += measured_z; eqnBVector[abl_probe_index] = measured_z; eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe; eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe; eqnAMatrix[abl_probe_index + 2 * abl2] = 1; incremental_LSF(&lsf_results, xProbe, yProbe, measured_z); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) z_values[xCount][yCount] = measured_z + zoffset; #endif abl_should_enable = false; idle(); } // inner } // outer #elif ENABLED(AUTO_BED_LEVELING_3POINT) // Probe at 3 arbitrary points for (uint8_t i = 0; i < 3; ++i) { // Retain the last probe position xProbe = LOGICAL_X_POSITION(points[i].x); yProbe = LOGICAL_Y_POSITION(points[i].y); measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level); if (isnan(measured_z)) { planner.abl_enabled = abl_should_enable; break; } points[i].z = measured_z; } if (!dryrun && !isnan(measured_z)) { vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal(); if (planeNormal.z < 0) { planeNormal.x *= -1; planeNormal.y *= -1; planeNormal.z *= -1; } planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal); // Can't re-enable (on error) until the new grid is written abl_should_enable = false; } #endif // AUTO_BED_LEVELING_3POINT // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe. if (STOW_PROBE()) { planner.abl_enabled = abl_should_enable; measured_z = NAN; } } #endif // !PROBE_MANUALLY // // G29 Finishing Code // // Unless this is a dry run, auto bed leveling will // definitely be enabled after this point. // // If code above wants to continue leveling, it should // return or loop before this point. // #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position); #endif #if ENABLED(PROBE_MANUALLY) g29_in_progress = false; #if ENABLED(LCD_BED_LEVELING) lcd_wait_for_move = false; #endif #endif // Calculate leveling, print reports, correct the position if (!isnan(measured_z)) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) if (!dryrun) extrapolate_unprobed_bed_level(); print_bilinear_leveling_grid(); refresh_bed_level(); #if ENABLED(ABL_BILINEAR_SUBDIVISION) print_bilinear_leveling_grid_virt(); #endif #elif ENABLED(AUTO_BED_LEVELING_LINEAR) // For LINEAR leveling calculate matrix, print reports, correct the position /** * solve the plane equation ax + by + d = z * A is the matrix with rows [x y 1] for all the probed points * B is the vector of the Z positions * the normal vector to the plane is formed by the coefficients of the * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z */ float plane_equation_coefficients[3]; finish_incremental_LSF(&lsf_results); plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested. plane_equation_coefficients[2] = -lsf_results.D; mean /= abl2; if (verbose_level) { SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8); SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8); SERIAL_EOL(); if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Mean of sampled points: "); SERIAL_PROTOCOL_F(mean, 8); SERIAL_EOL(); } } // Create the matrix but don't correct the position yet if (!dryrun) planner.bed_level_matrix = matrix_3x3::create_look_at( vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above ); // Show the Topography map if enabled if (do_topography_map) { SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n" " +--- BACK --+\n" " | |\n" " L | (+) | R\n" " E | | I\n" " F | (-) N (+) | G\n" " T | | H\n" " | (-) | T\n" " | |\n" " O-- FRONT --+\n" " (0,0)"); float min_diff = 999; for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) { for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) { int ind = indexIntoAB[xx][yy]; float diff = eqnBVector[ind] - mean, x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); NOMORE(min_diff, eqnBVector[ind] - z_tmp); if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL(); } // yy SERIAL_EOL(); if (verbose_level > 3) { SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:"); for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) { for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) { int ind = indexIntoAB[xx][yy]; float x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp); float diff = eqnBVector[ind] - z_tmp - min_diff; if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL(); } // yy SERIAL_EOL(); } } //do_topography_map #endif // AUTO_BED_LEVELING_LINEAR #if ABL_PLANAR // For LINEAR and 3POINT leveling correct the current position if (verbose_level > 0) planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:")); if (!dryrun) { // // Correct the current XYZ position based on the tilted plane. // #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position); #endif float converted[XYZ]; COPY(converted, current_position); planner.abl_enabled = true; planner.unapply_leveling(converted); // use conversion machinery planner.abl_enabled = false; // Use the last measured distance to the bed, if possible if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) ) { const float simple_z = current_position[Z_AXIS] - measured_z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Z from Probe:", simple_z); SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]); SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]); } #endif converted[Z_AXIS] = simple_z; } // The rotated XY and corrected Z are now current_position COPY(current_position, converted); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position); #endif } #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (!dryrun) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]); #endif // Unapply the offset because it is going to be immediately applied // and cause compensation movement in Z current_position[Z_AXIS] -= bilinear_z_offset(current_position); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]); #endif } #endif // ABL_PLANAR #ifdef Z_PROBE_END_SCRIPT #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT); #endif enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT)); stepper.synchronize(); #endif // Auto Bed Leveling is complete! Enable if possible. planner.abl_enabled = dryrun ? abl_should_enable : true; } // !isnan(measured_z) // Restore state after probing if (!faux) clean_up_after_endstop_or_probe_move(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29"); #endif report_current_position(); KEEPALIVE_STATE(IN_HANDLER); if (planner.abl_enabled) SYNC_PLAN_POSITION_KINEMATIC(); } #endif // HAS_ABL && !AUTO_BED_LEVELING_UBL #if HAS_BED_PROBE /** * G30: Do a single Z probe at the current XY * * Parameters: * * X Probe X position (default current X) * Y Probe Y position (default current Y) * S0 Leave the probe deployed */ inline void gcode_G30() { const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER), ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER); if (!position_is_reachable_by_probe_xy(xpos, ypos)) return; // Disable leveling so the planner won't mess with us #if HAS_LEVELING set_bed_leveling_enabled(false); #endif setup_for_endstop_or_probe_move(); const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1); if (!isnan(measured_z)) { SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos)); SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos)); SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z)); } clean_up_after_endstop_or_probe_move(); report_current_position(); } #if ENABLED(Z_PROBE_SLED) /** * G31: Deploy the Z probe */ inline void gcode_G31() { DEPLOY_PROBE(); } /** * G32: Stow the Z probe */ inline void gcode_G32() { STOW_PROBE(); } #endif // Z_PROBE_SLED #endif // HAS_BED_PROBE #if PROBE_SELECTED #if ENABLED(DELTA_AUTO_CALIBRATION) /** * G33 - Delta '1-4-7-point' Auto-Calibration * Calibrate height, endstops, delta radius, and tower angles. * * Parameters: * * Pn Number of probe points: * * P0 No probe. Normalize only. * P1 Probe center and set height only. * P2 Probe center and towers. Set height, endstops, and delta radius. * P3 Probe all positions: center, towers and opposite towers. Set all. * P4-P7 Probe all positions at different locations and average them. * * T0 Don't calibrate tower angle corrections * * Cn.nn Calibration precision; when omitted calibrates to maximum precision * * Fn Force to run at least n iterations and takes the best result * * Vn Verbose level: * * V0 Dry-run mode. Report settings and probe results. No calibration. * V1 Report settings * V2 Report settings and probe results * * E Engage the probe for each point */ void print_signed_float(const char * const prefix, const float &f) { SERIAL_PROTOCOLPGM(" "); serialprintPGM(prefix); SERIAL_PROTOCOLCHAR(':'); if (f >= 0) SERIAL_CHAR('+'); SERIAL_PROTOCOL_F(f, 2); } inline void print_G33_settings(const bool end_stops, const bool tower_angles){ SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]); if (end_stops) { print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]); print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]); print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]); SERIAL_PROTOCOLPAIR(" Radius:", delta_radius); } SERIAL_EOL(); if (tower_angles) { SERIAL_PROTOCOLPGM(".Tower angle : "); print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]); print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]); print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]); SERIAL_EOL(); } } void G33_cleanup( #if HOTENDS > 1 const uint8_t old_tool_index #endif ) { #if ENABLED(DELTA_HOME_TO_SAFE_ZONE) do_blocking_move_to_z(delta_clip_start_height); #endif STOW_PROBE(); clean_up_after_endstop_or_probe_move(); #if HOTENDS > 1 tool_change(old_tool_index, 0, true); #endif } inline void gcode_G33() { const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); if (!WITHIN(probe_points, 0, 7)) { SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7)."); return; } const int8_t verbose_level = parser.byteval('V', 1); if (!WITHIN(verbose_level, 0, 2)) { SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2)."); return; } const float calibration_precision = parser.floatval('C'); if (calibration_precision < 0) { SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0)."); return; } const int8_t force_iterations = parser.intval('F', 0); if (!WITHIN(force_iterations, 0, 30)) { SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30)."); return; } const bool towers_set = parser.boolval('T', true), stow_after_each = parser.boolval('E'), _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1, _4p_calibration = probe_points == 2, _4p_towers_points = _4p_calibration && towers_set, _4p_opposite_points = _4p_calibration && !towers_set, _7p_calibration = probe_points >= 3 || _0p_calibration, _7p_half_circle = probe_points == 3, _7p_double_circle = probe_points == 5, _7p_triple_circle = probe_points == 6, _7p_quadruple_circle = probe_points == 7, _7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle, _7p_intermed_points = _7p_calibration && !_7p_half_circle; const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h"; const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER), dy = (Y_PROBE_OFFSET_FROM_EXTRUDER); int8_t iterations = 0; float test_precision, zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end zero_std_dev_old = zero_std_dev, zero_std_dev_min = zero_std_dev, e_old[ABC] = { endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS] }, dr_old = delta_radius, zh_old = home_offset[Z_AXIS], ta_old[ABC] = { delta_tower_angle_trim[A_AXIS], delta_tower_angle_trim[B_AXIS], delta_tower_angle_trim[C_AXIS] }; if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable const float circles = (_7p_quadruple_circle ? 1.5 : _7p_triple_circle ? 1.0 : _7p_double_circle ? 0.5 : 0), r = (1 + circles * 0.1) * delta_calibration_radius; for (uint8_t axis = 1; axis < 13; ++axis) { const float a = RADIANS(180 + 30 * axis); if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) { SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible."); return; } } } SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate"); stepper.synchronize(); #if HAS_LEVELING reset_bed_level(); // After calibration bed-level data is no longer valid #endif #if HOTENDS > 1 const uint8_t old_tool_index = active_extruder; tool_change(0, 0, true); #define G33_CLEANUP() G33_cleanup(old_tool_index) #else #define G33_CLEANUP() G33_cleanup() #endif setup_for_endstop_or_probe_move(); endstops.enable(true); if (!_0p_calibration) { if (!home_delta()) return; endstops.not_homing(); } // print settings const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string serialprintPGM(checkingac); if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)"); SERIAL_EOL(); lcd_setstatusPGM(checkingac); print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); #if DISABLED(PROBE_MANUALLY) if (!_0p_calibration) { const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height if (isnan(measured_z)) return G33_CLEANUP(); home_offset[Z_AXIS] -= measured_z; } #endif do { float z_at_pt[13] = { 0.0 }; test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev; if (_0p_calibration) test_precision = 0.00; iterations++; // Probe the points if (!_0p_calibration){ if (!_7p_half_circle && !_7p_triple_circle) { // probe the center #if ENABLED(PROBE_MANUALLY) z_at_pt[0] += lcd_probe_pt(0, 0); #else z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false); if (isnan(z_at_pt[0])) return G33_CLEANUP(); #endif } if (_7p_calibration) { // probe extra center points for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) { const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1; #if ENABLED(PROBE_MANUALLY) z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r); #else z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); if (isnan(z_at_pt[0])) return G33_CLEANUP(); #endif } z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points); } if (!_1p_calibration) { // probe the radius bool zig_zag = true; const uint8_t start = _4p_opposite_points ? 3 : 1, step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1; for (uint8_t axis = start; axis < 13; axis += step) { const float zigadd = (zig_zag ? 0.5 : 0.0), offset_circles = _7p_quadruple_circle ? zigadd + 1.0 : _7p_triple_circle ? zigadd + 0.5 : _7p_double_circle ? zigadd : 0; for (float circles = -offset_circles ; circles <= offset_circles; circles++) { const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1)); #if ENABLED(PROBE_MANUALLY) z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r); #else z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1); if (isnan(z_at_pt[axis])) return G33_CLEANUP(); #endif } zig_zag = !zig_zag; z_at_pt[axis] /= (2 * offset_circles + 1); } } if (_7p_intermed_points) // average intermediates to tower and opposites for (uint8_t axis = 1; axis < 13; axis += 2) z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0; } float S1 = z_at_pt[0], S2 = sq(z_at_pt[0]); int16_t N = 1; if (!_1p_calibration) // std dev from zero plane for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) { S1 += z_at_pt[axis]; S2 += sq(z_at_pt[axis]); N++; } zero_std_dev_old = zero_std_dev; zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001; // Solve matrices if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) { if (zero_std_dev < zero_std_dev_min) { COPY(e_old, endstop_adj); dr_old = delta_radius; zh_old = home_offset[Z_AXIS]; COPY(ta_old, delta_tower_angle_trim); } float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 }; float r_diff = delta_radius - delta_calibration_radius, h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm a_factor = 66.66 / delta_calibration_radius; //0.83 for cal_rd = 80mm #define ZP(N,I) ((N) * z_at_pt[I]) #define Z6(I) ZP(6, I) #define Z4(I) ZP(4, I) #define Z2(I) ZP(2, I) #define Z1(I) ZP(1, I) h_factor /= 6.00; r_factor /= 6.00; #if ENABLED(PROBE_MANUALLY) test_precision = 0.00; // forced end #endif switch (probe_points) { case 1: test_precision = 0.00; // forced end LOOP_XYZ(axis) e_delta[axis] = Z1(0); break; case 2: if (towers_set) { e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor; e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor; e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor; r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor; } else { e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor; e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor; e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor; r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor; } break; default: e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor; e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor; e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor; r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor; if (towers_set) { t_delta[A_AXIS] = ( - Z2(5) + Z1(9) - Z2(11) + Z1(3)) * a_factor; t_delta[B_AXIS] = ( Z2(1) - Z1(9) + Z2(7) - Z1(3)) * a_factor; t_delta[C_AXIS] = (-Z2(1) + Z1(5) - Z2(7) + Z1(11) ) * a_factor; } break; } LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis]; delta_radius += r_delta; LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis]; } else if (zero_std_dev >= test_precision) { // step one back COPY(endstop_adj, e_old); delta_radius = dr_old; home_offset[Z_AXIS] = zh_old; COPY(delta_tower_angle_trim, ta_old); } if (verbose_level != 0) { // !dry run // normalise angles to least squares float a_sum = 0.0; LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0; // adjust delta_height and endstops by the max amount const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]); home_offset[Z_AXIS] -= z_temp; LOOP_XYZ(axis) endstop_adj[axis] -= z_temp; } recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); NOMORE(zero_std_dev_min, zero_std_dev); // print report if (verbose_level != 1) { SERIAL_PROTOCOLPGM(". "); print_signed_float(PSTR("c"), z_at_pt[0]); if (_4p_towers_points || _7p_calibration) { print_signed_float(PSTR(" x"), z_at_pt[1]); print_signed_float(PSTR(" y"), z_at_pt[5]); print_signed_float(PSTR(" z"), z_at_pt[9]); } if (!_4p_opposite_points) SERIAL_EOL(); if ((_4p_opposite_points) || _7p_calibration) { if (_7p_calibration) { SERIAL_CHAR('.'); SERIAL_PROTOCOL_SP(13); } print_signed_float(PSTR(" yz"), z_at_pt[7]); print_signed_float(PSTR("zx"), z_at_pt[11]); print_signed_float(PSTR("xy"), z_at_pt[3]); SERIAL_EOL(); } } if (verbose_level != 0) { // !dry run if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations SERIAL_PROTOCOLPGM("Calibration OK"); SERIAL_PROTOCOL_SP(36); #if DISABLED(PROBE_MANUALLY) if (zero_std_dev >= test_precision && !_1p_calibration) SERIAL_PROTOCOLPGM("rolling back."); else #endif { SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev_min, 3); } SERIAL_EOL(); char mess[21]; sprintf_P(mess, PSTR("Calibration sd:")); if (zero_std_dev_min < 1) sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0)); else sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min)); lcd_setstatus(mess); print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); serialprintPGM(save_message); SERIAL_EOL(); } else { // !end iterations char mess[15]; if (iterations < 31) sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations); else sprintf_P(mess, PSTR("No convergence")); SERIAL_PROTOCOL(mess); SERIAL_PROTOCOL_SP(36); SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL(); lcd_setstatus(mess); print_G33_settings(!_1p_calibration, _7p_calibration && towers_set); } } else { // dry run const char *enddryrun = PSTR("End DRY-RUN"); serialprintPGM(enddryrun); SERIAL_PROTOCOL_SP(39); SERIAL_PROTOCOLPGM("std dev:"); SERIAL_PROTOCOL_F(zero_std_dev, 3); SERIAL_EOL(); char mess[21]; sprintf_P(mess, enddryrun); sprintf_P(&mess[11], PSTR(" sd:")); if (zero_std_dev < 1) sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0)); else sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev)); lcd_setstatus(mess); } endstops.enable(true); home_delta(); endstops.not_homing(); } while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations); G33_CLEANUP(); } #endif // DELTA_AUTO_CALIBRATION #endif // PROBE_SELECTED #if ENABLED(G38_PROBE_TARGET) static bool G38_run_probe() { bool G38_pass_fail = false; #if ENABLED(PROBE_DOUBLE_TOUCH) // Get direction of move and retract float retract_mm[XYZ]; LOOP_XYZ(i) { float dist = destination[i] - current_position[i]; retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1); } #endif stepper.synchronize(); // wait until the machine is idle // Move until destination reached or target hit endstops.enable(true); G38_move = true; G38_endstop_hit = false; prepare_move_to_destination(); stepper.synchronize(); G38_move = false; endstops.hit_on_purpose(); set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); if (G38_endstop_hit) { G38_pass_fail = true; #if ENABLED(PROBE_DOUBLE_TOUCH) // Move away by the retract distance set_destination_to_current(); LOOP_XYZ(i) destination[i] += retract_mm[i]; endstops.enable(false); prepare_move_to_destination(); stepper.synchronize(); feedrate_mm_s /= 4; // Bump the target more slowly LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2; endstops.enable(true); G38_move = true; prepare_move_to_destination(); stepper.synchronize(); G38_move = false; set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); #endif } endstops.hit_on_purpose(); endstops.not_homing(); return G38_pass_fail; } /** * G38.2 - probe toward workpiece, stop on contact, signal error if failure * G38.3 - probe toward workpiece, stop on contact * * Like G28 except uses Z min probe for all axes */ inline void gcode_G38(bool is_38_2) { // Get X Y Z E F gcode_get_destination(); setup_for_endstop_or_probe_move(); // If any axis has enough movement, do the move LOOP_XYZ(i) if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) { if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i); // If G38.2 fails throw an error if (!G38_run_probe() && is_38_2) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Failed to reach target"); } break; } clean_up_after_endstop_or_probe_move(); } #endif // G38_PROBE_TARGET #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING) /** * G42: Move X & Y axes to mesh coordinates (I & J) */ inline void gcode_G42() { if (IsRunning()) { const bool hasI = parser.seenval('I'); const int8_t ix = hasI ? parser.value_int() : 0; const bool hasJ = parser.seenval('J'); const int8_t iy = hasJ ? parser.value_int() : 0; if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) { SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY); return; } #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS] #define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS] #elif ENABLED(AUTO_BED_LEVELING_UBL) #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I) #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J) #elif ENABLED(MESH_BED_LEVELING) #define _GET_MESH_X(I) mbl.index_to_xpos[I] #define _GET_MESH_Y(J) mbl.index_to_ypos[J] #endif set_destination_to_current(); if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix)); if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy)); if (parser.boolval('P')) { if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER; if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER; } const float fval = parser.linearval('F'); if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval); // SCARA kinematic has "safe" XY raw moves #if IS_SCARA prepare_uninterpolated_move_to_destination(); #else prepare_move_to_destination(); #endif } } #endif // AUTO_BED_LEVELING_UBL /** * G92: Set current position to given X Y Z E */ inline void gcode_G92() { bool didXYZ = false, didE = parser.seenval('E'); if (!didE) stepper.synchronize(); LOOP_XYZE(i) { if (parser.seenval(axis_codes[i])) { #if IS_SCARA current_position[i] = parser.value_axis_units((AxisEnum)i); if (i != E_AXIS) didXYZ = true; #else #if HAS_POSITION_SHIFT const float p = current_position[i]; #endif const float v = parser.value_axis_units((AxisEnum)i); current_position[i] = v; if (i != E_AXIS) { didXYZ = true; #if HAS_POSITION_SHIFT position_shift[i] += v - p; // Offset the coordinate space update_software_endstops((AxisEnum)i); #if ENABLED(I2C_POSITION_ENCODERS) I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]); #endif #endif } #endif } } if (didXYZ) SYNC_PLAN_POSITION_KINEMATIC(); else if (didE) sync_plan_position_e(); report_current_position(); } #if HAS_RESUME_CONTINUE /** * M0: Unconditional stop - Wait for user button press on LCD * M1: Conditional stop - Wait for user button press on LCD */ inline void gcode_M0_M1() { const char * const args = parser.string_arg; millis_t ms = 0; bool hasP = false, hasS = false; if (parser.seenval('P')) { ms = parser.value_millis(); // milliseconds to wait hasP = ms > 0; } if (parser.seenval('S')) { ms = parser.value_millis_from_seconds(); // seconds to wait hasS = ms > 0; } #if ENABLED(ULTIPANEL) if (!hasP && !hasS && args && *args) lcd_setstatus(args, true); else { LCD_MESSAGEPGM(MSG_USERWAIT); #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0 dontExpireStatus(); #endif } #else if (!hasP && !hasS && args && *args) { SERIAL_ECHO_START(); SERIAL_ECHOLN(args); } #endif KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; stepper.synchronize(); refresh_cmd_timeout(); if (ms > 0) { ms += previous_cmd_ms; // wait until this time for a click while (PENDING(millis(), ms) && wait_for_user) idle(); } else { #if ENABLED(ULTIPANEL) if (lcd_detected()) { while (wait_for_user) idle(); IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG); } #else while (wait_for_user) idle(); #endif } wait_for_user = false; KEEPALIVE_STATE(IN_HANDLER); } #endif // HAS_RESUME_CONTINUE #if ENABLED(SPINDLE_LASER_ENABLE) /** * M3: Spindle Clockwise * M4: Spindle Counter-clockwise * * S0 turns off spindle. * * If no speed PWM output is defined then M3/M4 just turns it on. * * At least 12.8KHz (50Hz * 256) is needed for spindle PWM. * Hardware PWM is required. ISRs are too slow. * * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5. * No other settings give a PWM signal that goes from 0 to 5 volts. * * The system automatically sets WGM to Mode 1, so no special * initialization is needed. * * WGM bits for timer 2 are automatically set by the system to * Mode 1. This produces an acceptable 0 to 5 volt signal. * No special initialization is needed. * * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler * factors for timers 2, 3, 4, and 5 are acceptable. * * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on * the spindle/laser during power-up or when connecting to the host * (usually goes through a reset which sets all I/O pins to tri-state) * * PWM duty cycle goes from 0 (off) to 255 (always on). */ // Wait for spindle to come up to speed inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); } // Wait for spindle to stop turning inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); } /** * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line * * it accepts inputs of 0-255 */ inline void ocr_val_mode() { uint8_t spindle_laser_power = parser.value_byte(); WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power; analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power); } inline void gcode_M3_M4(bool is_M3) { stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle #if SPINDLE_DIR_CHANGE const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW; if (SPINDLE_STOP_ON_DIR_CHANGE \ && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \ && READ(SPINDLE_DIR_PIN) != rotation_dir ) { WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off delay_for_power_down(); } WRITE(SPINDLE_DIR_PIN, rotation_dir); #endif /** * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest. */ #if ENABLED(SPINDLE_LASER_PWM) if (parser.seen('O')) ocr_val_mode(); else { const float spindle_laser_power = parser.floatval('S'); if (spindle_laser_power == 0) { WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low) delay_for_power_down(); } else { int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support if (spindle_laser_power <= SPEED_POWER_MIN) ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting if (spindle_laser_power >= SPEED_POWER_MAX) ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val; WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte delay_for_power_up(); } } #else WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled delay_for_power_up(); #endif } /** * M5 turn off spindle */ inline void gcode_M5() { stepper.synchronize(); WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); delay_for_power_down(); } #endif // SPINDLE_LASER_ENABLE /** * M17: Enable power on all stepper motors */ inline void gcode_M17() { LCD_MESSAGEPGM(MSG_NO_MOVE); enable_all_steppers(); } #if IS_KINEMATIC #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder) #else #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S) #endif #if ENABLED(ADVANCED_PAUSE_FEATURE) static float resume_position[XYZE]; static bool move_away_flag = false; #if ENABLED(SDSUPPORT) static bool sd_print_paused = false; #endif static void filament_change_beep(const int8_t max_beep_count, const bool init=false) { static millis_t next_buzz = 0; static int8_t runout_beep = 0; if (init) next_buzz = runout_beep = 0; const millis_t ms = millis(); if (ELAPSED(ms, next_buzz)) { if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400); BUZZ(300, 2000); runout_beep++; } } } static void ensure_safe_temperature() { bool heaters_heating = true; wait_for_heatup = true; // M108 will clear this while (wait_for_heatup && heaters_heating) { idle(); heaters_heating = false; HOTEND_LOOP() { if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) { heaters_heating = true; #if ENABLED(ULTIPANEL) lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT); #endif break; } } } } static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos, const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false ) { if (move_away_flag) return false; // already paused if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) { #if ENABLED(PREVENT_COLD_EXTRUSION) if (!thermalManager.allow_cold_extrude && thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600); return false; } #endif ensure_safe_temperature(); // wait for extruder to heat up before unloading } // Indicate that the printer is paused move_away_flag = true; // Pause the print job and timer #if ENABLED(SDSUPPORT) if (card.sdprinting) { card.pauseSDPrint(); sd_print_paused = true; } #endif print_job_timer.pause(); // Show initial message and wait for synchronize steppers if (show_lcd) { #if ENABLED(ULTIPANEL) lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT); #endif } // Save current position stepper.synchronize(); COPY(resume_position, current_position); if (retract) { // Initial retract before move to filament change position set_destination_to_current(); destination[E_AXIS] += retract; RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE); stepper.synchronize(); } // Lift Z axis if (z_lift > 0) do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE); // Move XY axes to filament exchange position do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE); if (unload_length != 0) { if (show_lcd) { #if ENABLED(ULTIPANEL) lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD); idle(); #endif } // Unload filament set_destination_to_current(); destination[E_AXIS] += unload_length; RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE); stepper.synchronize(); } if (show_lcd) { #if ENABLED(ULTIPANEL) lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT); #endif } #if HAS_BUZZER filament_change_beep(max_beep_count, true); #endif idle(); // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS) #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN disable_e_steppers(); safe_delay(100); #endif // Start the heater idle timers const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL; HOTEND_LOOP() thermalManager.start_heater_idle_timer(e, nozzle_timeout); return true; } static void wait_for_filament_reload(const int8_t max_beep_count = 0) { bool nozzle_timed_out = false; // Wait for filament insert by user and press button KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; // LCD click or M108 will clear this while (wait_for_user) { #if HAS_BUZZER filament_change_beep(max_beep_count); #endif // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over if (!nozzle_timed_out) HOTEND_LOOP() nozzle_timed_out |= thermalManager.is_heater_idle(e); if (nozzle_timed_out) { #if ENABLED(ULTIPANEL) lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE); #endif // Wait for LCD click or M108 while (wait_for_user) idle(true); // Re-enable the heaters if they timed out HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e); // Wait for the heaters to reach the target temperatures ensure_safe_temperature(); #if ENABLED(ULTIPANEL) lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT); #endif // Start the heater idle timers const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL; HOTEND_LOOP() thermalManager.start_heater_idle_timer(e, nozzle_timeout); wait_for_user = true; /* Wait for user to load filament */ nozzle_timed_out = false; #if HAS_BUZZER filament_change_beep(max_beep_count, true); #endif } idle(true); } KEEPALIVE_STATE(IN_HANDLER); } static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) { bool nozzle_timed_out = false; if (!move_away_flag) return; // Re-enable the heaters if they timed out HOTEND_LOOP() { nozzle_timed_out |= thermalManager.is_heater_idle(e); thermalManager.reset_heater_idle_timer(e); } if (nozzle_timed_out) ensure_safe_temperature(); #if HAS_BUZZER filament_change_beep(max_beep_count, true); #endif if (load_length != 0) { #if ENABLED(ULTIPANEL) // Show "insert filament" if (nozzle_timed_out) lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT); #endif KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = true; // LCD click or M108 will clear this while (wait_for_user && nozzle_timed_out) { #if HAS_BUZZER filament_change_beep(max_beep_count); #endif idle(true); } KEEPALIVE_STATE(IN_HANDLER); #if ENABLED(ULTIPANEL) // Show "load" message lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD); #endif // Load filament destination[E_AXIS] += load_length; RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE); stepper.synchronize(); } #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0 float extrude_length = initial_extrude_length; do { if (extrude_length > 0) { // "Wait for filament extrude" lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE); // Extrude filament to get into hotend destination[E_AXIS] += extrude_length; RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE); stepper.synchronize(); } // Show "Extrude More" / "Resume" menu and wait for reply KEEPALIVE_STATE(PAUSED_FOR_USER); wait_for_user = false; lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION); while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true); KEEPALIVE_STATE(IN_HANDLER); extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH; // Keep looping if "Extrude More" was selected } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE); #endif #if ENABLED(ULTIPANEL) // "Wait for print to resume" lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME); #endif // Set extruder to saved position destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS]; planner.set_e_position_mm(current_position[E_AXIS]); // Move XY to starting position, then Z do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE); do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE); #if ENABLED(FILAMENT_RUNOUT_SENSOR) filament_ran_out = false; #endif #if ENABLED(ULTIPANEL) // Show status screen lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS); #endif #if ENABLED(SDSUPPORT) if (sd_print_paused) { card.startFileprint(); sd_print_paused = false; } #endif move_away_flag = false; } #endif // ADVANCED_PAUSE_FEATURE #if ENABLED(SDSUPPORT) /** * M20: List SD card to serial output */ inline void gcode_M20() { SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST); card.ls(); SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST); } /** * M21: Init SD Card */ inline void gcode_M21() { card.initsd(); } /** * M22: Release SD Card */ inline void gcode_M22() { card.release(); } /** * M23: Open a file */ inline void gcode_M23() { // Simplify3D includes the size, so zero out all spaces (#7227) for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0'; card.openFile(parser.string_arg, true); } /** * M24: Start or Resume SD Print */ inline void gcode_M24() { #if ENABLED(PARK_HEAD_ON_PAUSE) resume_print(); #endif card.startFileprint(); print_job_timer.start(); } /** * M25: Pause SD Print */ inline void gcode_M25() { card.pauseSDPrint(); print_job_timer.pause(); #if ENABLED(PARK_HEAD_ON_PAUSE) enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer #endif } /** * M26: Set SD Card file index */ inline void gcode_M26() { if (card.cardOK && parser.seenval('S')) card.setIndex(parser.value_long()); } /** * M27: Get SD Card status */ inline void gcode_M27() { card.getStatus(); } /** * M28: Start SD Write */ inline void gcode_M28() { card.openFile(parser.string_arg, false); } /** * M29: Stop SD Write * Processed in write to file routine above */ inline void gcode_M29() { // card.saving = false; } /** * M30 : Delete SD Card file */ inline void gcode_M30() { if (card.cardOK) { card.closefile(); card.removeFile(parser.string_arg); } } #endif // SDSUPPORT /** * M31: Get the time since the start of SD Print (or last M109) */ inline void gcode_M31() { char buffer[21]; duration_t elapsed = print_job_timer.duration(); elapsed.toString(buffer); lcd_setstatus(buffer); SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR("Print time: ", buffer); } #if ENABLED(SDSUPPORT) /** * M32: Select file and start SD Print */ inline void gcode_M32() { if (card.sdprinting) stepper.synchronize(); char* namestartpos = parser.string_arg; const bool call_procedure = parser.boolval('P'); if (card.cardOK) { card.openFile(namestartpos, true, call_procedure); if (parser.seenval('S')) card.setIndex(parser.value_long()); card.startFileprint(); // Procedure calls count as normal print time. if (!call_procedure) print_job_timer.start(); } } #if ENABLED(LONG_FILENAME_HOST_SUPPORT) /** * M33: Get the long full path of a file or folder * * Parameters: * Case-insensitive DOS-style path to a file or folder * * Example: * M33 miscel~1/armchair/armcha~1.gco * * Output: * /Miscellaneous/Armchair/Armchair.gcode */ inline void gcode_M33() { card.printLongPath(parser.string_arg); } #endif #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE) /** * M34: Set SD Card Sorting Options */ inline void gcode_M34() { if (parser.seen('S')) card.setSortOn(parser.value_bool()); if (parser.seenval('F')) { const int v = parser.value_long(); card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0); } //if (parser.seen('R')) card.setSortReverse(parser.value_bool()); } #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE /** * M928: Start SD Write */ inline void gcode_M928() { card.openLogFile(parser.string_arg); } #endif // SDSUPPORT /** * Sensitive pin test for M42, M226 */ static bool pin_is_protected(const int8_t pin) { static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS; for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true; return false; } /** * M42: Change pin status via GCode * * P Pin number (LED if omitted) * S Pin status from 0 - 255 */ inline void gcode_M42() { if (!parser.seenval('S')) return; const byte pin_status = parser.value_byte(); const int pin_number = parser.intval('P', LED_PIN); if (pin_number < 0) return; if (pin_is_protected(pin_number)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN); return; } pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); analogWrite(pin_number, pin_status); #if FAN_COUNT > 0 switch (pin_number) { #if HAS_FAN0 case FAN_PIN: fanSpeeds[0] = pin_status; break; #endif #if HAS_FAN1 case FAN1_PIN: fanSpeeds[1] = pin_status; break; #endif #if HAS_FAN2 case FAN2_PIN: fanSpeeds[2] = pin_status; break; #endif } #endif } #if ENABLED(PINS_DEBUGGING) #include "pinsDebug.h" inline void toggle_pins() { const bool I_flag = parser.boolval('I'); const int repeat = parser.intval('R', 1), start = parser.intval('S'), end = parser.intval('E', NUM_DIGITAL_PINS - 1), wait = parser.intval('W', 500); for (uint8_t pin = start; pin <= end; pin++) { //report_pin_state_extended(pin, I_flag, false); if (!I_flag && pin_is_protected(pin)) { report_pin_state_extended(pin, I_flag, true, "Untouched "); SERIAL_EOL(); } else { report_pin_state_extended(pin, I_flag, true, "Pulsing "); #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO if (pin == TEENSY_E2) { SET_OUTPUT(TEENSY_E2); for (int16_t j = 0; j < repeat; j++) { WRITE(TEENSY_E2, LOW); safe_delay(wait); WRITE(TEENSY_E2, HIGH); safe_delay(wait); WRITE(TEENSY_E2, LOW); safe_delay(wait); } } else if (pin == TEENSY_E3) { SET_OUTPUT(TEENSY_E3); for (int16_t j = 0; j < repeat; j++) { WRITE(TEENSY_E3, LOW); safe_delay(wait); WRITE(TEENSY_E3, HIGH); safe_delay(wait); WRITE(TEENSY_E3, LOW); safe_delay(wait); } } else #endif { pinMode(pin, OUTPUT); for (int16_t j = 0; j < repeat; j++) { digitalWrite(pin, 0); safe_delay(wait); digitalWrite(pin, 1); safe_delay(wait); digitalWrite(pin, 0); safe_delay(wait); } } } SERIAL_EOL(); } SERIAL_ECHOLNPGM("Done."); } // toggle_pins inline void servo_probe_test() { #if !(NUM_SERVOS > 0 && HAS_SERVO_0) SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("SERVO not setup"); #elif !HAS_Z_SERVO_ENDSTOP SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup"); #else // HAS_Z_SERVO_ENDSTOP const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR); SERIAL_PROTOCOLLNPGM("Servo probe test"); SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index); SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]); SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]); bool probe_inverting; #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) #define PROBE_TEST_PIN Z_MIN_PIN SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN); SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)"); SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: "); #if Z_MIN_ENDSTOP_INVERTING SERIAL_PROTOCOLLNPGM("true"); #else SERIAL_PROTOCOLLNPGM("false"); #endif probe_inverting = Z_MIN_ENDSTOP_INVERTING; #elif ENABLED(Z_MIN_PROBE_ENDSTOP) #define PROBE_TEST_PIN Z_MIN_PROBE_PIN SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN); SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)"); SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: "); #if Z_MIN_PROBE_ENDSTOP_INVERTING SERIAL_PROTOCOLLNPGM("true"); #else SERIAL_PROTOCOLLNPGM("false"); #endif probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING; #endif SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times"); SET_INPUT_PULLUP(PROBE_TEST_PIN); bool deploy_state, stow_state; for (uint8_t i = 0; i < 4; i++) { MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy safe_delay(500); deploy_state = READ(PROBE_TEST_PIN); MOVE_SERVO(probe_index, z_servo_angle[1]); //stow safe_delay(500); stow_state = READ(PROBE_TEST_PIN); } if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards"); refresh_cmd_timeout(); if (deploy_state != stow_state) { SERIAL_PROTOCOLLNPGM("BLTouch clone detected"); if (deploy_state) { SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)"); SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)"); } else { SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)"); SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)"); } #if ENABLED(BLTOUCH) SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true."); #endif } else { // measure active signal length MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy safe_delay(500); SERIAL_PROTOCOLLNPGM("please trigger probe"); uint16_t probe_counter = 0; // Allow 30 seconds max for operator to trigger probe for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) { safe_delay(2); if (0 == j % (500 * 1)) // keep cmd_timeout happy refresh_cmd_timeout(); if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter) safe_delay(2); if (probe_counter == 50) SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time else if (probe_counter >= 2) SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse else SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse MOVE_SERVO(probe_index, z_servo_angle[1]); //stow } // pulse detected } // for loop waiting for trigger if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected"); } // measure active signal length #endif } // servo_probe_test /** * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report * * M43 - report name and state of pin(s) * P Pin to read or watch. If omitted, reads all pins. * I Flag to ignore Marlin's pin protection. * * M43 W - Watch pins -reporting changes- until reset, click, or M108. * P Pin to read or watch. If omitted, read/watch all pins. * I Flag to ignore Marlin's pin protection. * * M43 E - Enable / disable background endstop monitoring * - Machine continues to operate * - Reports changes to endstops * - Toggles LED_PIN when an endstop changes * - Can not reliably catch the 5mS pulse from BLTouch type probes * * M43 T - Toggle pin(s) and report which pin is being toggled * S - Start Pin number. If not given, will default to 0 * L - End Pin number. If not given, will default to last pin defined for this board * I - Flag to ignore Marlin's pin protection. Use with caution!!!! * R - Repeat pulses on each pin this number of times before continueing to next pin * W - Wait time (in miliseconds) between pulses. If not given will default to 500 * * M43 S - Servo probe test * P - Probe index (optional - defaults to 0 */ inline void gcode_M43() { if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test toggle_pins(); return; } // Enable or disable endstop monitoring if (parser.seen('E')) { endstop_monitor_flag = parser.value_bool(); SERIAL_PROTOCOLPGM("endstop monitor "); serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis")); SERIAL_PROTOCOLLNPGM("abled"); return; } if (parser.seen('S')) { servo_probe_test(); return; } // Get the range of pins to test or watch const uint8_t first_pin = parser.byteval('P'), last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1; if (first_pin > last_pin) return; const bool ignore_protection = parser.boolval('I'); // Watch until click, M108, or reset if (parser.boolval('W')) { SERIAL_PROTOCOLLNPGM("Watching pins"); byte pin_state[last_pin - first_pin + 1]; for (int8_t pin = first_pin; pin <= last_pin; pin++) { if (pin_is_protected(pin) && !ignore_protection) continue; pinMode(pin, INPUT_PULLUP); delay(1); /* if (IS_ANALOG(pin)) pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...] else //*/ pin_state[pin - first_pin] = digitalRead(pin); } #if HAS_RESUME_CONTINUE wait_for_user = true; KEEPALIVE_STATE(PAUSED_FOR_USER); #endif for (;;) { for (int8_t pin = first_pin; pin <= last_pin; pin++) { if (pin_is_protected(pin) && !ignore_protection) continue; const byte val = /* IS_ANALOG(pin) ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val : //*/ digitalRead(pin); if (val != pin_state[pin - first_pin]) { report_pin_state_extended(pin, ignore_protection, false); pin_state[pin - first_pin] = val; } } #if HAS_RESUME_CONTINUE if (!wait_for_user) { KEEPALIVE_STATE(IN_HANDLER); break; } #endif safe_delay(200); } return; } // Report current state of selected pin(s) for (uint8_t pin = first_pin; pin <= last_pin; pin++) report_pin_state_extended(pin, ignore_protection, true); } #endif // PINS_DEBUGGING #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) /** * M48: Z probe repeatability measurement function. * * Usage: * M48 * P = Number of sampled points (4-50, default 10) * X = Sample X position * Y = Sample Y position * V = Verbose level (0-4, default=1) * E = Engage Z probe for each reading * L = Number of legs of movement before probe * S = Schizoid (Or Star if you prefer) * * This function assumes the bed has been homed. Specifically, that a G28 command * as been issued prior to invoking the M48 Z probe repeatability measurement function. * Any information generated by a prior G29 Bed leveling command will be lost and need to be * regenerated. */ inline void gcode_M48() { if (axis_unhomed_error()) return; const int8_t verbose_level = parser.byteval('V', 1); if (!WITHIN(verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4)."); return; } if (verbose_level > 0) SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test"); const int8_t n_samples = parser.byteval('P', 10); if (!WITHIN(n_samples, 4, 50)) { SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50)."); return; } const bool stow_probe_after_each = parser.boolval('E'); float X_current = current_position[X_AXIS], Y_current = current_position[Y_AXIS]; const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER); #if DISABLED(DELTA) if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) { out_of_range_error(PSTR("X")); return; } if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) { out_of_range_error(PSTR("Y")); return; } #else if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) { SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius."); return; } #endif bool seen_L = parser.seen('L'); uint8_t n_legs = seen_L ? parser.value_byte() : 0; if (n_legs > 15) { SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15)."); return; } if (n_legs == 1) n_legs = 2; const bool schizoid_flag = parser.boolval('S'); if (schizoid_flag && !seen_L) n_legs = 7; /** * Now get everything to the specified probe point So we can safely do a * probe to get us close to the bed. If the Z-Axis is far from the bed, * we don't want to use that as a starting point for each probe. */ if (verbose_level > 2) SERIAL_PROTOCOLLNPGM("Positioning the probe..."); // Disable bed level correction in M48 because we want the raw data when we probe #if HAS_LEVELING const bool was_enabled = leveling_is_active(); set_bed_leveling_enabled(false); #endif setup_for_endstop_or_probe_move(); double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples]; // Move to the first point, deploy, and probe const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level); bool probing_good = !isnan(t); if (probing_good) { randomSeed(millis()); for (uint8_t n = 0; n < n_samples; n++) { if (n_legs) { const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise float angle = random(0.0, 360.0); const float radius = random( #if ENABLED(DELTA) 0.1250000000 * (DELTA_PROBEABLE_RADIUS), 0.3333333333 * (DELTA_PROBEABLE_RADIUS) #else 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE) #endif ); if (verbose_level > 3) { SERIAL_ECHOPAIR("Starting radius: ", radius); SERIAL_ECHOPAIR(" angle: ", angle); SERIAL_ECHOPGM(" Direction: "); if (dir > 0) SERIAL_ECHOPGM("Counter-"); SERIAL_ECHOLNPGM("Clockwise"); } for (uint8_t l = 0; l < n_legs - 1; l++) { double delta_angle; if (schizoid_flag) // The points of a 5 point star are 72 degrees apart. We need to // skip a point and go to the next one on the star. delta_angle = dir * 2.0 * 72.0; else // If we do this line, we are just trying to move further // around the circle. delta_angle = dir * (float) random(25, 45); angle += delta_angle; while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the angle -= 360.0; // Arduino documentation says the trig functions should not be given values while (angle < 0.0) // outside of this range. It looks like they behave correctly with angle += 360.0; // numbers outside of the range, but just to be safe we clamp them. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius; Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius; #if DISABLED(DELTA) X_current = constrain(X_current, X_MIN_POS, X_MAX_POS); Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS); #else // If we have gone out too far, we can do a simple fix and scale the numbers // back in closer to the origin. while (!position_is_reachable_by_probe_xy(X_current, Y_current)) { X_current *= 0.8; Y_current *= 0.8; if (verbose_level > 3) { SERIAL_ECHOPAIR("Pulling point towards center:", X_current); SERIAL_ECHOLNPAIR(", ", Y_current); } } #endif if (verbose_level > 3) { SERIAL_PROTOCOLPGM("Going to:"); SERIAL_ECHOPAIR(" X", X_current); SERIAL_ECHOPAIR(" Y", Y_current); SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]); } do_blocking_move_to_xy(X_current, Y_current); } // n_legs loop } // n_legs // Probe a single point sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0); // Break the loop if the probe fails probing_good = !isnan(sample_set[n]); if (!probing_good) break; /** * Get the current mean for the data points we have so far */ double sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; mean = sum / (n + 1); NOMORE(min, sample_set[n]); NOLESS(max, sample_set[n]); /** * Now, use that mean to calculate the standard deviation for the * data points we have so far */ sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sq(sample_set[j] - mean); sigma = SQRT(sum / (n + 1)); if (verbose_level > 0) { if (verbose_level > 1) { SERIAL_PROTOCOL(n + 1); SERIAL_PROTOCOLPGM(" of "); SERIAL_PROTOCOL((int)n_samples); SERIAL_PROTOCOLPGM(": z: "); SERIAL_PROTOCOL_F(sample_set[n], 3); if (verbose_level > 2) { SERIAL_PROTOCOLPGM(" mean: "); SERIAL_PROTOCOL_F(mean, 4); SERIAL_PROTOCOLPGM(" sigma: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL_F(min, 3); SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOL_F(max, 3); SERIAL_PROTOCOLPGM(" range: "); SERIAL_PROTOCOL_F(max-min, 3); } SERIAL_EOL(); } } } // n_samples loop } STOW_PROBE(); if (probing_good) { SERIAL_PROTOCOLLNPGM("Finished!"); if (verbose_level > 0) { SERIAL_PROTOCOLPGM("Mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_PROTOCOLPGM(" Min: "); SERIAL_PROTOCOL_F(min, 3); SERIAL_PROTOCOLPGM(" Max: "); SERIAL_PROTOCOL_F(max, 3); SERIAL_PROTOCOLPGM(" Range: "); SERIAL_PROTOCOL_F(max-min, 3); SERIAL_EOL(); } SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_EOL(); SERIAL_EOL(); } clean_up_after_endstop_or_probe_move(); // Re-enable bed level correction if it had been on #if HAS_LEVELING set_bed_leveling_enabled(was_enabled); #endif report_current_position(); } #endif // Z_MIN_PROBE_REPEATABILITY_TEST #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION) inline void gcode_M49() { ubl.g26_debug_flag ^= true; SERIAL_PROTOCOLPGM("UBL Debug Flag turned "); serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off.")); } #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION /** * M75: Start print timer */ inline void gcode_M75() { print_job_timer.start(); } /** * M76: Pause print timer */ inline void gcode_M76() { print_job_timer.pause(); } /** * M77: Stop print timer */ inline void gcode_M77() { print_job_timer.stop(); } #if ENABLED(PRINTCOUNTER) /** * M78: Show print statistics */ inline void gcode_M78() { // "M78 S78" will reset the statistics if (parser.intval('S') == 78) print_job_timer.initStats(); else print_job_timer.showStats(); } #endif /** * M104: Set hot end temperature */ inline void gcode_M104() { if (get_target_extruder_from_command(104)) return; if (DEBUGGING(DRYRUN)) return; #if ENABLED(SINGLENOZZLE) if (target_extruder != active_extruder) return; #endif if (parser.seenval('S')) { const int16_t temp = parser.value_celsius(); thermalManager.setTargetHotend(temp, target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1); #endif #if ENABLED(PRINTJOB_TIMER_AUTOSTART) /** * Stop the timer at the end of print. Start is managed by 'heat and wait' M109. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot * standby mode, for instance in a dual extruder setup, without affecting * the running print timer. */ if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } #endif if (parser.value_celsius() > thermalManager.degHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING); } #if ENABLED(AUTOTEMP) planner.autotemp_M104_M109(); #endif } #if HAS_TEMP_HOTEND || HAS_TEMP_BED void print_heater_state(const float &c, const float &t, #if ENABLED(SHOW_TEMP_ADC_VALUES) const float r, #endif const int8_t e=-2 ) { #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1 UNUSED(e); #endif SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOLCHAR( #if HAS_TEMP_BED && HAS_TEMP_HOTEND e == -1 ? 'B' : 'T' #elif HAS_TEMP_HOTEND 'T' #else 'B' #endif ); #if HOTENDS > 1 if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e); #endif SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL(c); SERIAL_PROTOCOLPAIR(" /" , t); #if ENABLED(SHOW_TEMP_ADC_VALUES) SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR); SERIAL_PROTOCOLCHAR(')'); #endif } void print_heaterstates() { #if HAS_TEMP_HOTEND print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder) #if ENABLED(SHOW_TEMP_ADC_VALUES) , thermalManager.rawHotendTemp(target_extruder) #endif ); #endif #if HAS_TEMP_BED print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(), #if ENABLED(SHOW_TEMP_ADC_VALUES) thermalManager.rawBedTemp(), #endif -1 // BED ); #endif #if HOTENDS > 1 HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e), #if ENABLED(SHOW_TEMP_ADC_VALUES) thermalManager.rawHotendTemp(e), #endif e ); #endif SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder)); #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" B@:"); SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1)); #endif #if HOTENDS > 1 HOTEND_LOOP() { SERIAL_PROTOCOLPAIR(" @", e); SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL(thermalManager.getHeaterPower(e)); } #endif } #endif /** * M105: Read hot end and bed temperature */ inline void gcode_M105() { if (get_target_extruder_from_command(105)) return; #if HAS_TEMP_HOTEND || HAS_TEMP_BED SERIAL_PROTOCOLPGM(MSG_OK); print_heaterstates(); #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS); #endif SERIAL_EOL(); } #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED) static uint8_t auto_report_temp_interval; static millis_t next_temp_report_ms; /** * M155: Set temperature auto-report interval. M155 S */ inline void gcode_M155() { if (parser.seenval('S')) { auto_report_temp_interval = parser.value_byte(); NOMORE(auto_report_temp_interval, 60); next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval; } } inline void auto_report_temperatures() { if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) { next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval; print_heaterstates(); SERIAL_EOL(); } } #endif // AUTO_REPORT_TEMPERATURES #if FAN_COUNT > 0 /** * M106: Set Fan Speed * * S Speed between 0-255 * P Fan index, if more than one fan */ inline void gcode_M106() { uint16_t s = parser.ushortval('S', 255); NOMORE(s, 255); const uint8_t p = parser.byteval('P', 0); if (p < FAN_COUNT) fanSpeeds[p] = s; } /** * M107: Fan Off */ inline void gcode_M107() { const uint16_t p = parser.ushortval('P'); if (p < FAN_COUNT) fanSpeeds[p] = 0; } #endif // FAN_COUNT > 0 #if DISABLED(EMERGENCY_PARSER) /** * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature. */ inline void gcode_M108() { wait_for_heatup = false; } /** * M112: Emergency Stop */ inline void gcode_M112() { kill(PSTR(MSG_KILLED)); } /** * M410: Quickstop - Abort all planned moves * * This will stop the carriages mid-move, so most likely they * will be out of sync with the stepper position after this. */ inline void gcode_M410() { quickstop_stepper(); } #endif /** * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling. */ #ifndef MIN_COOLING_SLOPE_DEG #define MIN_COOLING_SLOPE_DEG 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME #define MIN_COOLING_SLOPE_TIME 60 #endif inline void gcode_M109() { if (get_target_extruder_from_command(109)) return; if (DEBUGGING(DRYRUN)) return; #if ENABLED(SINGLENOZZLE) if (target_extruder != active_extruder) return; #endif const bool no_wait_for_cooling = parser.seenval('S'); if (no_wait_for_cooling || parser.seenval('R')) { const int16_t temp = parser.value_celsius(); thermalManager.setTargetHotend(temp, target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1); #endif #if ENABLED(PRINTJOB_TIMER_AUTOSTART) /** * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot * standby mode, (e.g., in a dual extruder setup) without affecting * the running print timer. */ if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } else print_job_timer.start(); #endif if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING); } else return; #if ENABLED(AUTOTEMP) planner.autotemp_M104_M109(); #endif #if TEMP_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder)) #endif float target_temp = -1.0, old_temp = 9999.0; bool wants_to_cool = false; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; #if DISABLED(BUSY_WHILE_HEATING) KEEPALIVE_STATE(NOT_BUSY); #endif #if ENABLED(PRINTER_EVENT_LEDS) const float start_temp = thermalManager.degHotend(target_extruder); uint8_t old_blue = 0; #endif do { // Target temperature might be changed during the loop if (target_temp != thermalManager.degTargetHotend(target_extruder)) { wants_to_cool = thermalManager.isCoolingHotend(target_extruder); target_temp = thermalManager.degTargetHotend(target_extruder); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting next_temp_ms = now + 1000UL; print_heaterstates(); #if TEMP_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL)); else SERIAL_PROTOCOLCHAR('?'); #endif SERIAL_EOL(); } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out const float temp = thermalManager.degHotend(target_extruder); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from violet to red as nozzle heats up if (!wants_to_cool) { const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0); if (blue != old_blue) { old_blue = blue; set_led_color(255, 0, blue #if ENABLED(NEOPIXEL_RGBW_LED) , 0, true #endif ); } } #endif #if TEMP_RESIDENCY_TIME > 0 const float temp_diff = FABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_WINDOW) residency_start_ms = now; } else if (temp_diff > TEMP_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // Prevent a wait-forever situation if R is misused i.e. M109 R0 if (wants_to_cool) { // break after MIN_COOLING_SLOPE_TIME seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME; old_temp = temp; } } } while (wait_for_heatup && TEMP_CONDITIONS); if (wait_for_heatup) { LCD_MESSAGEPGM(MSG_HEATING_COMPLETE); #if ENABLED(PRINTER_EVENT_LEDS) #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED) set_led_color(0, 0, 0, 255); // Turn on the WHITE LED #else set_led_color(255, 255, 255); // Set LEDs All On #endif #endif } #if DISABLED(BUSY_WHILE_HEATING) KEEPALIVE_STATE(IN_HANDLER); #endif } #if HAS_TEMP_BED #ifndef MIN_COOLING_SLOPE_DEG_BED #define MIN_COOLING_SLOPE_DEG_BED 1.50 #endif #ifndef MIN_COOLING_SLOPE_TIME_BED #define MIN_COOLING_SLOPE_TIME_BED 60 #endif /** * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling */ inline void gcode_M190() { if (DEBUGGING(DRYRUN)) return; LCD_MESSAGEPGM(MSG_BED_HEATING); const bool no_wait_for_cooling = parser.seenval('S'); if (no_wait_for_cooling || parser.seenval('R')) { thermalManager.setTargetBed(parser.value_celsius()); #if ENABLED(PRINTJOB_TIMER_AUTOSTART) if (parser.value_celsius() > BED_MINTEMP) print_job_timer.start(); #endif } else return; #if TEMP_BED_RESIDENCY_TIME > 0 millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed()) #endif float target_temp = -1.0, old_temp = 9999.0; bool wants_to_cool = false; wait_for_heatup = true; millis_t now, next_temp_ms = 0, next_cool_check_ms = 0; #if DISABLED(BUSY_WHILE_HEATING) KEEPALIVE_STATE(NOT_BUSY); #endif target_extruder = active_extruder; // for print_heaterstates #if ENABLED(PRINTER_EVENT_LEDS) const float start_temp = thermalManager.degBed(); uint8_t old_red = 255; #endif do { // Target temperature might be changed during the loop if (target_temp != thermalManager.degTargetBed()) { wants_to_cool = thermalManager.isCoolingBed(); target_temp = thermalManager.degTargetBed(); // Exit if S, continue if S, R, or R if (no_wait_for_cooling && wants_to_cool) break; } now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heaterstates(); #if TEMP_BED_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL)); else SERIAL_PROTOCOLCHAR('?'); #endif SERIAL_EOL(); } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out const float temp = thermalManager.degBed(); #if ENABLED(PRINTER_EVENT_LEDS) // Gradually change LED strip from blue to violet as bed heats up if (!wants_to_cool) { const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255); if (red != old_red) { old_red = red; set_led_color(red, 0, 255 #if ENABLED(NEOPIXEL_RGBW_LED) , 0, true #endif ); } } #endif #if TEMP_BED_RESIDENCY_TIME > 0 const float temp_diff = FABS(target_temp - temp); if (!residency_start_ms) { // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now; } else if (temp_diff > TEMP_BED_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = now; } #endif // TEMP_BED_RESIDENCY_TIME > 0 // Prevent a wait-forever situation if R is misused i.e. M190 R0 if (wants_to_cool) { // Break after MIN_COOLING_SLOPE_TIME_BED seconds // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) { if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break; next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED; old_temp = temp; } } } while (wait_for_heatup && TEMP_BED_CONDITIONS); if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE); #if DISABLED(BUSY_WHILE_HEATING) KEEPALIVE_STATE(IN_HANDLER); #endif } #endif // HAS_TEMP_BED /** * M110: Set Current Line Number */ inline void gcode_M110() { if (parser.seenval('N')) gcode_LastN = parser.value_long(); } /** * M111: Set the debug level */ inline void gcode_M111() { if (parser.seen('S')) marlin_debug_flags = parser.byteval('S'); const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO, str_debug_2[] PROGMEM = MSG_DEBUG_INFO, str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS, str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN, str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION #if ENABLED(DEBUG_LEVELING_FEATURE) , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING #endif ; const static char* const debug_strings[] PROGMEM = { str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16 #if ENABLED(DEBUG_LEVELING_FEATURE) , str_debug_32 #endif }; SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_DEBUG_PREFIX); if (marlin_debug_flags) { uint8_t comma = 0; for (uint8_t i = 0; i < COUNT(debug_strings); i++) { if (TEST(marlin_debug_flags, i)) { if (comma++) SERIAL_CHAR(','); serialprintPGM((char*)pgm_read_word(&debug_strings[i])); } } } else { SERIAL_ECHOPGM(MSG_DEBUG_OFF); } SERIAL_EOL(); } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * M113: Get or set Host Keepalive interval (0 to disable) * * S Optional. Set the keepalive interval. */ inline void gcode_M113() { if (parser.seenval('S')) { host_keepalive_interval = parser.value_byte(); NOMORE(host_keepalive_interval, 60); } else { SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval); } } #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 /** * M126: Heater 1 valve open */ inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); } /** * M127: Heater 1 valve close */ inline void gcode_M127() { baricuda_valve_pressure = 0; } #endif #if HAS_HEATER_2 /** * M128: Heater 2 valve open */ inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); } /** * M129: Heater 2 valve close */ inline void gcode_M129() { baricuda_e_to_p_pressure = 0; } #endif #endif // BARICUDA /** * M140: Set bed temperature */ inline void gcode_M140() { if (DEBUGGING(DRYRUN)) return; if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius()); } #if ENABLED(ULTIPANEL) /** * M145: Set the heatup state for a material in the LCD menu * * S (0=PLA, 1=ABS) * H * B * F */ inline void gcode_M145() { const uint8_t material = (uint8_t)parser.intval('S'); if (material >= COUNT(lcd_preheat_hotend_temp)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX); } else { int v; if (parser.seenval('H')) { v = parser.value_int(); lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15); } if (parser.seenval('F')) { v = parser.value_int(); lcd_preheat_fan_speed[material] = constrain(v, 0, 255); } #if TEMP_SENSOR_BED != 0 if (parser.seenval('B')) { v = parser.value_int(); lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15); } #endif } } #endif // ULTIPANEL #if ENABLED(TEMPERATURE_UNITS_SUPPORT) /** * M149: Set temperature units */ inline void gcode_M149() { if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C); else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K); else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F); } #endif #if HAS_POWER_SWITCH /** * M80 : Turn on the Power Supply * M80 S : Report the current state and exit */ inline void gcode_M80() { // S: Report the current power supply state and exit if (parser.seen('S')) { serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n")); return; } OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND /** * If you have a switch on suicide pin, this is useful * if you want to start another print with suicide feature after * a print without suicide... */ #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if ENABLED(HAVE_TMC2130) delay(100); tmc2130_init(); // Settings only stick when the driver has power #endif powersupply_on = true; #if ENABLED(ULTIPANEL) LCD_MESSAGEPGM(WELCOME_MSG); #endif } #endif // HAS_POWER_SWITCH /** * M81: Turn off Power, including Power Supply, if there is one. * * This code should ALWAYS be available for EMERGENCY SHUTDOWN! */ inline void gcode_M81() { thermalManager.disable_all_heaters(); stepper.finish_and_disable(); #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; #if ENABLED(PROBING_FANS_OFF) fans_paused = false; ZERO(paused_fanSpeeds); #endif #endif safe_delay(1000); // Wait 1 second before switching off #if HAS_SUICIDE stepper.synchronize(); suicide(); #elif HAS_POWER_SWITCH OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; #endif #if ENABLED(ULTIPANEL) LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF "."); #endif } /** * M82: Set E codes absolute (default) */ inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; } /** * M83: Set E codes relative while in Absolute Coordinates (G90) mode */ inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; } /** * M18, M84: Disable stepper motors */ inline void gcode_M18_M84() { if (parser.seenval('S')) { stepper_inactive_time = parser.value_millis_from_seconds(); } else { bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E'))); if (all_axis) { stepper.finish_and_disable(); } else { stepper.synchronize(); if (parser.seen('X')) disable_X(); if (parser.seen('Y')) disable_Y(); if (parser.seen('Z')) disable_Z(); #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS if (parser.seen('E')) disable_e_steppers(); #endif } #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD ubl_lcd_map_control = defer_return_to_status = false; #endif } } /** * M85: Set inactivity shutdown timer with parameter S. To disable set zero (default) */ inline void gcode_M85() { if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds(); } /** * Multi-stepper support for M92, M201, M203 */ #if ENABLED(DISTINCT_E_FACTORS) #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return #define TARGET_EXTRUDER target_extruder #else #define GET_TARGET_EXTRUDER(CMD) NOOP #define TARGET_EXTRUDER 0 #endif /** * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E. * (Follows the same syntax as G92) * * With multiple extruders use T to specify which one. */ inline void gcode_M92() { GET_TARGET_EXTRUDER(92); LOOP_XYZE(i) { if (parser.seen(axis_codes[i])) { if (i == E_AXIS) { const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER)); if (value < 20.0) { float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab. planner.max_jerk[E_AXIS] *= factor; planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor; planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor; } planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value; } else { planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i); } } } planner.refresh_positioning(); } /** * Output the current position to serial */ void report_current_position() { SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); stepper.report_positions(); #if IS_SCARA SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS)); SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS)); SERIAL_EOL(); #endif } #ifdef M114_DETAIL void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) { char str[12]; for (uint8_t i = 0; i < n; i++) { SERIAL_CHAR(' '); SERIAL_CHAR(axis_codes[i]); SERIAL_CHAR(':'); SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str)); } SERIAL_EOL(); } inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); } void report_current_position_detail() { stepper.synchronize(); SERIAL_PROTOCOLPGM("\nLogical:"); report_xyze(current_position); SERIAL_PROTOCOLPGM("Raw: "); const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) }; report_xyz(raw); SERIAL_PROTOCOLPGM("Leveled:"); float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] }; planner.apply_leveling(leveled); report_xyz(leveled); SERIAL_PROTOCOLPGM("UnLevel:"); float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] }; planner.unapply_leveling(unleveled); report_xyz(unleveled); #if IS_KINEMATIC #if IS_SCARA SERIAL_PROTOCOLPGM("ScaraK: "); #else SERIAL_PROTOCOLPGM("DeltaK: "); #endif inverse_kinematics(leveled); // writes delta[] report_xyz(delta); #endif SERIAL_PROTOCOLPGM("Stepper:"); const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) }; report_xyze(step_count, 4, 0); #if IS_SCARA const float deg[XYZ] = { stepper.get_axis_position_degrees(A_AXIS), stepper.get_axis_position_degrees(B_AXIS) }; SERIAL_PROTOCOLPGM("Degrees:"); report_xyze(deg, 2); #endif SERIAL_PROTOCOLPGM("FromStp:"); get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics) const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) }; report_xyze(from_steppers); const float diff[XYZE] = { from_steppers[X_AXIS] - leveled[X_AXIS], from_steppers[Y_AXIS] - leveled[Y_AXIS], from_steppers[Z_AXIS] - leveled[Z_AXIS], from_steppers[E_AXIS] - current_position[E_AXIS] }; SERIAL_PROTOCOLPGM("Differ: "); report_xyze(diff); } #endif // M114_DETAIL /** * M114: Report current position to host */ inline void gcode_M114() { #ifdef M114_DETAIL if (parser.seen('D')) { report_current_position_detail(); return; } #endif stepper.synchronize(); report_current_position(); } /** * M115: Capabilities string */ inline void gcode_M115() { SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT); #if ENABLED(EXTENDED_CAPABILITIES_REPORT) // EEPROM (M500, M501) #if ENABLED(EEPROM_SETTINGS) SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1"); #else SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0"); #endif // AUTOREPORT_TEMP (M155) #if ENABLED(AUTO_REPORT_TEMPERATURES) SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1"); #else SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0"); #endif // PROGRESS (M530 S L, M531 , M532 X L) SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0"); // Print Job timer M75, M76, M77 SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1"); // AUTOLEVEL (G29) #if HAS_ABL SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1"); #else SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0"); #endif // Z_PROBE (G30) #if HAS_BED_PROBE SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1"); #else SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0"); #endif // MESH_REPORT (M420 V) #if HAS_LEVELING SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1"); #else SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0"); #endif // SOFTWARE_POWER (M80, M81) #if HAS_POWER_SWITCH SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1"); #else SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0"); #endif // CASE LIGHTS (M355) #if HAS_CASE_LIGHT SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1"); if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) { SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1"); } else SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0"); #else SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0"); SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0"); #endif // EMERGENCY_PARSER (M108, M112, M410) #if ENABLED(EMERGENCY_PARSER) SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1"); #else SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0"); #endif #endif // EXTENDED_CAPABILITIES_REPORT } /** * M117: Set LCD Status Message */ inline void gcode_M117() { lcd_setstatus(parser.string_arg); } /** * M118: Display a message in the host console. * * A Append '// ' for an action command, as in OctoPrint * E Have the host 'echo:' the text */ inline void gcode_M118() { if (parser.boolval('E')) SERIAL_ECHO_START(); if (parser.boolval('A')) SERIAL_ECHOPGM("// "); SERIAL_ECHOLN(parser.string_arg); } /** * M119: Output endstop states to serial output */ inline void gcode_M119() { endstops.M119(); } /** * M120: Enable endstops and set non-homing endstop state to "enabled" */ inline void gcode_M120() { endstops.enable_globally(true); } /** * M121: Disable endstops and set non-homing endstop state to "disabled" */ inline void gcode_M121() { endstops.enable_globally(false); } #if ENABLED(PARK_HEAD_ON_PAUSE) /** * M125: Store current position and move to filament change position. * Called on pause (by M25) to prevent material leaking onto the * object. On resume (M24) the head will be moved back and the * print will resume. * * If Marlin is compiled without SD Card support, M125 can be * used directly to pause the print and move to park position, * resuming with a button click or M108. * * L = override retract length * X = override X * Y = override Y * Z = override Z raise */ inline void gcode_M125() { // Initial retract before move to filament change position const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0 #ifdef PAUSE_PARK_RETRACT_LENGTH - (PAUSE_PARK_RETRACT_LENGTH) #endif ; // Lift Z axis const float z_lift = parser.linearval('Z') #ifdef PAUSE_PARK_Z_ADD + PAUSE_PARK_Z_ADD #endif ; // Move XY axes to filament change position or given position const float x_pos = parser.linearval('X') #ifdef PAUSE_PARK_X_POS + PAUSE_PARK_X_POS #endif #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0) #endif ; const float y_pos = parser.linearval('Y') #ifdef PAUSE_PARK_Y_POS + PAUSE_PARK_Y_POS #endif #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE) + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0) #endif ; #if DISABLED(SDSUPPORT) const bool job_running = print_job_timer.isRunning(); #endif if (pause_print(retract, z_lift, x_pos, y_pos)) { #if DISABLED(SDSUPPORT) // Wait for lcd click or M108 wait_for_filament_reload(); // Return to print position and continue resume_print(); if (job_running) print_job_timer.start(); #endif } } #endif // PARK_HEAD_ON_PAUSE #if HAS_COLOR_LEDS /** * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W * * Always sets all 3 or 4 components. If a component is left out, set to 0. * * Examples: * * M150 R255 ; Turn LED red * M150 R255 U127 ; Turn LED orange (PWM only) * M150 ; Turn LED off * M150 R U B ; Turn LED white * M150 W ; Turn LED white using a white LED * */ inline void gcode_M150() { set_led_color( parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0, parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0, parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0 #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED) , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0 #endif ); } #endif // HAS_COLOR_LEDS /** * M200: Set filament diameter and set E axis units to cubic units * * T - Optional extruder number. Current extruder if omitted. * D - Diameter of the filament. Use "D0" to switch back to linear units on the E axis. */ inline void gcode_M200() { if (get_target_extruder_from_command(200)) return; if (parser.seen('D')) { // setting any extruder filament size disables volumetric on the assumption that // slicers either generate in extruder values as cubic mm or as as filament feeds // for all extruders volumetric_enabled = (parser.value_linear_units() != 0.0); if (volumetric_enabled) { filament_size[target_extruder] = parser.value_linear_units(); // make sure all extruders have some sane value for the filament size for (uint8_t i = 0; i < COUNT(filament_size); i++) if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; } } calculate_volumetric_multipliers(); } /** * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) * * With multiple extruders use T to specify which one. */ inline void gcode_M201() { GET_TARGET_EXTRUDER(201); LOOP_XYZE(i) { if (parser.seen(axis_codes[i])) { const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0); planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a); } } // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) planner.reset_acceleration_rates(); } #if 0 // Not used for Sprinter/grbl gen6 inline void gcode_M202() { LOOP_XYZE(i) { if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i]; } } #endif /** * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec * * With multiple extruders use T to specify which one. */ inline void gcode_M203() { GET_TARGET_EXTRUDER(203); LOOP_XYZE(i) if (parser.seen(axis_codes[i])) { const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0); planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a); } } /** * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000) * * P = Printing moves * R = Retract only (no X, Y, Z) moves * T = Travel (non printing) moves * * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate */ inline void gcode_M204() { if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments. planner.travel_acceleration = planner.acceleration = parser.value_linear_units(); SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration); } if (parser.seen('P')) { planner.acceleration = parser.value_linear_units(); SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration); } if (parser.seen('R')) { planner.retract_acceleration = parser.value_linear_units(); SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration); } if (parser.seen('T')) { planner.travel_acceleration = parser.value_linear_units(); SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration); } } /** * M205: Set Advanced Settings * * S = Min Feed Rate (units/s) * T = Min Travel Feed Rate (units/s) * B = Min Segment Time (µs) * X = Max X Jerk (units/sec^2) * Y = Max Y Jerk (units/sec^2) * Z = Max Z Jerk (units/sec^2) * E = Max E Jerk (units/sec^2) */ inline void gcode_M205() { if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units(); if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units(); if (parser.seen('B')) planner.min_segment_time = parser.value_millis(); if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units(); if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units(); if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units(); if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units(); } #if HAS_M206_COMMAND /** * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y * * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility. * *** In the next 1.2 release, it will simply be disabled by default. */ inline void gcode_M206() { LOOP_XYZ(i) if (parser.seen(axis_codes[i])) set_home_offset((AxisEnum)i, parser.value_linear_units()); #if ENABLED(MORGAN_SCARA) if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi #endif SYNC_PLAN_POSITION_KINEMATIC(); report_current_position(); } #endif // HAS_M206_COMMAND #if ENABLED(DELTA) /** * M665: Set delta configurations * * H = delta height * L = diagonal rod * R = delta radius * S = segments per second * B = delta calibration radius * X = Alpha (Tower 1) angle trim * Y = Beta (Tower 2) angle trim * Z = Rotate A and B by this angle */ inline void gcode_M665() { if (parser.seen('H')) { home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT; update_software_endstops(Z_AXIS); } if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units(); if (parser.seen('R')) delta_radius = parser.value_linear_units(); if (parser.seen('S')) delta_segments_per_second = parser.value_float(); if (parser.seen('B')) delta_calibration_radius = parser.value_float(); if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float(); if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float(); if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float(); recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim); } /** * M666: Set delta endstop adjustment */ inline void gcode_M666() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_M666"); } #endif LOOP_XYZ(i) { if (parser.seen(axis_codes[i])) { if (parser.value_linear_units() * Z_HOME_DIR <= 0) endstop_adj[i] = parser.value_linear_units(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]); SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]); } #endif } } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< gcode_M666"); } #endif } #elif IS_SCARA /** * M665: Set SCARA settings * * Parameters: * * S[segments-per-second] - Segments-per-second * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle * * A, P, and X are all aliases for the shoulder angle * B, T, and Y are all aliases for the elbow angle */ inline void gcode_M665() { if (parser.seen('S')) delta_segments_per_second = parser.value_float(); const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X'); const uint8_t sumAPX = hasA + hasP + hasX; if (sumAPX == 1) home_offset[A_AXIS] = parser.value_float(); else if (sumAPX > 1) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed."); return; } const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y'); const uint8_t sumBTY = hasB + hasT + hasY; if (sumBTY == 1) home_offset[B_AXIS] = parser.value_float(); else if (sumBTY > 1) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed."); return; } } #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS) /** * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis. */ inline void gcode_M666() { if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units(); SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj); } #endif // !DELTA && Z_DUAL_ENDSTOPS #if ENABLED(FWRETRACT) /** * M207: Set firmware retraction values * * S[+units] retract_length * W[+units] swap_retract_length (multi-extruder) * F[units/min] retract_feedrate_mm_s * Z[units] retract_zlift */ inline void gcode_M207() { if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS); if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS)); if (parser.seen('Z')) retract_zlift = parser.value_linear_units(); if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS); } /** * M208: Set firmware un-retraction values * * S[+units] retract_recover_length (in addition to M207 S*) * W[+units] swap_retract_recover_length (multi-extruder) * F[units/min] retract_recover_feedrate_mm_s * R[units/min] swap_retract_recover_feedrate_mm_s */ inline void gcode_M208() { if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS); if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS)); if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS)); if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS); } /** * M209: Enable automatic retract (M209 S1) * For slicers that don't support G10/11, reversed extrude-only * moves will be classified as retraction. */ inline void gcode_M209() { if (MIN_AUTORETRACT <= MAX_AUTORETRACT) { if (parser.seen('S')) { autoretract_enabled = parser.value_bool(); for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false; } } } #endif // FWRETRACT /** * M211: Enable, Disable, and/or Report software endstops * * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report */ inline void gcode_M211() { SERIAL_ECHO_START(); #if HAS_SOFTWARE_ENDSTOPS if (parser.seen('S')) soft_endstops_enabled = parser.value_bool(); SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS); serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF)); #else SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS); SERIAL_ECHOPGM(MSG_OFF); #endif SERIAL_ECHOPGM(MSG_SOFT_MIN); SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]); SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]); SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]); SERIAL_ECHOPGM(MSG_SOFT_MAX); SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]); SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]); SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]); } #if HOTENDS > 1 /** * M218 - set hotend offset (in linear units) * * T * X * Y * Z - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE */ inline void gcode_M218() { if (get_target_extruder_from_command(218) || target_extruder == 0) return; if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units(); if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units(); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER) if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units(); #endif SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); HOTEND_LOOP() { SERIAL_CHAR(' '); SERIAL_ECHO(hotend_offset[X_AXIS][e]); SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Y_AXIS][e]); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER) SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Z_AXIS][e]); #endif } SERIAL_EOL(); } #endif // HOTENDS > 1 /** * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95) */ inline void gcode_M220() { if (parser.seenval('S')) feedrate_percentage = parser.value_int(); } /** * M221: Set extrusion percentage (M221 T0 S95) */ inline void gcode_M221() { if (get_target_extruder_from_command(221)) return; if (parser.seenval('S')) flow_percentage[target_extruder] = parser.value_int(); } /** * M226: Wait until the specified pin reaches the state required (M226 P S) */ inline void gcode_M226() { if (parser.seen('P')) { const int pin_number = parser.value_int(), pin_state = parser.intval('S', -1); // required pin state - default is inverted if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) { int target = LOW; stepper.synchronize(); pinMode(pin_number, INPUT); switch (pin_state) { case 1: target = HIGH; break; case 0: target = LOW; break; case -1: target = !digitalRead(pin_number); break; } while (digitalRead(pin_number) != target) idle(); } // pin_state -1 0 1 && pin_number > -1 } // parser.seen('P') } #if ENABLED(EXPERIMENTAL_I2CBUS) /** * M260: Send data to a I2C slave device * * This is a PoC, the formating and arguments for the GCODE will * change to be more compatible, the current proposal is: * * M260 A ; Sets the I2C slave address the data will be sent to * * M260 B * M260 B * M260 B * * M260 S1 ; Send the buffered data and reset the buffer * M260 R1 ; Reset the buffer without sending data * */ inline void gcode_M260() { // Set the target address if (parser.seen('A')) i2c.address(parser.value_byte()); // Add a new byte to the buffer if (parser.seen('B')) i2c.addbyte(parser.value_byte()); // Flush the buffer to the bus if (parser.seen('S')) i2c.send(); // Reset and rewind the buffer else if (parser.seen('R')) i2c.reset(); } /** * M261: Request X bytes from I2C slave device * * Usage: M261 A B */ inline void gcode_M261() { if (parser.seen('A')) i2c.address(parser.value_byte()); uint8_t bytes = parser.byteval('B', 1); if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) { i2c.relay(bytes); } else { SERIAL_ERROR_START(); SERIAL_ERRORLN("Bad i2c request"); } } #endif // EXPERIMENTAL_I2CBUS #if HAS_SERVOS /** * M280: Get or set servo position. P [S] */ inline void gcode_M280() { if (!parser.seen('P')) return; const int servo_index = parser.value_int(); if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) { if (parser.seen('S')) MOVE_SERVO(servo_index, parser.value_int()); else { SERIAL_ECHO_START(); SERIAL_ECHOPAIR(" Servo ", servo_index); SERIAL_ECHOLNPAIR(": ", servo[servo_index].read()); } } else { SERIAL_ERROR_START(); SERIAL_ECHOPAIR("Servo ", servo_index); SERIAL_ECHOLNPGM(" out of range"); } } #endif // HAS_SERVOS #if HAS_BUZZER /** * M300: Play beep sound S P */ inline void gcode_M300() { uint16_t const frequency = parser.ushortval('S', 260); uint16_t duration = parser.ushortval('P', 1000); // Limits the tone duration to 0-5 seconds. NOMORE(duration, 5000); BUZZ(duration, frequency); } #endif // HAS_BUZZER #if ENABLED(PIDTEMP) /** * M301: Set PID parameters P I D (and optionally C, L) * * P[float] Kp term * I[float] Ki term (unscaled) * D[float] Kd term (unscaled) * * With PID_EXTRUSION_SCALING: * * C[float] Kc term * L[float] LPQ length */ inline void gcode_M301() { // multi-extruder PID patch: M301 updates or prints a single extruder's PID values // default behaviour (omitting E parameter) is to update for extruder 0 only const uint8_t e = parser.byteval('E'); // extruder being updated if (e < HOTENDS) { // catch bad input value if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float(); if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float()); if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float()); #if ENABLED(PID_EXTRUSION_SCALING) if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float(); if (parser.seen('L')) lpq_len = parser.value_float(); NOMORE(lpq_len, LPQ_MAX_LEN); #endif thermalManager.updatePID(); SERIAL_ECHO_START(); #if ENABLED(PID_PARAMS_PER_HOTEND) SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output #endif // PID_PARAMS_PER_HOTEND SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e)); SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e))); SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e))); #if ENABLED(PID_EXTRUSION_SCALING) //Kc does not have scaling applied above, or in resetting defaults SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e)); #endif SERIAL_EOL(); } else { SERIAL_ERROR_START(); SERIAL_ERRORLN(MSG_INVALID_EXTRUDER); } } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) inline void gcode_M304() { if (parser.seen('P')) thermalManager.bedKp = parser.value_float(); if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float()); if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float()); thermalManager.updatePID(); SERIAL_ECHO_START(); SERIAL_ECHOPAIR(" p:", thermalManager.bedKp); SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi)); SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd)); } #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH /** * M240: Trigger a camera by emulating a Canon RC-1 * See http://www.doc-diy.net/photo/rc-1_hacked/ */ inline void gcode_M240() { #ifdef CHDK OUT_WRITE(CHDK, HIGH); chdkHigh = millis(); chdkActive = true; #elif HAS_PHOTOGRAPH const uint8_t NUM_PULSES = 16; const float PULSE_LENGTH = 0.01524; for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } delay(7.33); for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } #endif // !CHDK && HAS_PHOTOGRAPH } #endif // CHDK || PHOTOGRAPH_PIN #if HAS_LCD_CONTRAST /** * M250: Read and optionally set the LCD contrast */ inline void gcode_M250() { if (parser.seen('C')) set_lcd_contrast(parser.value_int()); SERIAL_PROTOCOLPGM("lcd contrast value: "); SERIAL_PROTOCOL(lcd_contrast); SERIAL_EOL(); } #endif // HAS_LCD_CONTRAST #if ENABLED(PREVENT_COLD_EXTRUSION) /** * M302: Allow cold extrudes, or set the minimum extrude temperature * * S sets the minimum extrude temperature * P enables (1) or disables (0) cold extrusion * * Examples: * * M302 ; report current cold extrusion state * M302 P0 ; enable cold extrusion checking * M302 P1 ; disables cold extrusion checking * M302 S0 ; always allow extrusion (disables checking) * M302 S170 ; only allow extrusion above 170 * M302 S170 P1 ; set min extrude temp to 170 but leave disabled */ inline void gcode_M302() { const bool seen_S = parser.seen('S'); if (seen_S) { thermalManager.extrude_min_temp = parser.value_celsius(); thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0); } if (parser.seen('P')) thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool(); else if (!seen_S) { // Report current state SERIAL_ECHO_START(); SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis")); SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp); SERIAL_ECHOLNPGM("C)"); } } #endif // PREVENT_COLD_EXTRUSION /** * M303: PID relay autotune * * S sets the target temperature. (default 150C) * E (-1 for the bed) (default 0) * C * U with a non-zero value will apply the result to current settings */ inline void gcode_M303() { #if HAS_PID_HEATING const int e = parser.intval('E'), c = parser.intval('C', 5); const bool u = parser.boolval('U'); int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150); if (WITHIN(e, 0, HOTENDS - 1)) target_extruder = e; #if DISABLED(BUSY_WHILE_HEATING) KEEPALIVE_STATE(NOT_BUSY); #endif thermalManager.PID_autotune(temp, e, c, u); #if DISABLED(BUSY_WHILE_HEATING) KEEPALIVE_STATE(IN_HANDLER); #endif #else SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED); #endif } #if ENABLED(MORGAN_SCARA) bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) { if (IsRunning()) { forward_kinematics_SCARA(delta_a, delta_b); destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]); destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]); destination[Z_AXIS] = current_position[Z_AXIS]; prepare_move_to_destination(); return true; } return false; } /** * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration) */ inline bool gcode_M360() { SERIAL_ECHOLNPGM(" Cal: Theta 0"); return SCARA_move_to_cal(0, 120); } /** * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) */ inline bool gcode_M361() { SERIAL_ECHOLNPGM(" Cal: Theta 90"); return SCARA_move_to_cal(90, 130); } /** * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration) */ inline bool gcode_M362() { SERIAL_ECHOLNPGM(" Cal: Psi 0"); return SCARA_move_to_cal(60, 180); } /** * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) */ inline bool gcode_M363() { SERIAL_ECHOLNPGM(" Cal: Psi 90"); return SCARA_move_to_cal(50, 90); } /** * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position) */ inline bool gcode_M364() { SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90"); return SCARA_move_to_cal(45, 135); } #endif // SCARA #if ENABLED(EXT_SOLENOID) void enable_solenoid(const uint8_t num) { switch (num) { case 0: OUT_WRITE(SOL0_PIN, HIGH); break; #if HAS_SOLENOID_1 && EXTRUDERS > 1 case 1: OUT_WRITE(SOL1_PIN, HIGH); break; #endif #if HAS_SOLENOID_2 && EXTRUDERS > 2 case 2: OUT_WRITE(SOL2_PIN, HIGH); break; #endif #if HAS_SOLENOID_3 && EXTRUDERS > 3 case 3: OUT_WRITE(SOL3_PIN, HIGH); break; #endif #if HAS_SOLENOID_4 && EXTRUDERS > 4 case 4: OUT_WRITE(SOL4_PIN, HIGH); break; #endif default: SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID); break; } } void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); } void disable_all_solenoids() { OUT_WRITE(SOL0_PIN, LOW); #if HAS_SOLENOID_1 && EXTRUDERS > 1 OUT_WRITE(SOL1_PIN, LOW); #endif #if HAS_SOLENOID_2 && EXTRUDERS > 2 OUT_WRITE(SOL2_PIN, LOW); #endif #if HAS_SOLENOID_3 && EXTRUDERS > 3 OUT_WRITE(SOL3_PIN, LOW); #endif #if HAS_SOLENOID_4 && EXTRUDERS > 4 OUT_WRITE(SOL4_PIN, LOW); #endif } /** * M380: Enable solenoid on the active extruder */ inline void gcode_M380() { enable_solenoid_on_active_extruder(); } /** * M381: Disable all solenoids */ inline void gcode_M381() { disable_all_solenoids(); } #endif // EXT_SOLENOID /** * M400: Finish all moves */ inline void gcode_M400() { stepper.synchronize(); } #if HAS_BED_PROBE /** * M401: Engage Z Servo endstop if available */ inline void gcode_M401() { DEPLOY_PROBE(); } /** * M402: Retract Z Servo endstop if enabled */ inline void gcode_M402() { STOW_PROBE(); } #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0> */ inline void gcode_M404() { if (parser.seen('W')) { filament_width_nominal = parser.value_linear_units(); } else { SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); SERIAL_PROTOCOLLN(filament_width_nominal); } } /** * M405: Turn on filament sensor for control */ inline void gcode_M405() { // This is technically a linear measurement, but since it's quantized to centimeters and is a different // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units(). if (parser.seen('D')) { meas_delay_cm = parser.value_byte(); NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY); } if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte for (uint8_t i = 0; i < COUNT(measurement_delay); ++i) measurement_delay[i] = temp_ratio; filwidth_delay_index[0] = filwidth_delay_index[1] = 0; } filament_sensor = true; //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); //SERIAL_PROTOCOL(flow_percentage[active_extruder]); } /** * M406: Turn off filament sensor for control */ inline void gcode_M406() { filament_sensor = false; calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value } /** * M407: Get measured filament diameter on serial output */ inline void gcode_M407() { SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); SERIAL_PROTOCOLLN(filament_width_meas); } #endif // FILAMENT_WIDTH_SENSOR void quickstop_stepper() { stepper.quick_stop(); stepper.synchronize(); set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); } #if HAS_LEVELING /** * M420: Enable/Disable Bed Leveling and/or set the Z fade height. * * S[bool] Turns leveling on or off * Z[height] Sets the Z fade height (0 or none to disable) * V[bool] Verbose - Print the leveling grid * * With AUTO_BED_LEVELING_UBL only: * * L[index] Load UBL mesh from index (0 is default) */ inline void gcode_M420() { #if ENABLED(AUTO_BED_LEVELING_UBL) // L to load a mesh from the EEPROM if (parser.seen('L')) { #if ENABLED(EEPROM_SETTINGS) const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot; const int16_t a = settings.calc_num_meshes(); if (!a) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available."); return; } if (!WITHIN(storage_slot, 0, a - 1)) { SERIAL_PROTOCOLLNPGM("?Invalid storage slot."); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1); return; } settings.load_mesh(storage_slot); ubl.state.storage_slot = storage_slot; #else SERIAL_PROTOCOLLNPGM("?EEPROM storage not available."); return; #endif } // L to load a mesh from the EEPROM if (parser.seen('L') || parser.seen('V')) { ubl.display_map(0); // Currently only supports one map type SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID); SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot); } #endif // AUTO_BED_LEVELING_UBL // V to print the matrix or mesh if (parser.seen('V')) { #if ABL_PLANAR planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:")); #else if (leveling_is_valid()) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) print_bilinear_leveling_grid(); #if ENABLED(ABL_BILINEAR_SUBDIVISION) print_bilinear_leveling_grid_virt(); #endif #elif ENABLED(MESH_BED_LEVELING) SERIAL_ECHOLNPGM("Mesh Bed Level data:"); mbl_mesh_report(); #endif } #endif } const bool to_enable = parser.boolval('S'); if (parser.seen('S')) set_bed_leveling_enabled(to_enable); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units()); #endif const bool new_status = leveling_is_active(); if (to_enable && !new_status) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED); } SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_ECHO_START(); SERIAL_ECHOPGM("Fade Height "); if (planner.z_fade_height > 0.0) SERIAL_ECHOLN(planner.z_fade_height); else SERIAL_ECHOLNPGM(MSG_OFF); #endif } #endif #if ENABLED(MESH_BED_LEVELING) /** * M421: Set a single Mesh Bed Leveling Z coordinate * * Usage: * M421 X Y Z * M421 X Y Q * M421 I J Z * M421 I J Q */ inline void gcode_M421() { const bool hasX = parser.seen('X'), hasI = parser.seen('I'); const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1; const bool hasY = parser.seen('Y'), hasJ = parser.seen('J'); const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1; const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q'); if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); } else if (ix < 0 || iy < 0) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } else mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0)); } #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) /** * M421: Set a single Mesh Bed Leveling Z coordinate * * Usage: * M421 I J Z * M421 I J Q */ inline void gcode_M421() { int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1); const bool hasI = ix >= 0, hasJ = iy >= 0, hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q'); if (!hasI || !hasJ || !(hasZ || hasQ)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); } else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } else { z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0); #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif } } #elif ENABLED(AUTO_BED_LEVELING_UBL) /** * M421: Set a single Mesh Bed Leveling Z coordinate * * Usage: * M421 I J Z * M421 I J Q * M421 C Z * M421 C Q */ inline void gcode_M421() { int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1); const bool hasI = ix >= 0, hasJ = iy >= 0, hasC = parser.seen('C'), hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q'); if (hasC) { const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false); ix = location.x_index; iy = location.y_index; } if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS); } else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY); } else ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0); } #endif // AUTO_BED_LEVELING_UBL #if HAS_M206_COMMAND /** * M428: Set home_offset based on the distance between the * current_position and the nearest "reference point." * If an axis is past center its endstop position * is the reference-point. Otherwise it uses 0. This allows * the Z offset to be set near the bed when using a max endstop. * * M428 can't be used more than 2cm away from 0 or an endstop. * * Use M206 to set these values directly. */ inline void gcode_M428() { bool err = false; LOOP_XYZ(i) { if (axis_homed[i]) { const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0, diff = base - RAW_POSITION(current_position[i], i); if (WITHIN(diff, -20, 20)) { set_home_offset((AxisEnum)i, diff); } else { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR); LCD_ALERTMESSAGEPGM("Err: Too far!"); BUZZ(200, 40); err = true; break; } } } if (!err) { SYNC_PLAN_POSITION_KINEMATIC(); report_current_position(); LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED); BUZZ(100, 659); BUZZ(100, 698); } } #endif // HAS_M206_COMMAND /** * M500: Store settings in EEPROM */ inline void gcode_M500() { (void)settings.save(); } /** * M501: Read settings from EEPROM */ inline void gcode_M501() { (void)settings.load(); } /** * M502: Revert to default settings */ inline void gcode_M502() { (void)settings.reset(); } #if DISABLED(DISABLE_M503) /** * M503: print settings currently in memory */ inline void gcode_M503() { (void)settings.report(!parser.boolval('S', true)); } #endif #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) /** * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>) */ inline void gcode_M540() { if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool(); } #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #if HAS_BED_PROBE void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) { static float last_zoffset = NAN; if (!isnan(last_zoffset)) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA) const float diff = zprobe_zoffset - last_zoffset; #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Correct bilinear grid for new probe offset if (diff) { for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) z_values[x][y] -= diff; } #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); #endif #endif #if ENABLED(BABYSTEP_ZPROBE_OFFSET) if (!no_babystep && leveling_is_active()) thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS])); #else UNUSED(no_babystep); #endif #if ENABLED(DELTA) // correct the delta_height home_offset[Z_AXIS] -= diff; #endif } last_zoffset = zprobe_zoffset; } inline void gcode_M851() { SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " "); if (parser.seen('Z')) { const float value = parser.value_linear_units(); if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) { zprobe_zoffset = value; refresh_zprobe_zoffset(); SERIAL_ECHO(zprobe_zoffset); } else SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX)); } else SERIAL_ECHOPAIR(": ", zprobe_zoffset); SERIAL_EOL(); } #endif // HAS_BED_PROBE #if ENABLED(ADVANCED_PAUSE_FEATURE) /** * M600: Pause for filament change * * E[distance] - Retract the filament this far (negative value) * Z[distance] - Move the Z axis by this distance * X[position] - Move to this X position, with Y * Y[position] - Move to this Y position, with X * U[distance] - Retract distance for removal (negative value) (manual reload) * L[distance] - Extrude distance for insertion (positive value) (manual reload) * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer) * * Default values are used for omitted arguments. * */ inline void gcode_M600() { #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE) // Don't allow filament change without homing first if (axis_unhomed_error()) home_all_axes(); #endif // Initial retract before move to filament change position const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0 #ifdef PAUSE_PARK_RETRACT_LENGTH - (PAUSE_PARK_RETRACT_LENGTH) #endif ; // Lift Z axis const float z_lift = parser.linearval('Z', 0 #ifdef PAUSE_PARK_Z_ADD + PAUSE_PARK_Z_ADD #endif ); // Move XY axes to filament exchange position const float x_pos = parser.linearval('X', 0 #ifdef PAUSE_PARK_X_POS + PAUSE_PARK_X_POS #endif ); const float y_pos = parser.linearval('Y', 0 #ifdef PAUSE_PARK_Y_POS + PAUSE_PARK_Y_POS #endif ); // Unload filament const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0 #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0 - (FILAMENT_CHANGE_UNLOAD_LENGTH) #endif ; // Load filament const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0 #ifdef FILAMENT_CHANGE_LOAD_LENGTH + FILAMENT_CHANGE_LOAD_LENGTH #endif ; const int beep_count = parser.intval('B', #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS #else -1 #endif ); const bool job_running = print_job_timer.isRunning(); if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) { wait_for_filament_reload(beep_count); resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count); } // Resume the print job timer if it was running if (job_running) print_job_timer.start(); } #endif // ADVANCED_PAUSE_FEATURE #if ENABLED(MK2_MULTIPLEXER) inline void select_multiplexed_stepper(const uint8_t e) { stepper.synchronize(); disable_e_steppers(); WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW); WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW); WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW); safe_delay(100); } /** * M702: Unload all extruders */ inline void gcode_M702() { for (uint8_t s = 0; s < E_STEPPERS; s++) { select_multiplexed_stepper(e); // TODO: standard unload filament function // MK2 firmware behavior: // - Make sure temperature is high enough // - Raise Z to at least 15 to make room // - Extrude 1cm of filament in 1 second // - Under 230C quickly purge ~12mm, over 230C purge ~10mm // - Change E max feedrate to 80, eject the filament from the tube. Sync. // - Restore E max feedrate to 50 } // Go back to the last active extruder select_multiplexed_stepper(active_extruder); disable_e_steppers(); } #endif // MK2_MULTIPLEXER #if ENABLED(DUAL_X_CARRIAGE) /** * M605: Set dual x-carriage movement mode * * M605 S0: Full control mode. The slicer has full control over x-carriage movement * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn * units x-offset and an optional differential hotend temperature of * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate * the first with a spacing of 100mm in the x direction and 2 degrees hotter. * * Note: the X axis should be homed after changing dual x-carriage mode. */ inline void gcode_M605() { stepper.synchronize(); if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte(); switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: case DXC_AUTO_PARK_MODE: break; case DXC_DUPLICATION_MODE: if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0)); if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff(); SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_CHAR(' '); SERIAL_ECHO(hotend_offset[X_AXIS][0]); SERIAL_CHAR(','); SERIAL_ECHO(hotend_offset[Y_AXIS][0]); SERIAL_CHAR(' '); SERIAL_ECHO(duplicate_extruder_x_offset); SERIAL_CHAR(','); SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]); break; default: dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; break; } active_extruder_parked = false; extruder_duplication_enabled = false; delayed_move_time = 0; } #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) inline void gcode_M605() { stepper.synchronize(); extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE; SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF); } #endif // DUAL_NOZZLE_DUPLICATION_MODE #if ENABLED(LIN_ADVANCE) /** * M900: Set and/or Get advance K factor and WH/D ratio * * K Set advance K factor * R Set ratio directly (overrides WH/D) * W H D Set ratio from WH/D */ inline void gcode_M900() { stepper.synchronize(); const float newK = parser.floatval('K', -1); if (newK >= 0) planner.extruder_advance_k = newK; float newR = parser.floatval('R', -1); if (newR < 0) { const float newD = parser.floatval('D', -1), newW = parser.floatval('W', -1), newH = parser.floatval('H', -1); if (newD >= 0 && newW >= 0 && newH >= 0) newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0; } if (newR >= 0) planner.advance_ed_ratio = newR; SERIAL_ECHO_START(); SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k); SERIAL_ECHOPGM(" E/D="); const float ratio = planner.advance_ed_ratio; if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto"); SERIAL_EOL(); } #endif // LIN_ADVANCE #if ENABLED(HAVE_TMC2130) static void tmc2130_get_current(TMC2130Stepper &st, const char name) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" axis driver current: "); SERIAL_ECHOLN(st.getCurrent()); } static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) { st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER); tmc2130_get_current(st, name); } static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" axis temperature prewarn triggered: "); serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false")); SERIAL_EOL(); } static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) { st.clear_otpw(); SERIAL_CHAR(name); SERIAL_ECHOLNPGM(" prewarn flag cleared"); } static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" stealthChop max speed set to "); SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm)); } static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) { st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm)); tmc2130_get_pwmthrs(st, name, spmm); } static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) { SERIAL_CHAR(name); SERIAL_ECHOPGM(" driver homing sensitivity set to "); SERIAL_ECHOLN(st.sgt()); } static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) { st.sgt(sgt_val); tmc2130_get_sgt(st, name); } /** * M906: Set motor current in milliamps using axis codes X, Y, Z, E * Report driver currents when no axis specified * * S1: Enable automatic current control * S0: Disable */ inline void gcode_M906() { uint16_t values[XYZE]; LOOP_XYZE(i) values[i] = parser.intval(axis_codes[i]); #if ENABLED(X_IS_TMC2130) if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]); else tmc2130_get_current(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]); else tmc2130_get_current(stepperY, 'Y'); #endif #if ENABLED(Z_IS_TMC2130) if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]); else tmc2130_get_current(stepperZ, 'Z'); #endif #if ENABLED(E0_IS_TMC2130) if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]); else tmc2130_get_current(stepperE0, 'E'); #endif #if ENABLED(AUTOMATIC_CURRENT_CONTROL) if (parser.seen('S')) auto_current_control = parser.value_bool(); #endif } /** * M911: Report TMC2130 stepper driver overtemperature pre-warn flag * The flag is held by the library and persist until manually cleared by M912 */ inline void gcode_M911() { const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'), reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE); #if ENABLED(X_IS_TMC2130) if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y'); #endif #if ENABLED(Z_IS_TMC2130) if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z'); #endif #if ENABLED(E0_IS_TMC2130) if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E'); #endif } /** * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library */ inline void gcode_M912() { const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'), clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE); #if ENABLED(X_IS_TMC2130) if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y'); #endif #if ENABLED(Z_IS_TMC2130) if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z'); #endif #if ENABLED(E0_IS_TMC2130) if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E'); #endif } /** * M913: Set HYBRID_THRESHOLD speed. */ #if ENABLED(HYBRID_THRESHOLD) inline void gcode_M913() { uint16_t values[XYZE]; LOOP_XYZE(i) values[i] = parser.intval(axis_codes[i]); #if ENABLED(X_IS_TMC2130) if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]); else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]); #endif #if ENABLED(Y_IS_TMC2130) if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]); else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]); #endif #if ENABLED(Z_IS_TMC2130) if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]); else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]); #endif #if ENABLED(E0_IS_TMC2130) if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]); else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]); #endif } #endif // HYBRID_THRESHOLD /** * M914: Set SENSORLESS_HOMING sensitivity. */ #if ENABLED(SENSORLESS_HOMING) inline void gcode_M914() { #if ENABLED(X_IS_TMC2130) if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int()); else tmc2130_get_sgt(stepperX, 'X'); #endif #if ENABLED(Y_IS_TMC2130) if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int()); else tmc2130_get_sgt(stepperY, 'Y'); #endif } #endif // SENSORLESS_HOMING #endif // HAVE_TMC2130 /** * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S */ inline void gcode_M907() { #if HAS_DIGIPOTSS LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int()); if (parser.seen('B')) stepper.digipot_current(4, parser.value_int()); if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int()); #elif HAS_MOTOR_CURRENT_PWM #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) if (parser.seen('X')) stepper.digipot_current(0, parser.value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) if (parser.seen('E')) stepper.digipot_current(2, parser.value_int()); #endif #endif #if ENABLED(DIGIPOT_I2C) // this one uses actual amps in floating point LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float()); // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...) for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float()); #endif #if ENABLED(DAC_STEPPER_CURRENT) if (parser.seen('S')) { const float dac_percent = parser.value_float(); for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent); } LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float()); #endif } #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) /** * M908: Control digital trimpot directly (M908 P S) */ inline void gcode_M908() { #if HAS_DIGIPOTSS stepper.digitalPotWrite( parser.intval('P'), parser.intval('S') ); #endif #ifdef DAC_STEPPER_CURRENT dac_current_raw( parser.byteval('P', -1), parser.ushortval('S', 0) ); #endif } #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF inline void gcode_M909() { dac_print_values(); } inline void gcode_M910() { dac_commit_eeprom(); } #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if HAS_MICROSTEPS // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. inline void gcode_M350() { if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte()); LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte()); if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte()); stepper.microstep_readings(); } /** * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B * S# determines MS1 or MS2, X# sets the pin high/low. */ inline void gcode_M351() { if (parser.seenval('S')) switch (parser.value_byte()) { case 1: LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1); if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1); break; case 2: LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte()); if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte()); break; } stepper.microstep_readings(); } #endif // HAS_MICROSTEPS #if HAS_CASE_LIGHT #ifndef INVERT_CASE_LIGHT #define INVERT_CASE_LIGHT false #endif uint8_t case_light_brightness; // LCD routine wants INT bool case_light_on; void update_case_light() { pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode if (case_light_on) { if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) { analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness); } else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH); } else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW); } #endif // HAS_CASE_LIGHT /** * M355: Turn case light on/off and set brightness * * P Set case light brightness (PWM pin required - ignored otherwise) * * S Set case light on/off * * When S turns on the light on a PWM pin then the current brightness level is used/restored * * M355 P200 S0 turns off the light & sets the brightness level * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin) */ inline void gcode_M355() { #if HAS_CASE_LIGHT uint8_t args = 0; if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte(); if (parser.seenval('S')) ++args, case_light_on = parser.value_bool(); if (args) update_case_light(); // always report case light status SERIAL_ECHO_START(); if (!case_light_on) { SERIAL_ECHOLN("Case light: off"); } else { if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on"); else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness); } #else SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE); #endif // HAS_CASE_LIGHT } #if ENABLED(MIXING_EXTRUDER) /** * M163: Set a single mix factor for a mixing extruder * This is called "weight" by some systems. * * S[index] The channel index to set * P[float] The mix value * */ inline void gcode_M163() { const int mix_index = parser.intval('S'); if (mix_index < MIXING_STEPPERS) { float mix_value = parser.floatval('P'); NOLESS(mix_value, 0.0); mixing_factor[mix_index] = RECIPROCAL(mix_value); } } #if MIXING_VIRTUAL_TOOLS > 1 /** * M164: Store the current mix factors as a virtual tool. * * S[index] The virtual tool to store * */ inline void gcode_M164() { const int tool_index = parser.intval('S'); if (tool_index < MIXING_VIRTUAL_TOOLS) { normalize_mix(); for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i]; } } #endif #if ENABLED(DIRECT_MIXING_IN_G1) /** * M165: Set multiple mix factors for a mixing extruder. * Factors that are left out will be set to 0. * All factors together must add up to 1.0. * * A[factor] Mix factor for extruder stepper 1 * B[factor] Mix factor for extruder stepper 2 * C[factor] Mix factor for extruder stepper 3 * D[factor] Mix factor for extruder stepper 4 * H[factor] Mix factor for extruder stepper 5 * I[factor] Mix factor for extruder stepper 6 * */ inline void gcode_M165() { gcode_get_mix(); } #endif #endif // MIXING_EXTRUDER /** * M999: Restart after being stopped * * Default behaviour is to flush the serial buffer and request * a resend to the host starting on the last N line received. * * Sending "M999 S1" will resume printing without flushing the * existing command buffer. * */ inline void gcode_M999() { Running = true; lcd_reset_alert_level(); if (parser.boolval('S')) return; // gcode_LastN = Stopped_gcode_LastN; FlushSerialRequestResend(); } #if ENABLED(SWITCHING_EXTRUDER) #if EXTRUDERS > 3 #define REQ_ANGLES 4 #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR) #else #define REQ_ANGLES 2 #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR #endif inline void move_extruder_servo(const uint8_t e) { constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES; static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles."); stepper.synchronize(); #if EXTRUDERS & 1 if (e < EXTRUDERS - 1) #endif { MOVE_SERVO(_SERVO_NR, angles[e]); safe_delay(500); } } #endif // SWITCHING_EXTRUDER #if ENABLED(SWITCHING_NOZZLE) inline void move_nozzle_servo(const uint8_t e) { const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES; stepper.synchronize(); MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]); safe_delay(500); } #endif inline void invalid_extruder_error(const uint8_t e) { SERIAL_ECHO_START(); SERIAL_CHAR('T'); SERIAL_ECHO_F(e, DEC); SERIAL_CHAR(' '); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); } #if ENABLED(PARKING_EXTRUDER) #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT) #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE #else #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE #endif void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) { switch (extruder_num) { case 1: OUT_WRITE(SOL1_PIN, state); break; default: OUT_WRITE(SOL0_PIN, state); break; } #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0 dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY); #endif } inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); } inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); } #endif // PARKING_EXTRUDER #if HAS_FANMUX void fanmux_switch(const uint8_t e) { WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW); #if PIN_EXISTS(FANMUX1) WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW); #if PIN_EXISTS(FANMUX2) WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW); #endif #endif } FORCE_INLINE void fanmux_init(void){ SET_OUTPUT(FANMUX0_PIN); #if PIN_EXISTS(FANMUX1) SET_OUTPUT(FANMUX1_PIN); #if PIN_EXISTS(FANMUX2) SET_OUTPUT(FANMUX2_PIN); #endif #endif fanmux_switch(0); } #endif // HAS_FANMUX /** * Perform a tool-change, which may result in moving the * previous tool out of the way and the new tool into place. */ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) { #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1 if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) return invalid_extruder_error(tmp_extruder); // T0-Tnnn: Switch virtual tool by changing the mix for (uint8_t j = 0; j < MIXING_STEPPERS; j++) mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j]; #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1 if (tmp_extruder >= EXTRUDERS) return invalid_extruder_error(tmp_extruder); #if HOTENDS > 1 const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s; feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S; if (tmp_extruder != active_extruder) { if (!no_move && axis_unhomed_error()) { no_move = true; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange"); #endif } // Save current position to destination, for use later set_destination_to_current(); #if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("Dual X Carriage Mode "); switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break; case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break; case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break; } } #endif const float xhome = x_home_pos(active_extruder); if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() && (delayed_move_time || current_position[X_AXIS] != xhome) ) { float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT; #if ENABLED(MAX_SOFTWARE_ENDSTOPS) NOMORE(raised_z, soft_endstop_max[Z_AXIS]); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPAIR("Raise to ", raised_z); SERIAL_ECHOLNPAIR("MoveX to ", xhome); SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]); } #endif // Park old head: 1) raise 2) move to park position 3) lower for (uint8_t i = 0; i < 3; i++) planner.buffer_line( i == 0 ? current_position[X_AXIS] : xhome, current_position[Y_AXIS], i == 2 ? current_position[Z_AXIS] : raised_z, current_position[E_AXIS], planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS], active_extruder ); stepper.synchronize(); } // Apply Y & Z extruder offset (X offset is used as home pos with Dual X) current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder]; current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder]; // Activate the new extruder ahead of calling set_axis_is_at_home! active_extruder = tmp_extruder; // This function resets the max/min values - the current position may be overwritten below. set_axis_is_at_home(X_AXIS); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position); #endif // Only when auto-parking are carriages safe to move if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true; switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: // New current position is the position of the activated extruder current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos); // Save the inactive extruder's position (from the old current_position) inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]); break; case DXC_AUTO_PARK_MODE: // record raised toolhead position for use by unpark COPY(raised_parked_position, current_position); raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT; #if ENABLED(MAX_SOFTWARE_ENDSTOPS) NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]); #endif active_extruder_parked = true; delayed_move_time = 0; break; case DXC_DUPLICATION_MODE: // If the new extruder is the left one, set it "parked" // This triggers the second extruder to move into the duplication position active_extruder_parked = (active_extruder == 0); if (active_extruder_parked) current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos); else current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset; inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]); extruder_duplication_enabled = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos); SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled"); } #endif break; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no"); DEBUG_POS("New extruder (parked)", current_position); } #endif // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together? #else // !DUAL_X_CARRIAGE #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder]; float z_raise = 0; if (!no_move) { const float parkingposx[] = PARKING_EXTRUDER_PARKING_X, midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder], grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder] + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE); /** * Steps: * 1. raise Z-Axis to have enough clearance * 2. move to park poition of old extruder * 3. disengage magnetc field, wait for delay * 4. move near new extruder * 5. engage magnetic field for new extruder * 6. move to parking incl. offset of new extruder * 7. lower Z-Axis */ // STEP 1 #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPGM("Starting Autopark"); if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position); #endif z_raise = PARKING_EXTRUDER_SECURITY_RAISE; current_position[Z_AXIS] += z_raise; #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPGM("(1) Raise Z-Axis "); if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position); #endif planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder); stepper.synchronize(); // STEP 2 current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder]; #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder); if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position); #endif planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder); stepper.synchronize(); // STEP 3 #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPGM("(3) Disengage magnet "); #endif pe_deactivate_magnet(active_extruder); // STEP 4 #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPGM("(4) Move to position near new extruder"); #endif current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position); #endif planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder); stepper.synchronize(); // STEP 5 #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPGM("(5) Engage magnetic field"); #endif #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT) pe_activate_magnet(active_extruder); //just save power for inverted magnets #endif pe_activate_magnet(tmp_extruder); // STEP 6 current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10)); planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder); current_position[X_AXIS] = grabpos; #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder); if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position); #endif planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder); stepper.synchronize(); // Step 7 current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder]; #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPGM("(7) Move midway between hotends"); if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position); #endif planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder); stepper.synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOLNPGM("Autopark done."); #endif } else { // nomove == true // Only engage magnetic field for new extruder pe_activate_magnet(tmp_extruder); #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT) pe_activate_magnet(active_extruder); // Just save power for inverted magnets #endif } current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position); #endif #endif // dualParking extruder #if ENABLED(SWITCHING_NOZZLE) #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR) // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder], z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0); // Always raise by some amount (destination copied from current_position earlier) current_position[Z_AXIS] += z_raise; planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder); move_nozzle_servo(tmp_extruder); #endif /** * Set current_position to the position of the new nozzle. * Offsets are based on linear distance, so we need to get * the resulting position in coordinate space. * * - With grid or 3-point leveling, offset XYZ by a tilted vector * - With mesh leveling, update Z for the new position * - Otherwise, just use the raw linear distance * * Software endstops are altered here too. Consider a case where: * E0 at X=0 ... E1 at X=10 * When we switch to E1 now X=10, but E1 can't move left. * To express this we apply the change in XY to the software endstops. * E1 can move farther right than E0, so the right limit is extended. * * Note that we don't adjust the Z software endstops. Why not? * Consider a case where Z=0 (here) and switching to E1 makes Z=1 * because the bed is 1mm lower at the new position. As long as * the first nozzle is out of the way, the carriage should be * allowed to move 1mm lower. This technically "breaks" the * Z software endstop. But this is technically correct (and * there is no viable alternative). */ #if ABL_PLANAR // Offset extruder, make sure to apply the bed level rotation matrix vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder], hotend_offset[Y_AXIS][tmp_extruder], 0), act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder], hotend_offset[Y_AXIS][active_extruder], 0), offset_vec = tmp_offset_vec - act_offset_vec; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { tmp_offset_vec.debug(PSTR("tmp_offset_vec")); act_offset_vec.debug(PSTR("act_offset_vec")); offset_vec.debug(PSTR("offset_vec (BEFORE)")); } #endif offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix)); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)")); #endif // Adjustments to the current position const float xydiff[2] = { offset_vec.x, offset_vec.y }; current_position[Z_AXIS] += offset_vec.z; #else // !ABL_PLANAR const float xydiff[2] = { hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder], hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder] }; #if ENABLED(MESH_BED_LEVELING) if (leveling_is_active()) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]); #endif float x2 = current_position[X_AXIS] + xydiff[X_AXIS], y2 = current_position[Y_AXIS] + xydiff[Y_AXIS], z1 = current_position[Z_AXIS], z2 = z1; planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1); planner.apply_leveling(x2, y2, z2); current_position[Z_AXIS] += z2 - z1; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]); #endif } #endif // MESH_BED_LEVELING #endif // !HAS_ABL #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]); SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]); SERIAL_ECHOLNPGM(" }"); } #endif // The newly-selected extruder XY is actually at... current_position[X_AXIS] += xydiff[X_AXIS]; current_position[Y_AXIS] += xydiff[Y_AXIS]; #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER) for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) { #if HAS_POSITION_SHIFT position_shift[i] += xydiff[i]; #endif update_software_endstops((AxisEnum)i); } #endif // Set the new active extruder active_extruder = tmp_extruder; #endif // !DUAL_X_CARRIAGE #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position); #endif // Tell the planner the new "current position" SYNC_PLAN_POSITION_KINEMATIC(); // Move to the "old position" (move the extruder into place) if (!no_move && IsRunning()) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination); #endif prepare_move_to_destination(); } #if ENABLED(SWITCHING_NOZZLE) // Move back down, if needed. (Including when the new tool is higher.) if (z_raise != z_diff) { destination[Z_AXIS] += z_diff; feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; prepare_move_to_destination(); } #endif } // (tmp_extruder != active_extruder) stepper.synchronize(); #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER) disable_all_solenoids(); enable_solenoid_on_active_extruder(); #endif // EXT_SOLENOID feedrate_mm_s = old_feedrate_mm_s; #else // HOTENDS <= 1 UNUSED(fr_mm_s); UNUSED(no_move); #if ENABLED(MK2_MULTIPLEXER) if (tmp_extruder >= E_STEPPERS) return invalid_extruder_error(tmp_extruder); select_multiplexed_stepper(tmp_extruder); #endif // Set the new active extruder active_extruder = tmp_extruder; #endif // HOTENDS <= 1 #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH stepper.synchronize(); move_extruder_servo(active_extruder); #endif #if HAS_FANMUX fanmux_switch(active_extruder); #endif SERIAL_ECHO_START(); SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder); #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1 } /** * T0-T3: Switch tool, usually switching extruders * * F[units/min] Set the movement feedrate * S1 Don't move the tool in XY after change */ inline void gcode_T(uint8_t tmp_extruder) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder); SERIAL_CHAR(')'); SERIAL_EOL(); DEBUG_POS("BEFORE", current_position); } #endif #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1) tool_change(tmp_extruder); #elif HOTENDS > 1 tool_change( tmp_extruder, MMM_TO_MMS(parser.linearval('F')), (tmp_extruder == active_extruder) || parser.boolval('S') ); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("AFTER", current_position); SERIAL_ECHOLNPGM("<<< gcode_T"); } #endif } /** * Process a single command and dispatch it to its handler * This is called from the main loop() */ void process_next_command() { char * const current_command = command_queue[cmd_queue_index_r]; if (DEBUGGING(ECHO)) { SERIAL_ECHO_START(); SERIAL_ECHOLN(current_command); #if ENABLED(M100_FREE_MEMORY_WATCHER) SERIAL_ECHOPAIR("slot:", cmd_queue_index_r); M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue))); #endif } KEEPALIVE_STATE(IN_HANDLER); // Parse the next command in the queue parser.parse(current_command); // Handle a known G, M, or T switch (parser.command_letter) { case 'G': switch (parser.codenum) { // G0, G1 case 0: case 1: #if IS_SCARA gcode_G0_G1(parser.codenum == 0); #else gcode_G0_G1(); #endif break; // G2, G3 #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA) case 2: // G2: CW ARC case 3: // G3: CCW ARC gcode_G2_G3(parser.codenum == 2); break; #endif // G4 Dwell case 4: gcode_G4(); break; #if ENABLED(BEZIER_CURVE_SUPPORT) case 5: // G5: Cubic B_spline gcode_G5(); break; #endif // BEZIER_CURVE_SUPPORT #if ENABLED(FWRETRACT) case 10: // G10: retract gcode_G10(); break; case 11: // G11: retract_recover gcode_G11(); break; #endif // FWRETRACT #if ENABLED(NOZZLE_CLEAN_FEATURE) case 12: gcode_G12(); // G12: Nozzle Clean break; #endif // NOZZLE_CLEAN_FEATURE #if ENABLED(CNC_WORKSPACE_PLANES) case 17: // G17: Select Plane XY gcode_G17(); break; case 18: // G18: Select Plane ZX gcode_G18(); break; case 19: // G19: Select Plane YZ gcode_G19(); break; #endif // CNC_WORKSPACE_PLANES #if ENABLED(INCH_MODE_SUPPORT) case 20: // G20: Inch Mode gcode_G20(); break; case 21: // G21: MM Mode gcode_G21(); break; #endif // INCH_MODE_SUPPORT #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION) case 26: // G26: Mesh Validation Pattern generation gcode_G26(); break; #endif // AUTO_BED_LEVELING_UBL #if ENABLED(NOZZLE_PARK_FEATURE) case 27: // G27: Nozzle Park gcode_G27(); break; #endif // NOZZLE_PARK_FEATURE case 28: // G28: Home all axes, one at a time gcode_G28(false); break; #if HAS_LEVELING case 29: // G29 Detailed Z probe, probes the bed at 3 or more points, // or provides access to the UBL System if enabled. gcode_G29(); break; #endif // HAS_LEVELING #if HAS_BED_PROBE case 30: // G30 Single Z probe gcode_G30(); break; #if ENABLED(Z_PROBE_SLED) case 31: // G31: dock the sled gcode_G31(); break; case 32: // G32: undock the sled gcode_G32(); break; #endif // Z_PROBE_SLED #endif // HAS_BED_PROBE #if PROBE_SELECTED #if ENABLED(DELTA_AUTO_CALIBRATION) case 33: // G33: Delta Auto-Calibration gcode_G33(); break; #endif // DELTA_AUTO_CALIBRATION #endif // PROBE_SELECTED #if ENABLED(G38_PROBE_TARGET) case 38: // G38.2 & G38.3 if (parser.subcode == 2 || parser.subcode == 3) gcode_G38(parser.subcode == 2); break; #endif case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 gcode_G92(); break; #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING) case 42: gcode_G42(); break; #endif #if ENABLED(DEBUG_GCODE_PARSER) case 800: parser.debug(); // GCode Parser Test for G break; #endif } break; case 'M': switch (parser.codenum) { #if HAS_RESUME_CONTINUE case 0: // M0: Unconditional stop - Wait for user button press on LCD case 1: // M1: Conditional stop - Wait for user button press on LCD gcode_M0_M1(); break; #endif // ULTIPANEL #if ENABLED(SPINDLE_LASER_ENABLE) case 3: gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW break; // synchronizes with movement commands case 4: gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW break; // synchronizes with movement commands case 5: gcode_M5(); // M5 - turn spindle/laser off break; // synchronizes with movement commands #endif case 17: // M17: Enable all stepper motors gcode_M17(); break; #if ENABLED(SDSUPPORT) case 20: // M20: list SD card gcode_M20(); break; case 21: // M21: init SD card gcode_M21(); break; case 22: // M22: release SD card gcode_M22(); break; case 23: // M23: Select file gcode_M23(); break; case 24: // M24: Start SD print gcode_M24(); break; case 25: // M25: Pause SD print gcode_M25(); break; case 26: // M26: Set SD index gcode_M26(); break; case 27: // M27: Get SD status gcode_M27(); break; case 28: // M28: Start SD write gcode_M28(); break; case 29: // M29: Stop SD write gcode_M29(); break; case 30: // M30 Delete File gcode_M30(); break; case 32: // M32: Select file and start SD print gcode_M32(); break; #if ENABLED(LONG_FILENAME_HOST_SUPPORT) case 33: // M33: Get the long full path to a file or folder gcode_M33(); break; #endif #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE) case 34: // M34: Set SD card sorting options gcode_M34(); break; #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE case 928: // M928: Start SD write gcode_M928(); break; #endif // SDSUPPORT case 31: // M31: Report time since the start of SD print or last M109 gcode_M31(); break; case 42: // M42: Change pin state gcode_M42(); break; #if ENABLED(PINS_DEBUGGING) case 43: // M43: Read pin state gcode_M43(); break; #endif #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) case 48: // M48: Z probe repeatability test gcode_M48(); break; #endif // Z_MIN_PROBE_REPEATABILITY_TEST #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION) case 49: // M49: Turn on or off G26 debug flag for verbose output gcode_M49(); break; #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION case 75: // M75: Start print timer gcode_M75(); break; case 76: // M76: Pause print timer gcode_M76(); break; case 77: // M77: Stop print timer gcode_M77(); break; #if ENABLED(PRINTCOUNTER) case 78: // M78: Show print statistics gcode_M78(); break; #endif #if ENABLED(M100_FREE_MEMORY_WATCHER) case 100: // M100: Free Memory Report gcode_M100(); break; #endif case 104: // M104: Set hot end temperature gcode_M104(); break; case 110: // M110: Set Current Line Number gcode_M110(); break; case 111: // M111: Set debug level gcode_M111(); break; #if DISABLED(EMERGENCY_PARSER) case 108: // M108: Cancel Waiting gcode_M108(); break; case 112: // M112: Emergency Stop gcode_M112(); break; case 410: // M410 quickstop - Abort all the planned moves. gcode_M410(); break; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) case 113: // M113: Set Host Keepalive interval gcode_M113(); break; #endif case 140: // M140: Set bed temperature gcode_M140(); break; case 105: // M105: Report current temperature gcode_M105(); KEEPALIVE_STATE(NOT_BUSY); return; // "ok" already printed #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED) case 155: // M155: Set temperature auto-report interval gcode_M155(); break; #endif case 109: // M109: Wait for hotend temperature to reach target gcode_M109(); break; #if HAS_TEMP_BED case 190: // M190: Wait for bed temperature to reach target gcode_M190(); break; #endif // HAS_TEMP_BED #if FAN_COUNT > 0 case 106: // M106: Fan On gcode_M106(); break; case 107: // M107: Fan Off gcode_M107(); break; #endif // FAN_COUNT > 0 #if ENABLED(PARK_HEAD_ON_PAUSE) case 125: // M125: Store current position and move to filament change position gcode_M125(); break; #endif #if ENABLED(BARICUDA) // PWM for HEATER_1_PIN #if HAS_HEATER_1 case 126: // M126: valve open gcode_M126(); break; case 127: // M127: valve closed gcode_M127(); break; #endif // HAS_HEATER_1 // PWM for HEATER_2_PIN #if HAS_HEATER_2 case 128: // M128: valve open gcode_M128(); break; case 129: // M129: valve closed gcode_M129(); break; #endif // HAS_HEATER_2 #endif // BARICUDA #if HAS_POWER_SWITCH case 80: // M80: Turn on Power Supply gcode_M80(); break; #endif // HAS_POWER_SWITCH case 81: // M81: Turn off Power, including Power Supply, if possible gcode_M81(); break; case 82: // M82: Set E axis normal mode (same as other axes) gcode_M82(); break; case 83: // M83: Set E axis relative mode gcode_M83(); break; case 18: // M18 => M84 case 84: // M84: Disable all steppers or set timeout gcode_M18_M84(); break; case 85: // M85: Set inactivity stepper shutdown timeout gcode_M85(); break; case 92: // M92: Set the steps-per-unit for one or more axes gcode_M92(); break; case 114: // M114: Report current position gcode_M114(); break; case 115: // M115: Report capabilities gcode_M115(); break; case 117: // M117: Set LCD message text, if possible gcode_M117(); break; case 118: // M118: Display a message in the host console gcode_M118(); break; case 119: // M119: Report endstop states gcode_M119(); break; case 120: // M120: Enable endstops gcode_M120(); break; case 121: // M121: Disable endstops gcode_M121(); break; #if ENABLED(ULTIPANEL) case 145: // M145: Set material heatup parameters gcode_M145(); break; #endif #if ENABLED(TEMPERATURE_UNITS_SUPPORT) case 149: // M149: Set temperature units gcode_M149(); break; #endif #if HAS_COLOR_LEDS case 150: // M150: Set Status LED Color gcode_M150(); break; #endif // HAS_COLOR_LEDS #if ENABLED(MIXING_EXTRUDER) case 163: // M163: Set a component weight for mixing extruder gcode_M163(); break; #if MIXING_VIRTUAL_TOOLS > 1 case 164: // M164: Save current mix as a virtual extruder gcode_M164(); break; #endif #if ENABLED(DIRECT_MIXING_IN_G1) case 165: // M165: Set multiple mix weights gcode_M165(); break; #endif #endif case 200: // M200: Set filament diameter, E to cubic units gcode_M200(); break; case 201: // M201: Set max acceleration for print moves (units/s^2) gcode_M201(); break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 gcode_M202(); break; #endif case 203: // M203: Set max feedrate (units/sec) gcode_M203(); break; case 204: // M204: Set acceleration gcode_M204(); break; case 205: // M205: Set advanced settings gcode_M205(); break; #if HAS_M206_COMMAND case 206: // M206: Set home offsets gcode_M206(); break; #endif #if ENABLED(DELTA) case 665: // M665: Set delta configurations gcode_M665(); break; #endif #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS) case 666: // M666: Set delta or dual endstop adjustment gcode_M666(); break; #endif #if ENABLED(FWRETRACT) case 207: // M207: Set Retract Length, Feedrate, and Z lift gcode_M207(); break; case 208: // M208: Set Recover (unretract) Additional Length and Feedrate gcode_M208(); break; case 209: // M209: Turn Automatic Retract Detection on/off if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209(); break; #endif // FWRETRACT case 211: // M211: Enable, Disable, and/or Report software endstops gcode_M211(); break; #if HOTENDS > 1 case 218: // M218: Set a tool offset gcode_M218(); break; #endif case 220: // M220: Set Feedrate Percentage: S ("FR" on your LCD) gcode_M220(); break; case 221: // M221: Set Flow Percentage gcode_M221(); break; case 226: // M226: Wait until a pin reaches a state gcode_M226(); break; #if HAS_SERVOS case 280: // M280: Set servo position absolute gcode_M280(); break; #endif // HAS_SERVOS #if HAS_BUZZER case 300: // M300: Play beep tone gcode_M300(); break; #endif // HAS_BUZZER #if ENABLED(PIDTEMP) case 301: // M301: Set hotend PID parameters gcode_M301(); break; #endif // PIDTEMP #if ENABLED(PIDTEMPBED) case 304: // M304: Set bed PID parameters gcode_M304(); break; #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ gcode_M240(); break; #endif // CHDK || PHOTOGRAPH_PIN #if HAS_LCD_CONTRAST case 250: // M250: Set LCD contrast gcode_M250(); break; #endif // HAS_LCD_CONTRAST #if ENABLED(EXPERIMENTAL_I2CBUS) case 260: // M260: Send data to an i2c slave gcode_M260(); break; case 261: // M261: Request data from an i2c slave gcode_M261(); break; #endif // EXPERIMENTAL_I2CBUS #if ENABLED(PREVENT_COLD_EXTRUSION) case 302: // M302: Allow cold extrudes (set the minimum extrude temperature) gcode_M302(); break; #endif // PREVENT_COLD_EXTRUSION case 303: // M303: PID autotune gcode_M303(); break; #if ENABLED(MORGAN_SCARA) case 360: // M360: SCARA Theta pos1 if (gcode_M360()) return; break; case 361: // M361: SCARA Theta pos2 if (gcode_M361()) return; break; case 362: // M362: SCARA Psi pos1 if (gcode_M362()) return; break; case 363: // M363: SCARA Psi pos2 if (gcode_M363()) return; break; case 364: // M364: SCARA Psi pos3 (90 deg to Theta) if (gcode_M364()) return; break; #endif // SCARA case 400: // M400: Finish all moves gcode_M400(); break; #if HAS_BED_PROBE case 401: // M401: Deploy probe gcode_M401(); break; case 402: // M402: Stow probe gcode_M402(); break; #endif // HAS_BED_PROBE #if ENABLED(FILAMENT_WIDTH_SENSOR) case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width gcode_M404(); break; case 405: // M405: Turn on filament sensor for control gcode_M405(); break; case 406: // M406: Turn off filament sensor for control gcode_M406(); break; case 407: // M407: Display measured filament diameter gcode_M407(); break; #endif // FILAMENT_WIDTH_SENSOR #if HAS_LEVELING case 420: // M420: Enable/Disable Bed Leveling gcode_M420(); break; #endif #if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR) case 421: // M421: Set a Mesh Bed Leveling Z coordinate gcode_M421(); break; #endif #if HAS_M206_COMMAND case 428: // M428: Apply current_position to home_offset gcode_M428(); break; #endif case 500: // M500: Store settings in EEPROM gcode_M500(); break; case 501: // M501: Read settings from EEPROM gcode_M501(); break; case 502: // M502: Revert to default settings gcode_M502(); break; #if DISABLED(DISABLE_M503) case 503: // M503: print settings currently in memory gcode_M503(); break; #endif #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) case 540: // M540: Set abort on endstop hit for SD printing gcode_M540(); break; #endif #if HAS_BED_PROBE case 851: // M851: Set Z Probe Z Offset gcode_M851(); break; #endif // HAS_BED_PROBE #if ENABLED(ADVANCED_PAUSE_FEATURE) case 600: // M600: Pause for filament change gcode_M600(); break; #endif // ADVANCED_PAUSE_FEATURE #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) case 605: // M605: Set Dual X Carriage movement mode gcode_M605(); break; #endif // DUAL_X_CARRIAGE #if ENABLED(MK2_MULTIPLEXER) case 702: // M702: Unload all extruders gcode_M702(); break; #endif #if ENABLED(LIN_ADVANCE) case 900: // M900: Set advance K factor. gcode_M900(); break; #endif #if ENABLED(HAVE_TMC2130) case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E gcode_M906(); break; #endif case 907: // M907: Set digital trimpot motor current using axis codes. gcode_M907(); break; #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) case 908: // M908: Control digital trimpot directly. gcode_M908(); break; #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF case 909: // M909: Print digipot/DAC current value gcode_M909(); break; case 910: // M910: Commit digipot/DAC value to external EEPROM gcode_M910(); break; #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if ENABLED(HAVE_TMC2130) case 911: // M911: Report TMC2130 prewarn triggered flags gcode_M911(); break; case 912: // M911: Clear TMC2130 prewarn triggered flags gcode_M912(); break; #if ENABLED(HYBRID_THRESHOLD) case 913: // M913: Set HYBRID_THRESHOLD speed. gcode_M913(); break; #endif #if ENABLED(SENSORLESS_HOMING) case 914: // M914: Set SENSORLESS_HOMING sensitivity. gcode_M914(); break; #endif #endif #if HAS_MICROSTEPS case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. gcode_M350(); break; case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low. gcode_M351(); break; #endif // HAS_MICROSTEPS case 355: // M355 set case light brightness gcode_M355(); break; #if ENABLED(DEBUG_GCODE_PARSER) case 800: parser.debug(); // GCode Parser Test for M break; #endif #if ENABLED(I2C_POSITION_ENCODERS) case 860: // M860 Report encoder module position gcode_M860(); break; case 861: // M861 Report encoder module status gcode_M861(); break; case 862: // M862 Perform axis test gcode_M862(); break; case 863: // M863 Calibrate steps/mm gcode_M863(); break; case 864: // M864 Change module address gcode_M864(); break; case 865: // M865 Check module firmware version gcode_M865(); break; case 866: // M866 Report axis error count gcode_M866(); break; case 867: // M867 Toggle error correction gcode_M867(); break; case 868: // M868 Set error correction threshold gcode_M868(); break; case 869: // M869 Report axis error gcode_M869(); break; #endif // I2C_POSITION_ENCODERS case 999: // M999: Restart after being Stopped gcode_M999(); break; } break; case 'T': gcode_T(parser.codenum); break; default: parser.unknown_command_error(); } KEEPALIVE_STATE(NOT_BUSY); ok_to_send(); } /** * Send a "Resend: nnn" message to the host to * indicate that a command needs to be re-sent. */ void FlushSerialRequestResend() { //char command_queue[cmd_queue_index_r][100]="Resend:"; MYSERIAL.flush(); SERIAL_PROTOCOLPGM(MSG_RESEND); SERIAL_PROTOCOLLN(gcode_LastN + 1); ok_to_send(); } /** * Send an "ok" message to the host, indicating * that a command was successfully processed. * * If ADVANCED_OK is enabled also include: * N Line number of the command, if any * P Planner space remaining * B Block queue space remaining */ void ok_to_send() { refresh_cmd_timeout(); if (!send_ok[cmd_queue_index_r]) return; SERIAL_PROTOCOLPGM(MSG_OK); #if ENABLED(ADVANCED_OK) char* p = command_queue[cmd_queue_index_r]; if (*p == 'N') { SERIAL_PROTOCOL(' '); SERIAL_ECHO(*p++); while (NUMERIC_SIGNED(*p)) SERIAL_ECHO(*p++); } SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1)); SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue); #endif SERIAL_EOL(); } #if HAS_SOFTWARE_ENDSTOPS /** * Constrain the given coordinates to the software endstops. */ // NOTE: This makes no sense for delta beds other than Z-axis. // For delta the X/Y would need to be clamped at // DELTA_PRINTABLE_RADIUS from center of bed, but delta // now enforces is_position_reachable for X/Y regardless // of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be // redundant here. void clamp_to_software_endstops(float target[XYZ]) { if (!soft_endstops_enabled) return; #if ENABLED(MIN_SOFTWARE_ENDSTOPS) #if DISABLED(DELTA) NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]); NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]); #endif NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]); #endif #if ENABLED(MAX_SOFTWARE_ENDSTOPS) #if DISABLED(DELTA) NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]); NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]); #endif NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]); #endif } #endif #if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(ABL_BILINEAR_SUBDIVISION) #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A] #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A] #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y #define ABL_BG_GRID(X,Y) z_values_virt[X][Y] #else #define ABL_BG_SPACING(A) bilinear_grid_spacing[A] #define ABL_BG_FACTOR(A) bilinear_grid_factor[A] #define ABL_BG_POINTS_X GRID_MAX_POINTS_X #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y #define ABL_BG_GRID(X,Y) z_values[X][Y] #endif // Get the Z adjustment for non-linear bed leveling float bilinear_z_offset(const float logical[XYZ]) { static float z1, d2, z3, d4, L, D, ratio_x, ratio_y, last_x = -999.999, last_y = -999.999; // Whole units for the grid line indices. Constrained within bounds. static int8_t gridx, gridy, nextx, nexty, last_gridx = -99, last_gridy = -99; // XY relative to the probed area const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS], y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS]; #if ENABLED(EXTRAPOLATE_BEYOND_GRID) // Keep using the last grid box #define FAR_EDGE_OR_BOX 2 #else // Just use the grid far edge #define FAR_EDGE_OR_BOX 1 #endif if (last_x != x) { last_x = x; ratio_x = x * ABL_BG_FACTOR(X_AXIS); const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX); ratio_x -= gx; // Subtract whole to get the ratio within the grid box #if DISABLED(EXTRAPOLATE_BEYOND_GRID) // Beyond the grid maintain height at grid edges NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.) #endif gridx = gx; nextx = min(gridx + 1, ABL_BG_POINTS_X - 1); } if (last_y != y || last_gridx != gridx) { if (last_y != y) { last_y = y; ratio_y = y * ABL_BG_FACTOR(Y_AXIS); const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX); ratio_y -= gy; #if DISABLED(EXTRAPOLATE_BEYOND_GRID) // Beyond the grid maintain height at grid edges NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.) #endif gridy = gy; nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1); } if (last_gridx != gridx || last_gridy != gridy) { last_gridx = gridx; last_gridy = gridy; // Z at the box corners z1 = ABL_BG_GRID(gridx, gridy); // left-front d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta) z3 = ABL_BG_GRID(nextx, gridy); // right-front d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta) } // Bilinear interpolate. Needed since y or gridx has changed. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB D = R - L; } const float offset = L + ratio_x * D; // the offset almost always changes /* static float last_offset = 0; if (FABS(last_offset - offset) > 0.2) { SERIAL_ECHOPGM("Sudden Shift at "); SERIAL_ECHOPAIR("x=", x); SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]); SERIAL_ECHOLNPAIR(" -> gridx=", gridx); SERIAL_ECHOPAIR(" y=", y); SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]); SERIAL_ECHOLNPAIR(" -> gridy=", gridy); SERIAL_ECHOPAIR(" ratio_x=", ratio_x); SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y); SERIAL_ECHOPAIR(" z1=", z1); SERIAL_ECHOPAIR(" z2=", z2); SERIAL_ECHOPAIR(" z3=", z3); SERIAL_ECHOLNPAIR(" z4=", z4); SERIAL_ECHOPAIR(" L=", L); SERIAL_ECHOPAIR(" R=", R); SERIAL_ECHOLNPAIR(" offset=", offset); } last_offset = offset; //*/ return offset; } #endif // AUTO_BED_LEVELING_BILINEAR #if ENABLED(DELTA) /** * Recalculate factors used for delta kinematics whenever * settings have been changed (e.g., by M665). */ void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) { const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER, drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER; delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]); delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]); delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]); } #if ENABLED(DELTA_FAST_SQRT) /** * Fast inverse sqrt from Quake III Arena * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root */ float Q_rsqrt(float number) { long i; float x2, y; const float threehalfs = 1.5f; x2 = number * 0.5f; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5F3759DF - ( i >> 1 ); // what the f***? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } #define _SQRT(n) (1.0f / Q_rsqrt(n)) #else #define _SQRT(n) SQRT(n) #endif /** * Delta Inverse Kinematics * * Calculate the tower positions for a given logical * position, storing the result in the delta[] array. * * This is an expensive calculation, requiring 3 square * roots per segmented linear move, and strains the limits * of a Mega2560 with a Graphical Display. * * Suggested optimizations include: * * - Disable the home_offset (M206) and/or position_shift (G92) * features to remove up to 12 float additions. * * - Use a fast-inverse-sqrt function and add the reciprocal. * (see above) */ // Macro to obtain the Z position of an individual tower #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \ delta_diagonal_rod_2_tower[T] - HYPOT2( \ delta_tower[T][X_AXIS] - raw[X_AXIS], \ delta_tower[T][Y_AXIS] - raw[Y_AXIS] \ ) \ ) #define DELTA_RAW_IK() do { \ delta[A_AXIS] = DELTA_Z(A_AXIS); \ delta[B_AXIS] = DELTA_Z(B_AXIS); \ delta[C_AXIS] = DELTA_Z(C_AXIS); \ }while(0) #define DELTA_LOGICAL_IK() do { \ const float raw[XYZ] = { \ RAW_X_POSITION(logical[X_AXIS]), \ RAW_Y_POSITION(logical[Y_AXIS]), \ RAW_Z_POSITION(logical[Z_AXIS]) \ }; \ DELTA_RAW_IK(); \ }while(0) #define DELTA_DEBUG() do { \ SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \ SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \ SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \ SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \ SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \ SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \ }while(0) void inverse_kinematics(const float logical[XYZ]) { DELTA_LOGICAL_IK(); // DELTA_DEBUG(); } /** * Calculate the highest Z position where the * effector has the full range of XY motion. */ float delta_safe_distance_from_top() { float cartesian[XYZ] = { LOGICAL_X_POSITION(0), LOGICAL_Y_POSITION(0), LOGICAL_Z_POSITION(0) }; inverse_kinematics(cartesian); float distance = delta[A_AXIS]; cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS); inverse_kinematics(cartesian); return FABS(distance - delta[A_AXIS]); } /** * Delta Forward Kinematics * * See the Wikipedia article "Trilateration" * https://en.wikipedia.org/wiki/Trilateration * * Establish a new coordinate system in the plane of the * three carriage points. This system has its origin at * tower1, with tower2 on the X axis. Tower3 is in the X-Y * plane with a Z component of zero. * We will define unit vectors in this coordinate system * in our original coordinate system. Then when we calculate * the Xnew, Ynew and Znew values, we can translate back into * the original system by moving along those unit vectors * by the corresponding values. * * Variable names matched to Marlin, c-version, and avoid the * use of any vector library. * * by Andreas Hardtung 2016-06-07 * based on a Java function from "Delta Robot Kinematics V3" * by Steve Graves * * The result is stored in the cartes[] array. */ void forward_kinematics_DELTA(float z1, float z2, float z3) { // Create a vector in old coordinates along x axis of new coordinate float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 }; // Get the Magnitude of vector. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) ); // Create unit vector by dividing by magnitude. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d }; // Get the vector from the origin of the new system to the third point. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 }; // Use the dot product to find the component of this vector on the X axis. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2]; // Create a vector along the x axis that represents the x component of p13. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i }; // Subtract the X component from the original vector leaving only Y. We use the // variable that will be the unit vector after we scale it. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] }; // The magnitude of Y component float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) ); // Convert to a unit vector ey[0] /= j; ey[1] /= j; ey[2] /= j; // The cross product of the unit x and y is the unit z // float[] ez = vectorCrossProd(ex, ey); float ez[3] = { ex[1] * ey[2] - ex[2] * ey[1], ex[2] * ey[0] - ex[0] * ey[2], ex[0] * ey[1] - ex[1] * ey[0] }; // We now have the d, i and j values defined in Wikipedia. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2), Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j, Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew)); // Start from the origin of the old coordinates and add vectors in the // old coords that represent the Xnew, Ynew and Znew to find the point // in the old system. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew; cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew; cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew; } void forward_kinematics_DELTA(float point[ABC]) { forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]); } #endif // DELTA /** * Get the stepper positions in the cartes[] array. * Forward kinematics are applied for DELTA and SCARA. * * The result is in the current coordinate space with * leveling applied. The coordinates need to be run through * unapply_leveling to obtain the "ideal" coordinates * suitable for current_position, etc. */ void get_cartesian_from_steppers() { #if ENABLED(DELTA) forward_kinematics_DELTA( stepper.get_axis_position_mm(A_AXIS), stepper.get_axis_position_mm(B_AXIS), stepper.get_axis_position_mm(C_AXIS) ); cartes[X_AXIS] += LOGICAL_X_POSITION(0); cartes[Y_AXIS] += LOGICAL_Y_POSITION(0); cartes[Z_AXIS] += LOGICAL_Z_POSITION(0); #elif IS_SCARA forward_kinematics_SCARA( stepper.get_axis_position_degrees(A_AXIS), stepper.get_axis_position_degrees(B_AXIS) ); cartes[X_AXIS] += LOGICAL_X_POSITION(0); cartes[Y_AXIS] += LOGICAL_Y_POSITION(0); cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #else cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #endif } /** * Set the current_position for an axis based on * the stepper positions, removing any leveling that * may have been applied. */ void set_current_from_steppers_for_axis(const AxisEnum axis) { get_cartesian_from_steppers(); #if PLANNER_LEVELING planner.unapply_leveling(cartes); #endif if (axis == ALL_AXES) COPY(current_position, cartes); else current_position[axis] = cartes[axis]; } #if ENABLED(MESH_BED_LEVELING) /** * Prepare a mesh-leveled linear move in a Cartesian setup, * splitting the move where it crosses mesh borders. */ void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) { int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)), cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)), cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])), cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS])); NOMORE(cx1, GRID_MAX_POINTS_X - 2); NOMORE(cy1, GRID_MAX_POINTS_Y - 2); NOMORE(cx2, GRID_MAX_POINTS_X - 2); NOMORE(cy2, GRID_MAX_POINTS_Y - 2); if (cx1 == cx2 && cy1 == cy2) { // Start and end on same mesh square line_to_destination(fr_mm_s); set_current_to_destination(); return; } #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) float normalized_dist, end[XYZE]; // Split at the left/front border of the right/top square const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); if (cx2 != cx1 && TEST(x_splits, gcx)) { COPY(end, destination); destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = MBL_SEGMENT_END(Y); CBI(x_splits, gcx); } else if (cy2 != cy1 && TEST(y_splits, gcy)) { COPY(end, destination); destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = MBL_SEGMENT_END(X); CBI(y_splits, gcy); } else { // Already split on a border line_to_destination(fr_mm_s); set_current_to_destination(); return; } destination[Z_AXIS] = MBL_SEGMENT_END(Z); destination[E_AXIS] = MBL_SEGMENT_END(E); // Do the split and look for more borders mesh_line_to_destination(fr_mm_s, x_splits, y_splits); // Restore destination from stack COPY(destination, end); mesh_line_to_destination(fr_mm_s, x_splits, y_splits); } #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS)) /** * Prepare a bilinear-leveled linear move on Cartesian, * splitting the move where it crosses grid borders. */ void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) { int cx1 = CELL_INDEX(X, current_position[X_AXIS]), cy1 = CELL_INDEX(Y, current_position[Y_AXIS]), cx2 = CELL_INDEX(X, destination[X_AXIS]), cy2 = CELL_INDEX(Y, destination[Y_AXIS]); cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2); cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2); cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2); cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2); if (cx1 == cx2 && cy1 == cy2) { // Start and end on same mesh square line_to_destination(fr_mm_s); set_current_to_destination(); return; } #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist) float normalized_dist, end[XYZE]; // Split at the left/front border of the right/top square const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); if (cx2 != cx1 && TEST(x_splits, gcx)) { COPY(end, destination); destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = LINE_SEGMENT_END(Y); CBI(x_splits, gcx); } else if (cy2 != cy1 && TEST(y_splits, gcy)) { COPY(end, destination); destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = LINE_SEGMENT_END(X); CBI(y_splits, gcy); } else { // Already split on a border line_to_destination(fr_mm_s); set_current_to_destination(); return; } destination[Z_AXIS] = LINE_SEGMENT_END(Z); destination[E_AXIS] = LINE_SEGMENT_END(E); // Do the split and look for more borders bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); // Restore destination from stack COPY(destination, end); bilinear_line_to_destination(fr_mm_s, x_splits, y_splits); } #endif // AUTO_BED_LEVELING_BILINEAR #if IS_KINEMATIC && !UBL_DELTA /** * Prepare a linear move in a DELTA or SCARA setup. * * This calls planner.buffer_line several times, adding * small incremental moves for DELTA or SCARA. */ inline bool prepare_kinematic_move_to(float ltarget[XYZE]) { // Get the top feedrate of the move in the XY plane const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s); // If the move is only in Z/E don't split up the move if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) { planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder); return false; } // Fail if attempting move outside printable radius if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true; // Get the cartesian distances moved in XYZE const float difference[XYZE] = { ltarget[X_AXIS] - current_position[X_AXIS], ltarget[Y_AXIS] - current_position[Y_AXIS], ltarget[Z_AXIS] - current_position[Z_AXIS], ltarget[E_AXIS] - current_position[E_AXIS] }; // Get the linear distance in XYZ float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); // If the move is very short, check the E move distance if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]); // No E move either? Game over. if (UNEAR_ZERO(cartesian_mm)) return true; // Minimum number of seconds to move the given distance const float seconds = cartesian_mm / _feedrate_mm_s; // The number of segments-per-second times the duration // gives the number of segments uint16_t segments = delta_segments_per_second * seconds; // For SCARA minimum segment size is 0.25mm #if IS_SCARA NOMORE(segments, cartesian_mm * 4); #endif // At least one segment is required NOLESS(segments, 1); // The approximate length of each segment const float inv_segments = 1.0 / float(segments), segment_distance[XYZE] = { difference[X_AXIS] * inv_segments, difference[Y_AXIS] * inv_segments, difference[Z_AXIS] * inv_segments, difference[E_AXIS] * inv_segments }; // SERIAL_ECHOPAIR("mm=", cartesian_mm); // SERIAL_ECHOPAIR(" seconds=", seconds); // SERIAL_ECHOLNPAIR(" segments=", segments); #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) // SCARA needs to scale the feed rate from mm/s to degrees/s const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs feed_factor = inv_segment_length * _feedrate_mm_s; float oldA = stepper.get_axis_position_degrees(A_AXIS), oldB = stepper.get_axis_position_degrees(B_AXIS); #endif // Get the logical current position as starting point float logical[XYZE]; COPY(logical, current_position); // Drop one segment so the last move is to the exact target. // If there's only 1 segment, loops will be skipped entirely. --segments; // Calculate and execute the segments for (uint16_t s = segments + 1; --s;) { LOOP_XYZE(i) logical[i] += segment_distance[i]; #if ENABLED(DELTA) DELTA_LOGICAL_IK(); // Delta can inline its kinematics #else inverse_kinematics(logical); #endif ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) // For SCARA scale the feed rate from mm/s to degrees/s // Use ratio between the length of the move and the larger angle change const float adiff = abs(delta[A_AXIS] - oldA), bdiff = abs(delta[B_AXIS] - oldB); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder); oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; #else planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder); #endif } // Since segment_distance is only approximate, // the final move must be to the exact destination. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING) // For SCARA scale the feed rate from mm/s to degrees/s // With segments > 1 length is 1 segment, otherwise total length inverse_kinematics(ltarget); ADJUST_DELTA(ltarget); const float adiff = abs(delta[A_AXIS] - oldA), bdiff = abs(delta[B_AXIS] - oldB); planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder); #else planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder); #endif return false; } #else // !IS_KINEMATIC || UBL_DELTA /** * Prepare a linear move in a Cartesian setup. * If Mesh Bed Leveling is enabled, perform a mesh move. * * Returns true if the caller didn't update current_position. */ inline bool prepare_move_to_destination_cartesian() { #if ENABLED(AUTO_BED_LEVELING_UBL) const float fr_scaled = MMS_SCALED(feedrate_mm_s); if (ubl.state.active) { // direct use of ubl.state.active for speed ubl.line_to_destination_cartesian(fr_scaled, active_extruder); return true; } else line_to_destination(fr_scaled); #else // Do not use feedrate_percentage for E or Z only moves if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) line_to_destination(); else { const float fr_scaled = MMS_SCALED(feedrate_mm_s); #if ENABLED(MESH_BED_LEVELING) if (mbl.active()) { // direct used of mbl.active() for speed mesh_line_to_destination(fr_scaled); return true; } else #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) if (planner.abl_enabled) { // direct use of abl_enabled for speed bilinear_line_to_destination(fr_scaled); return true; } else #endif line_to_destination(fr_scaled); } #endif return false; } #endif // !IS_KINEMATIC || UBL_DELTA #if ENABLED(DUAL_X_CARRIAGE) /** * Prepare a linear move in a dual X axis setup */ inline bool prepare_move_to_destination_dualx() { if (active_extruder_parked) { switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: break; case DXC_AUTO_PARK_MODE: if (current_position[E_AXIS] == destination[E_AXIS]) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { set_current_to_destination(); NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]); delayed_move_time = millis(); return true; } } // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower for (uint8_t i = 0; i < 3; i++) planner.buffer_line( i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS], i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS], i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS], current_position[E_AXIS], i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS], active_extruder ); delayed_move_time = 0; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked"); #endif break; case DXC_DUPLICATION_MODE: if (active_extruder == 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos)); SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset); } #endif // move duplicate extruder into correct duplication position. planner.set_position_mm( LOGICAL_X_POSITION(inactive_extruder_x_pos), current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS] ); planner.buffer_line( current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1 ); SYNC_PLAN_POSITION_KINEMATIC(); stepper.synchronize(); extruder_duplication_enabled = true; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked"); #endif } else { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0"); #endif } break; } } return false; } #endif // DUAL_X_CARRIAGE /** * Prepare a single move and get ready for the next one * * This may result in several calls to planner.buffer_line to * do smaller moves for DELTA, SCARA, mesh moves, etc. */ void prepare_move_to_destination() { clamp_to_software_endstops(destination); refresh_cmd_timeout(); #if ENABLED(PREVENT_COLD_EXTRUSION) if (!DEBUGGING(DRYRUN)) { if (destination[E_AXIS] != current_position[E_AXIS]) { if (thermalManager.tooColdToExtrude(active_extruder)) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) { current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START(); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } } #endif if ( #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely) ubl.prepare_segmented_line_to(destination, feedrate_mm_s) #elif IS_KINEMATIC prepare_kinematic_move_to(destination) #elif ENABLED(DUAL_X_CARRIAGE) prepare_move_to_destination_dualx() || prepare_move_to_destination_cartesian() #else prepare_move_to_destination_cartesian() #endif ) return; set_current_to_destination(); } #if ENABLED(ARC_SUPPORT) #if N_ARC_CORRECTION < 1 #undef N_ARC_CORRECTION #define N_ARC_CORRECTION 1 #endif /** * Plan an arc in 2 dimensions * * The arc is approximated by generating many small linear segments. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) * Arcs should only be made relatively large (over 5mm), as larger arcs with * larger segments will tend to be more efficient. Your slicer should have * options for G2/G3 arc generation. In future these options may be GCode tunable. */ void plan_arc( float logical[XYZE], // Destination position float *offset, // Center of rotation relative to current_position uint8_t clockwise // Clockwise? ) { #if ENABLED(CNC_WORKSPACE_PLANES) AxisEnum p_axis, q_axis, l_axis; switch (workspace_plane) { case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break; case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break; case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break; } #else constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS; #endif // Radius vector from center to current location float r_P = -offset[0], r_Q = -offset[1]; const float radius = HYPOT(r_P, r_Q), center_P = current_position[p_axis] - r_P, center_Q = current_position[q_axis] - r_Q, rt_X = logical[p_axis] - center_P, rt_Y = logical[q_axis] - center_Q, linear_travel = logical[l_axis] - current_position[l_axis], extruder_travel = logical[E_AXIS] - current_position[E_AXIS]; // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y); if (angular_travel < 0) angular_travel += RADIANS(360); if (clockwise) angular_travel -= RADIANS(360); // Make a circle if the angular rotation is 0 and the target is current position if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis]) angular_travel = RADIANS(360); const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel)); if (mm_of_travel < 0.001) return; uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT)); if (segments == 0) segments = 1; /** * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. * r_T = [cos(phi) -sin(phi); * sin(phi) cos(phi)] * r ; * * For arc generation, the center of the circle is the axis of rotation and the radius vector is * defined from the circle center to the initial position. Each line segment is formed by successive * vector rotations. This requires only two cos() and sin() computations to form the rotation * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since * all double numbers are single precision on the Arduino. (True double precision will not have * round off issues for CNC applications.) Single precision error can accumulate to be greater than * tool precision in some cases. Therefore, arc path correction is implemented. * * Small angle approximation may be used to reduce computation overhead further. This approximation * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an * issue for CNC machines with the single precision Arduino calculations. * * This approximation also allows plan_arc to immediately insert a line segment into the planner * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. * This is important when there are successive arc motions. */ // Vector rotation matrix values float arc_target[XYZE]; const float theta_per_segment = angular_travel / segments, linear_per_segment = linear_travel / segments, extruder_per_segment = extruder_travel / segments, sin_T = theta_per_segment, cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation // Initialize the linear axis arc_target[l_axis] = current_position[l_axis]; // Initialize the extruder axis arc_target[E_AXIS] = current_position[E_AXIS]; const float fr_mm_s = MMS_SCALED(feedrate_mm_s); millis_t next_idle_ms = millis() + 200UL; #if N_ARC_CORRECTION > 1 int8_t arc_recalc_count = N_ARC_CORRECTION; #endif for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times thermalManager.manage_heater(); if (ELAPSED(millis(), next_idle_ms)) { next_idle_ms = millis() + 200UL; idle(); } #if N_ARC_CORRECTION > 1 if (--arc_recalc_count) { // Apply vector rotation matrix to previous r_P / 1 const float r_new_Y = r_P * sin_T + r_Q * cos_T; r_P = r_P * cos_T - r_Q * sin_T; r_Q = r_new_Y; } else #endif { #if N_ARC_CORRECTION > 1 arc_recalc_count = N_ARC_CORRECTION; #endif // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. // Compute exact location by applying transformation matrix from initial radius vector(=-offset). // To reduce stuttering, the sin and cos could be computed at different times. // For now, compute both at the same time. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment); r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti; r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti; } // Update arc_target location arc_target[p_axis] = center_P + r_P; arc_target[q_axis] = center_Q + r_Q; arc_target[l_axis] += linear_per_segment; arc_target[E_AXIS] += extruder_per_segment; clamp_to_software_endstops(arc_target); planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder); } // Ensure last segment arrives at target location. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder); // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. set_current_to_destination(); } // plan_arc #endif // ARC_SUPPORT #if ENABLED(BEZIER_CURVE_SUPPORT) void plan_cubic_move(const float offset[4]) { cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder); // As far as the parser is concerned, the position is now == destination. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. set_current_to_destination(); } #endif // BEZIER_CURVE_SUPPORT #if ENABLED(USE_CONTROLLER_FAN) void controllerFan() { static millis_t lastMotorOn = 0, // Last time a motor was turned on nextMotorCheck = 0; // Last time the state was checked const millis_t ms = millis(); if (ELAPSED(ms, nextMotorCheck)) { nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0 || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled... #if E_STEPPERS > 1 || E1_ENABLE_READ == E_ENABLE_ON #if HAS_X2_ENABLE || X2_ENABLE_READ == X_ENABLE_ON #endif #if E_STEPPERS > 2 || E2_ENABLE_READ == E_ENABLE_ON #if E_STEPPERS > 3 || E3_ENABLE_READ == E_ENABLE_ON #if E_STEPPERS > 4 || E4_ENABLE_READ == E_ENABLE_ON #endif // E_STEPPERS > 4 #endif // E_STEPPERS > 3 #endif // E_STEPPERS > 2 #endif // E_STEPPERS > 1 ) { lastMotorOn = ms; //... set time to NOW so the fan will turn on } // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED; // allows digital or PWM fan output to be used (see M42 handling) WRITE(CONTROLLER_FAN_PIN, speed); analogWrite(CONTROLLER_FAN_PIN, speed); } } #endif // USE_CONTROLLER_FAN #if ENABLED(MORGAN_SCARA) /** * Morgan SCARA Forward Kinematics. Results in cartes[]. * Maths and first version by QHARLEY. * Integrated into Marlin and slightly restructured by Joachim Cerny. */ void forward_kinematics_SCARA(const float &a, const float &b) { float a_sin = sin(RADIANS(a)) * L1, a_cos = cos(RADIANS(a)) * L1, b_sin = sin(RADIANS(b)) * L2, b_cos = cos(RADIANS(b)) * L2; cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi /* SERIAL_ECHOPAIR("SCARA FK Angle a=", a); SERIAL_ECHOPAIR(" b=", b); SERIAL_ECHOPAIR(" a_sin=", a_sin); SERIAL_ECHOPAIR(" a_cos=", a_cos); SERIAL_ECHOPAIR(" b_sin=", b_sin); SERIAL_ECHOLNPAIR(" b_cos=", b_cos); SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]); SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]); //*/ } /** * Morgan SCARA Inverse Kinematics. Results in delta[]. * * See http://forums.reprap.org/read.php?185,283327 * * Maths and first version by QHARLEY. * Integrated into Marlin and slightly restructured by Joachim Cerny. */ void inverse_kinematics(const float logical[XYZ]) { static float C2, S2, SK1, SK2, THETA, PSI; float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor. if (L1 == L2) C2 = HYPOT2(sx, sy) / L1_2_2 - 1; else C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2); S2 = SQRT(1 - sq(C2)); // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End SK1 = L1 + L2 * C2; // Rotated Arm2 gives the distance from Arm1 to Arm2 SK2 = L2 * S2; // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy); // Angle of Arm2 PSI = ATAN2(S2, C2); delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor) delta[C_AXIS] = logical[Z_AXIS]; /* DEBUG_POS("SCARA IK", logical); DEBUG_POS("SCARA IK", delta); SERIAL_ECHOPAIR(" SCARA (x,y) ", sx); SERIAL_ECHOPAIR(",", sy); SERIAL_ECHOPAIR(" C2=", C2); SERIAL_ECHOPAIR(" S2=", S2); SERIAL_ECHOPAIR(" Theta=", THETA); SERIAL_ECHOLNPAIR(" Phi=", PHI); //*/ } #endif // MORGAN_SCARA #if ENABLED(TEMP_STAT_LEDS) static bool red_led = false; static millis_t next_status_led_update_ms = 0; void handle_status_leds(void) { if (ELAPSED(millis(), next_status_led_update_ms)) { next_status_led_update_ms += 500; // Update every 0.5s float max_temp = 0.0; #if HAS_TEMP_BED max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed()); #endif HOTEND_LOOP() max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e)); const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led; if (new_led != red_led) { red_led = new_led; #if PIN_EXISTS(STAT_LED_RED) WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW); #if PIN_EXISTS(STAT_LED_BLUE) WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH); #endif #else WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW); #endif } } } #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) void handle_filament_runout() { if (!filament_ran_out) { filament_ran_out = true; enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT)); stepper.synchronize(); } } #endif // FILAMENT_RUNOUT_SENSOR #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val) { val &= 0x07; switch (digitalPinToTimer(pin)) { #ifdef TCCR0A #if !AVR_AT90USB1286_FAMILY case TIMER0A: #endif case TIMER0B: //_SET_CS(0, val); break; #endif #ifdef TCCR1A case TIMER1A: case TIMER1B: //_SET_CS(1, val); break; #endif #ifdef TCCR2 case TIMER2: case TIMER2: _SET_CS(2, val); break; #endif #ifdef TCCR2A case TIMER2A: case TIMER2B: _SET_CS(2, val); break; #endif #ifdef TCCR3A case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break; #endif #ifdef TCCR4A case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break; #endif #ifdef TCCR5A case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break; #endif } } #endif // FAST_PWM_FAN float calculate_volumetric_multiplier(const float diameter) { if (!volumetric_enabled || diameter == 0) return 1.0; return 1.0 / (M_PI * sq(diameter * 0.5)); } void calculate_volumetric_multipliers() { for (uint8_t i = 0; i < COUNT(filament_size); i++) volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); } void enable_all_steppers() { enable_X(); enable_Y(); enable_Z(); enable_E0(); enable_E1(); enable_E2(); enable_E3(); enable_E4(); } void disable_e_steppers() { disable_E0(); disable_E1(); disable_E2(); disable_E3(); disable_E4(); } void disable_all_steppers() { disable_X(); disable_Y(); disable_Z(); disable_e_steppers(); } #if ENABLED(HAVE_TMC2130) void automatic_current_control(TMC2130Stepper &st, String axisID) { // Check otpw even if we don't use automatic control. Allows for flag inspection. const bool is_otpw = st.checkOT(); // Report if a warning was triggered static bool previous_otpw = false; if (is_otpw && !previous_otpw) { char timestamp[10]; duration_t elapsed = print_job_timer.duration(); const bool has_days = (elapsed.value > 60*60*24L); (void)elapsed.toDigital(timestamp, has_days); SERIAL_ECHO(timestamp); SERIAL_ECHOPGM(": "); SERIAL_ECHO(axisID); SERIAL_ECHOLNPGM(" driver overtemperature warning!"); } previous_otpw = is_otpw; #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL) // Return if user has not enabled current control start with M906 S1. if (!auto_current_control) return; /** * Decrease current if is_otpw is true. * Bail out if driver is disabled. * Increase current if OTPW has not been triggered yet. */ uint16_t current = st.getCurrent(); if (is_otpw) { st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER); #if ENABLED(REPORT_CURRENT_CHANGE) SERIAL_ECHO(axisID); SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent()); #endif } else if (!st.isEnabled()) return; else if (!is_otpw && !st.getOTPW()) { current += CURRENT_STEP; if (current <= AUTO_ADJUST_MAX) { st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER); #if ENABLED(REPORT_CURRENT_CHANGE) SERIAL_ECHO(axisID); SERIAL_ECHOPAIR(" current increased to ", st.getCurrent()); #endif } } SERIAL_EOL(); #endif } void checkOverTemp() { static millis_t next_cOT = 0; if (ELAPSED(millis(), next_cOT)) { next_cOT = millis() + 5000; #if ENABLED(X_IS_TMC2130) automatic_current_control(stepperX, "X"); #endif #if ENABLED(Y_IS_TMC2130) automatic_current_control(stepperY, "Y"); #endif #if ENABLED(Z_IS_TMC2130) automatic_current_control(stepperZ, "Z"); #endif #if ENABLED(X2_IS_TMC2130) automatic_current_control(stepperX2, "X2"); #endif #if ENABLED(Y2_IS_TMC2130) automatic_current_control(stepperY2, "Y2"); #endif #if ENABLED(Z2_IS_TMC2130) automatic_current_control(stepperZ2, "Z2"); #endif #if ENABLED(E0_IS_TMC2130) automatic_current_control(stepperE0, "E0"); #endif #if ENABLED(E1_IS_TMC2130) automatic_current_control(stepperE1, "E1"); #endif #if ENABLED(E2_IS_TMC2130) automatic_current_control(stepperE2, "E2"); #endif #if ENABLED(E3_IS_TMC2130) automatic_current_control(stepperE3, "E3"); #endif #if ENABLED(E4_IS_TMC2130) automatic_current_control(stepperE4, "E4"); #endif #if ENABLED(E4_IS_TMC2130) automatic_current_control(stepperE4); #endif } } #endif // HAVE_TMC2130 /** * Manage several activities: * - Check for Filament Runout * - Keep the command buffer full * - Check for maximum inactive time between commands * - Check for maximum inactive time between stepper commands * - Check if pin CHDK needs to go LOW * - Check for KILL button held down * - Check for HOME button held down * - Check if cooling fan needs to be switched on * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT) */ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { #if ENABLED(FILAMENT_RUNOUT_SENSOR) if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING)) handle_filament_runout(); #endif if (commands_in_queue < BUFSIZE) get_available_commands(); const millis_t ms = millis(); if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) { SERIAL_ERROR_START(); SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr); kill(PSTR(MSG_KILLED)); } // Prevent steppers timing-out in the middle of M600 #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT) #define MOVE_AWAY_TEST !move_away_flag #else #define MOVE_AWAY_TEST true #endif if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time) && !ignore_stepper_queue && !planner.blocks_queued()) { #if ENABLED(DISABLE_INACTIVE_X) disable_X(); #endif #if ENABLED(DISABLE_INACTIVE_Y) disable_Y(); #endif #if ENABLED(DISABLE_INACTIVE_Z) disable_Z(); #endif #if ENABLED(DISABLE_INACTIVE_E) disable_e_steppers(); #endif #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD ubl_lcd_map_control = defer_return_to_status = false; #endif } #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) { chdkActive = false; WRITE(CHDK, LOW); } #endif #if HAS_KILL // Check if the kill button was pressed and wait just in case it was an accidental // key kill key press // ------------------------------------------------------------------------------- static int killCount = 0; // make the inactivity button a bit less responsive const int KILL_DELAY = 750; if (!READ(KILL_PIN)) killCount++; else if (killCount > 0) killCount--; // Exceeded threshold and we can confirm that it was not accidental // KILL the machine // ---------------------------------------------------------------- if (killCount >= KILL_DELAY) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_KILL_BUTTON); kill(PSTR(MSG_KILLED)); } #endif #if HAS_HOME // Check to see if we have to home, use poor man's debouncer // --------------------------------------------------------- static int homeDebounceCount = 0; // poor man's debouncing count const int HOME_DEBOUNCE_DELAY = 2500; if (!IS_SD_PRINTING && !READ(HOME_PIN)) { if (!homeDebounceCount) { enqueue_and_echo_commands_P(PSTR("G28")); LCD_MESSAGEPGM(MSG_AUTO_HOME); } if (homeDebounceCount < HOME_DEBOUNCE_DELAY) homeDebounceCount++; else homeDebounceCount = 0; } #endif #if ENABLED(USE_CONTROLLER_FAN) controllerFan(); // Check if fan should be turned on to cool stepper drivers down #endif #if ENABLED(EXTRUDER_RUNOUT_PREVENT) if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL) && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) { #if ENABLED(SWITCHING_EXTRUDER) const bool oldstatus = E0_ENABLE_READ; enable_E0(); #else // !SWITCHING_EXTRUDER bool oldstatus; switch (active_extruder) { default: oldstatus = E0_ENABLE_READ; enable_E0(); break; #if E_STEPPERS > 1 case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break; #if E_STEPPERS > 2 case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break; #if E_STEPPERS > 3 case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break; #if E_STEPPERS > 4 case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break; #endif // E_STEPPERS > 4 #endif // E_STEPPERS > 3 #endif // E_STEPPERS > 2 #endif // E_STEPPERS > 1 } #endif // !SWITCHING_EXTRUDER previous_cmd_ms = ms; // refresh_cmd_timeout() const float olde = current_position[E_AXIS]; current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE; planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder); current_position[E_AXIS] = olde; planner.set_e_position_mm(olde); stepper.synchronize(); #if ENABLED(SWITCHING_EXTRUDER) E0_ENABLE_WRITE(oldstatus); #else switch (active_extruder) { case 0: E0_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 1 case 1: E1_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 2 case 2: E2_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 3 case 3: E3_ENABLE_WRITE(oldstatus); break; #if E_STEPPERS > 4 case 4: E4_ENABLE_WRITE(oldstatus); break; #endif // E_STEPPERS > 4 #endif // E_STEPPERS > 3 #endif // E_STEPPERS > 2 #endif // E_STEPPERS > 1 } #endif // !SWITCHING_EXTRUDER } #endif // EXTRUDER_RUNOUT_PREVENT #if ENABLED(DUAL_X_CARRIAGE) // handle delayed move timeout if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) { // travel moves have been received so enact them delayed_move_time = 0xFFFFFFFFUL; // force moves to be done set_destination_to_current(); prepare_move_to_destination(); } #endif #if ENABLED(TEMP_STAT_LEDS) handle_status_leds(); #endif #if ENABLED(HAVE_TMC2130) checkOverTemp(); #endif planner.check_axes_activity(); } /** * Standard idle routine keeps the machine alive */ void idle( #if ENABLED(ADVANCED_PAUSE_FEATURE) bool no_stepper_sleep/*=false*/ #endif ) { #if ENABLED(MAX7219_DEBUG) Max7219_idle_tasks(); #endif // MAX7219_DEBUG lcd_update(); host_keepalive(); #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED) auto_report_temperatures(); #endif manage_inactivity( #if ENABLED(ADVANCED_PAUSE_FEATURE) no_stepper_sleep #endif ); thermalManager.manage_heater(); #if ENABLED(PRINTCOUNTER) print_job_timer.tick(); #endif #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) buzzer.tick(); #endif #if ENABLED(I2C_POSITION_ENCODERS) if (planner.blocks_queued() && ( (blockBufferIndexRef != planner.block_buffer_head) || ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) { blockBufferIndexRef = planner.block_buffer_head; I2CPEM.update(); lastUpdateMillis = millis(); } #endif } /** * Kill all activity and lock the machine. * After this the machine will need to be reset. */ void kill(const char* lcd_msg) { SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_KILLED); thermalManager.disable_all_heaters(); disable_all_steppers(); #if ENABLED(ULTRA_LCD) kill_screen(lcd_msg); #else UNUSED(lcd_msg); #endif _delay_ms(600); // Wait a short time (allows messages to get out before shutting down. cli(); // Stop interrupts _delay_ms(250); //Wait to ensure all interrupts routines stopped thermalManager.disable_all_heaters(); //turn off heaters again #ifdef ACTION_ON_KILL SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL); #endif #if HAS_POWER_SWITCH SET_INPUT(PS_ON_PIN); #endif suicide(); while (1) { #if ENABLED(USE_WATCHDOG) watchdog_reset(); #endif } // Wait for reset } /** * Turn off heaters and stop the print in progress * After a stop the machine may be resumed with M999 */ void stop() { thermalManager.disable_all_heaters(); // 'unpause' taken care of in here #if ENABLED(PROBING_FANS_OFF) if (fans_paused) fans_pause(false); // put things back the way they were #endif if (IsRunning()) { Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); safe_delay(350); // allow enough time for messages to get out before stopping Running = false; } } /** * Marlin entry-point: Set up before the program loop * - Set up the kill pin, filament runout, power hold * - Start the serial port * - Print startup messages and diagnostics * - Get EEPROM or default settings * - Initialize managers for: * • temperature * • planner * • watchdog * • stepper * • photo pin * • servos * • LCD controller * • Digipot I2C * • Z probe sled * • status LEDs */ void setup() { #if ENABLED(MAX7219_DEBUG) Max7219_init(); #endif #ifdef DISABLE_JTAG // Disable JTAG on AT90USB chips to free up pins for IO MCUCR = 0x80; MCUCR = 0x80; #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) setup_filrunoutpin(); #endif setup_killpin(); setup_powerhold(); #if HAS_STEPPER_RESET disableStepperDrivers(); #endif MYSERIAL.begin(BAUDRATE); SERIAL_PROTOCOLLNPGM("start"); SERIAL_ECHO_START(); // Check startup - does nothing if bootloader sets MCUSR to 0 byte mcu = MCUSR; if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP); if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET); if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET); if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET); if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET); MCUSR = 0; SERIAL_ECHOPGM(MSG_MARLIN); SERIAL_CHAR(' '); SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION); SERIAL_EOL(); #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR) SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_CONFIGURATION_VER); SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE); SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR); SERIAL_ECHO_START(); SERIAL_ECHOLNPGM("Compiled: " __DATE__); #endif SERIAL_ECHO_START(); SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory()); SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE); // Send "ok" after commands by default for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true; // Load data from EEPROM if available (or use defaults) // This also updates variables in the planner, elsewhere (void)settings.load(); #if HAS_M206_COMMAND // Initialize current position based on home_offset COPY(current_position, home_offset); #else ZERO(current_position); #endif // Vital to init stepper/planner equivalent for current_position SYNC_PLAN_POSITION_KINEMATIC(); thermalManager.init(); // Initialize temperature loop #if ENABLED(USE_WATCHDOG) watchdog_init(); #endif stepper.init(); // Initialize stepper, this enables interrupts! servo_init(); #if HAS_PHOTOGRAPH OUT_WRITE(PHOTOGRAPH_PIN, LOW); #endif #if HAS_CASE_LIGHT case_light_on = CASE_LIGHT_DEFAULT_ON; case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS; update_case_light(); #endif #if ENABLED(SPINDLE_LASER_ENABLE) OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off #if SPINDLE_DIR_CHANGE OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3) #endif #if ENABLED(SPINDLE_LASER_PWM) SET_OUTPUT(SPINDLE_LASER_PWM_PIN); analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed #endif #endif #if HAS_BED_PROBE endstops.enable_z_probe(false); #endif #if ENABLED(USE_CONTROLLER_FAN) SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan #endif #if HAS_STEPPER_RESET enableStepperDrivers(); #endif #if ENABLED(DIGIPOT_I2C) digipot_i2c_init(); #endif #if ENABLED(DAC_STEPPER_CURRENT) dac_init(); #endif #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1 OUT_WRITE(SOL1_PIN, LOW); // turn it off #endif #if HAS_HOME SET_INPUT_PULLUP(HOME_PIN); #endif #if PIN_EXISTS(STAT_LED_RED) OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off #endif #if PIN_EXISTS(STAT_LED_BLUE) OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off #endif #if ENABLED(NEOPIXEL_RGBW_LED) SET_OUTPUT(NEOPIXEL_PIN); setup_neopixel(); #endif #if ENABLED(RGB_LED) || ENABLED(RGBW_LED) SET_OUTPUT(RGB_LED_R_PIN); SET_OUTPUT(RGB_LED_G_PIN); SET_OUTPUT(RGB_LED_B_PIN); #if ENABLED(RGBW_LED) SET_OUTPUT(RGB_LED_W_PIN); #endif #endif #if ENABLED(MK2_MULTIPLEXER) SET_OUTPUT(E_MUX0_PIN); SET_OUTPUT(E_MUX1_PIN); SET_OUTPUT(E_MUX2_PIN); #endif #if HAS_FANMUX fanmux_init(); #endif lcd_init(); #ifndef CUSTOM_BOOTSCREEN_TIMEOUT #define CUSTOM_BOOTSCREEN_TIMEOUT 2500 #endif #if ENABLED(SHOW_BOOTSCREEN) #if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn #if ENABLED(SHOW_CUSTOM_BOOTSCREEN) safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause lcd_bootscreen(); // Show Marlin boot screen #endif safe_delay(BOOTSCREEN_TIMEOUT); // Pause #elif ENABLED(ULTRA_LCD) lcd_bootscreen(); #if DISABLED(SDSUPPORT) lcd_init(); #endif #endif #endif #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1 // Initialize mixing to 100% color 1 for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] = (i == 0) ? 1.0 : 0.0; for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++) for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_virtual_tool_mix[t][i] = mixing_factor[i]; #endif #if ENABLED(BLTOUCH) // Make sure any BLTouch error condition is cleared bltouch_command(BLTOUCH_RESET); set_bltouch_deployed(true); set_bltouch_deployed(false); #endif #if ENABLED(I2C_POSITION_ENCODERS) I2CPEM.init(); #endif #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0 i2c.onReceive(i2c_on_receive); i2c.onRequest(i2c_on_request); #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) setup_endstop_interrupts(); #endif #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH move_extruder_servo(0); // Initialize extruder servo #endif #if ENABLED(SWITCHING_NOZZLE) move_nozzle_servo(0); // Initialize nozzle servo #endif #if ENABLED(PARKING_EXTRUDER) #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT) pe_activate_magnet(0); pe_activate_magnet(1); #else pe_deactivate_magnet(0); pe_deactivate_magnet(1); #endif #endif } /** * The main Marlin program loop * * - Save or log commands to SD * - Process available commands (if not saving) * - Call heater manager * - Call inactivity manager * - Call endstop manager * - Call LCD update */ void loop() { if (commands_in_queue < BUFSIZE) get_available_commands(); #if ENABLED(SDSUPPORT) card.checkautostart(false); #endif if (commands_in_queue) { #if ENABLED(SDSUPPORT) if (card.saving) { char* command = command_queue[cmd_queue_index_r]; if (strstr_P(command, PSTR("M29"))) { // M29 closes the file card.closefile(); SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED); ok_to_send(); } else { // Write the string from the read buffer to SD card.write_command(command); if (card.logging) process_next_command(); // The card is saving because it's logging else ok_to_send(); } } else process_next_command(); #else process_next_command(); #endif // SDSUPPORT // The queue may be reset by a command handler or by code invoked by idle() within a handler if (commands_in_queue) { --commands_in_queue; if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0; } } endstops.report_state(); idle(); }