/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ // How many DIO pins are defined? #ifdef DIO85_PIN // #define DIO_COUNT 86 #define DIO_COUNT 70 // digitalRead and other Arduino IDE routines only know about pins 0 through 69 #elif defined(DIO53_PIN) #define DIO_COUNT 54 #elif defined(DIO47_PIN) #define DIO_COUNT 48 #elif defined(DIO31_PIN) #define DIO_COUNT 32 #elif defined(DIO21_PIN) #define DIO_COUNT 22 #endif bool endstop_monitor_flag = false; #define NAME_FORMAT "%-28s" // one place to specify the format of all the sources of names // "-" left justify, "28" minimum width of name, pad with blanks #define _PIN_SAY(NAME) { sprintf(buffer, NAME_FORMAT, NAME); SERIAL_ECHO(buffer); return true; } #define PIN_SAY(NAME) if (pin == NAME) _PIN_SAY(#NAME); #define _ANALOG_PIN_SAY(NAME) { sprintf(buffer, NAME_FORMAT, NAME); SERIAL_ECHO(buffer); pin_is_analog = true; return true; } #define ANALOG_PIN_SAY(NAME) if (pin == analogInputToDigitalPin(NAME)) _ANALOG_PIN_SAY(#NAME); #define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(5))) int digitalRead_mod(int8_t pin) { // same as digitalRead except the PWM stop section has been removed uint8_t port = digitalPinToPort(pin); return (port != NOT_A_PIN) && (*portInputRegister(port) & digitalPinToBitMask(pin)) ? HIGH : LOW; } /** * Report pin name for a given fastio digital pin index */ static bool report_pin_name(int8_t pin, bool &pin_is_analog) { char buffer[30]; // for the sprintf statements pin_is_analog = false; // default to digital pin if (IS_ANALOG(pin)) { sprintf(buffer, "(A%2d) ", int(pin - analogInputToDigitalPin(0))); SERIAL_ECHO(buffer); } else SERIAL_ECHOPGM(" "); #if defined(RXD) && RXD >= 0 if (pin == 0) { sprintf(buffer, NAME_FORMAT, "RXD"); SERIAL_ECHO(buffer); return true; } #endif #if defined(TXD) && TXD >= 0 if (pin == 1) { sprintf(buffer, NAME_FORMAT, "TXD"); SERIAL_ECHO(buffer); return true; } #endif // Pin list updated from 7 OCT RCBugfix branch #if defined(__FD) && __FD >= 0 PIN_SAY(__FD) #endif #if defined(__FS) && __FS >= 0 PIN_SAY(__FS) #endif #if defined(__GD) && __GD >= 0 PIN_SAY(__GD) #endif #if defined(__GS) && __GS >= 0 PIN_SAY(__GS) #endif #if PIN_EXISTS(AVR_MISO) PIN_SAY(AVR_MISO_PIN); #endif #if PIN_EXISTS(AVR_MOSI) PIN_SAY(AVR_MOSI_PIN); #endif #if PIN_EXISTS(AVR_SCK) PIN_SAY(AVR_SCK_PIN); #endif #if PIN_EXISTS(AVR_SS) PIN_SAY(AVR_SS_PIN); #endif #if PIN_EXISTS(BEEPER) PIN_SAY(BEEPER_PIN); #endif #if defined(BTN_CENTER) && BTN_CENTER >= 0 PIN_SAY(BTN_CENTER); #endif #if defined(BTN_DOWN) && BTN_DOWN >= 0 PIN_SAY(BTN_DOWN); #endif #if defined(BTN_DWN) && BTN_DWN >= 0 PIN_SAY(BTN_DWN); #endif #if defined(BTN_EN1) && BTN_EN1 >= 0 PIN_SAY(BTN_EN1); #endif #if defined(BTN_EN2) && BTN_EN2 >= 0 PIN_SAY(BTN_EN2); #endif #if defined(BTN_ENC) && BTN_ENC >= 0 PIN_SAY(BTN_ENC); #endif #if defined(BTN_HOME) && BTN_HOME >= 0 PIN_SAY(BTN_HOME); #endif #if defined(BTN_LEFT) && BTN_LEFT >= 0 PIN_SAY(BTN_LEFT); #endif #if defined(BTN_LFT) && BTN_LFT >= 0 PIN_SAY(BTN_LFT); #endif #if defined(BTN_RIGHT) && BTN_RIGHT >= 0 PIN_SAY(BTN_RIGHT); #endif #if defined(BTN_RT) && BTN_RT >= 0 PIN_SAY(BTN_RT); #endif #if defined(BTN_UP) && BTN_UP >= 0 PIN_SAY(BTN_UP); #endif #if PIN_EXISTS(CONTROLLERFAN) PIN_SAY(CONTROLLERFAN_PIN); #endif #if PIN_EXISTS(DAC_DISABLE) PIN_SAY(DAC_DISABLE_PIN); #endif #if defined(DAC_STEPPER_GAIN) && DAC_STEPPER_GAIN >= 0 PIN_SAY(DAC_STEPPER_GAIN); #endif #if defined(DAC_STEPPER_VREF) && DAC_STEPPER_VREF >= 0 PIN_SAY(DAC_STEPPER_VREF); #endif #if PIN_EXISTS(DEBUG) PIN_SAY(DEBUG_PIN); #endif #if PIN_EXISTS(DIGIPOTSS) PIN_SAY(DIGIPOTSS_PIN); #endif #if defined(DIO_COUNT) && DIO_COUNT >= 0 PIN_SAY(DIO_COUNT); #endif #if defined(DOGLCD_A0) && DOGLCD_A0 >= 0 PIN_SAY(DOGLCD_A0); #endif #if defined(DOGLCD_CS) && DOGLCD_CS >= 0 PIN_SAY(DOGLCD_CS); #endif #if defined(DOGLCD_MOSI) && DOGLCD_MOSI >= 0 PIN_SAY(DOGLCD_MOSI); #endif #if defined(DOGLCD_SCK) && DOGLCD_SCK >= 0 PIN_SAY(DOGLCD_SCK); #endif #if PIN_EXISTS(E0_ATT) PIN_SAY(E0_ATT_PIN); #endif #if PIN_EXISTS(E0_AUTO_FAN) PIN_SAY(E0_AUTO_FAN_PIN); #endif #if PIN_EXISTS(E1_AUTO_FAN) PIN_SAY(E1_AUTO_FAN_PIN); #endif #if PIN_EXISTS(E2_AUTO_FAN) PIN_SAY(E2_AUTO_FAN_PIN); #endif #if PIN_EXISTS(E3_AUTO_FAN) PIN_SAY(E3_AUTO_FAN_PIN); #endif #if PIN_EXISTS(E0_DIR) PIN_SAY(E0_DIR_PIN); #endif #if PIN_EXISTS(E0_ENABLE) PIN_SAY(E0_ENABLE_PIN); #endif #if PIN_EXISTS(E0_MS1) PIN_SAY(E0_MS1_PIN); #endif #if PIN_EXISTS(E0_MS2) PIN_SAY(E0_MS2_PIN); #endif #if PIN_EXISTS(E0_STEP) PIN_SAY(E0_STEP_PIN); #endif #if PIN_EXISTS(E1_DIR) PIN_SAY(E1_DIR_PIN); #endif #if PIN_EXISTS(E1_ENABLE) PIN_SAY(E1_ENABLE_PIN); #endif #if PIN_EXISTS(E1_MS1) PIN_SAY(E1_MS1_PIN); #endif #if PIN_EXISTS(E1_MS2) PIN_SAY(E1_MS2_PIN); #endif #if PIN_EXISTS(E1_STEP) PIN_SAY(E1_STEP_PIN); #endif #if PIN_EXISTS(E2_DIR) PIN_SAY(E2_DIR_PIN); #endif #if PIN_EXISTS(E2_ENABLE) PIN_SAY(E2_ENABLE_PIN); #endif #if PIN_EXISTS(E2_STEP) PIN_SAY(E2_STEP_PIN); #endif #if PIN_EXISTS(E3_DIR) PIN_SAY(E3_DIR_PIN); #endif #if PIN_EXISTS(E3_ENABLE) PIN_SAY(E3_ENABLE_PIN); #endif #if PIN_EXISTS(E3_STEP) PIN_SAY(E3_STEP_PIN); #endif #if PIN_EXISTS(E4_DIR) PIN_SAY(E4_DIR_PIN); #endif #if PIN_EXISTS(E4_ENABLE) PIN_SAY(E4_ENABLE_PIN); #endif #if PIN_EXISTS(E4_STEP) PIN_SAY(E4_STEP_PIN); #endif #if defined(encrot1) && encrot1 >= 0 PIN_SAY(encrot1); #endif #if defined(encrot2) && encrot2 >= 0 PIN_SAY(encrot2); #endif #if defined(encrot3) && encrot3 >= 0 PIN_SAY(encrot3); #endif #if defined(EXT_AUX_A0_IO) && EXT_AUX_A0_IO >= 0 PIN_SAY(EXT_AUX_A0_IO); #endif #if defined(EXT_AUX_A1) && EXT_AUX_A1 >= 0 PIN_SAY(EXT_AUX_A1); #endif #if defined(EXT_AUX_A1_IO) && EXT_AUX_A1_IO >= 0 PIN_SAY(EXT_AUX_A1_IO); #endif #if defined(EXT_AUX_A2) && EXT_AUX_A2 >= 0 PIN_SAY(EXT_AUX_A2); #endif #if defined(EXT_AUX_A2_IO) && EXT_AUX_A2_IO >= 0 PIN_SAY(EXT_AUX_A2_IO); #endif #if defined(EXT_AUX_A3) && EXT_AUX_A3 >= 0 PIN_SAY(EXT_AUX_A3); #endif #if defined(EXT_AUX_A3_IO) && EXT_AUX_A3_IO >= 0 PIN_SAY(EXT_AUX_A3_IO); #endif #if defined(EXT_AUX_A4) && EXT_AUX_A4 >= 0 PIN_SAY(EXT_AUX_A4); #endif #if defined(EXT_AUX_A4_IO) && EXT_AUX_A4_IO >= 0 PIN_SAY(EXT_AUX_A4_IO); #endif #if defined(EXT_AUX_PWM_D24) && EXT_AUX_PWM_D24 >= 0 PIN_SAY(EXT_AUX_PWM_D24); #endif #if defined(EXT_AUX_RX1_D2) && EXT_AUX_RX1_D2 >= 0 PIN_SAY(EXT_AUX_RX1_D2); #endif #if defined(EXT_AUX_SDA_D1) && EXT_AUX_SDA_D1 >= 0 PIN_SAY(EXT_AUX_SDA_D1); #endif #if defined(EXT_AUX_TX1_D3) && EXT_AUX_TX1_D3 >= 0 PIN_SAY(EXT_AUX_TX1_D3); #endif #if PIN_EXISTS(FAN) PIN_SAY(FAN_PIN); #endif #if PIN_EXISTS(FAN0) PIN_SAY(FAN0_PIN); #endif #if PIN_EXISTS(FAN1) PIN_SAY(FAN1_PIN); #endif #if PIN_EXISTS(FAN2) PIN_SAY(FAN2_PIN); #endif #if PIN_EXISTS(FIL_RUNOUT) PIN_SAY(FIL_RUNOUT_PIN); #endif #if PIN_EXISTS(FILWIDTH) ANALOG_PIN_SAY(FILWIDTH_PIN); #endif #if defined(GEN7_VERSION) && GEN7_VERSION >= 0 PIN_SAY(GEN7_VERSION); #endif #if PIN_EXISTS(HEATER_0) PIN_SAY(HEATER_0_PIN); #endif #if PIN_EXISTS(HEATER_1) PIN_SAY(HEATER_1_PIN); #endif #if PIN_EXISTS(HEATER_2) PIN_SAY(HEATER_2_PIN); #endif #if PIN_EXISTS(HEATER_3) PIN_SAY(HEATER_3_PIN); #endif #if PIN_EXISTS(HEATER_4) PIN_SAY(HEATER_4_PIN); #endif #if PIN_EXISTS(HEATER_5) PIN_SAY(HEATER_5_PIN); #endif #if PIN_EXISTS(HEATER_6) PIN_SAY(HEATER_6_PIN); #endif #if PIN_EXISTS(HEATER_7) PIN_SAY(HEATER_7_PIN); #endif #if PIN_EXISTS(HEATER_BED) PIN_SAY(HEATER_BED_PIN); #endif #if defined(I2C_SCL) && I2C_SCL >= 0 PIN_SAY(I2C_SCL); #endif #if defined(I2C_SDA) && I2C_SDA >= 0 PIN_SAY(I2C_SDA); #endif #if PIN_EXISTS(KILL) PIN_SAY(KILL_PIN); #endif #if PIN_EXISTS(LCD_BACKLIGHT) PIN_SAY(LCD_BACKLIGHT_PIN); #endif #if defined(LCD_CONTRAST) && LCD_CONTRAST >= 0 PIN_SAY(LCD_CONTRAST); #endif #if defined(LCD_PINS_D4) && LCD_PINS_D4 >= 0 PIN_SAY(LCD_PINS_D4); #endif #if defined(LCD_PINS_D5) && LCD_PINS_D5 >= 0 PIN_SAY(LCD_PINS_D5); #endif #if defined(LCD_PINS_D6) && LCD_PINS_D6 >= 0 PIN_SAY(LCD_PINS_D6); #endif #if defined(LCD_PINS_D7) && LCD_PINS_D7 >= 0 PIN_SAY(LCD_PINS_D7); #endif #if defined(LCD_PINS_ENABLE) && LCD_PINS_ENABLE >= 0 PIN_SAY(LCD_PINS_ENABLE); #endif #if defined(LCD_PINS_RS) && LCD_PINS_RS >= 0 PIN_SAY(LCD_PINS_RS); #endif #if defined(LCD_SDSS) && LCD_SDSS >= 0 PIN_SAY(LCD_SDSS); #endif #if PIN_EXISTS(LED) PIN_SAY(LED_PIN); #endif #if PIN_EXISTS(MAIN_VOLTAGE_MEASURE) PIN_SAY(MAIN_VOLTAGE_MEASURE_PIN); #endif #if defined(MAX6675_SS) && MAX6675_SS >= 0 PIN_SAY(MAX6675_SS); #endif #if PIN_EXISTS(MISO) PIN_SAY(MISO_PIN); #endif #if PIN_EXISTS(MOSFET_D) PIN_SAY(MOSFET_D_PIN); #endif #if PIN_EXISTS(MOSI) PIN_SAY(MOSI_PIN); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) PIN_SAY(MOTOR_CURRENT_PWM_E_PIN); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) PIN_SAY(MOTOR_CURRENT_PWM_XY_PIN); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) PIN_SAY(MOTOR_CURRENT_PWM_Z_PIN); #endif #if defined(NUM_TLCS) && NUM_TLCS >= 0 PIN_SAY(NUM_TLCS); #endif #if PIN_EXISTS(PHOTOGRAPH) PIN_SAY(PHOTOGRAPH_PIN); #endif #if PIN_EXISTS(PS_ON) PIN_SAY(PS_ON_PIN); #endif #if PIN_EXISTS(RAMPS_D10) PIN_SAY(RAMPS_D10_PIN); #endif #if PIN_EXISTS(RAMPS_D8) PIN_SAY(RAMPS_D8_PIN); #endif #if PIN_EXISTS(RAMPS_D9) PIN_SAY(RAMPS_D9_PIN); #endif #if PIN_EXISTS(RX_ENABLE) PIN_SAY(RX_ENABLE_PIN); #endif #if PIN_EXISTS(SAFETY_TRIGGERED) PIN_SAY(SAFETY_TRIGGERED_PIN); #endif #if PIN_EXISTS(SCK) PIN_SAY(SCK_PIN); #endif #if defined(SCL) && SCL >= 0 PIN_SAY(SCL); #endif #if PIN_EXISTS(SD_DETECT) PIN_SAY(SD_DETECT_PIN); #endif #if defined(SDA) && SDA >= 0 PIN_SAY(SDA); #endif #if defined(SDPOWER) && SDPOWER >= 0 PIN_SAY(SDPOWER); #endif #if defined(SDSS) && SDSS >= 0 PIN_SAY(SDSS); #endif #if PIN_EXISTS(SERVO0) PIN_SAY(SERVO0_PIN); #endif #if PIN_EXISTS(SERVO1) PIN_SAY(SERVO1_PIN); #endif #if PIN_EXISTS(SERVO2) PIN_SAY(SERVO2_PIN); #endif #if PIN_EXISTS(SERVO3) PIN_SAY(SERVO3_PIN); #endif #if defined(SHIFT_CLK) && SHIFT_CLK >= 0 PIN_SAY(SHIFT_CLK); #endif #if defined(SHIFT_EN) && SHIFT_EN >= 0 PIN_SAY(SHIFT_EN); #endif #if defined(SHIFT_LD) && SHIFT_LD >= 0 PIN_SAY(SHIFT_LD); #endif #if defined(SHIFT_OUT) && SHIFT_OUT >= 0 PIN_SAY(SHIFT_OUT); #endif #if PIN_EXISTS(SLED) PIN_SAY(SLED_PIN); #endif #if PIN_EXISTS(SLEEP_WAKE) PIN_SAY(SLEEP_WAKE_PIN); #endif #if PIN_EXISTS(SOL1) PIN_SAY(SOL1_PIN); #endif #if PIN_EXISTS(SOL2) PIN_SAY(SOL2_PIN); #endif #if PIN_EXISTS(SPINDLE_ENABLE) PIN_SAY(SPINDLE_ENABLE_PIN); #endif #if PIN_EXISTS(SPINDLE_SPEED) PIN_SAY(SPINDLE_SPEED_PIN); #endif #if PIN_EXISTS(SS) PIN_SAY(SS_PIN); #endif #if PIN_EXISTS(STAT_LED_BLUE) PIN_SAY(STAT_LED_BLUE_PIN); #endif #if PIN_EXISTS(STAT_LED_RED) PIN_SAY(STAT_LED_RED_PIN); #endif #if PIN_EXISTS(STEPPER_RESET) PIN_SAY(STEPPER_RESET_PIN); #endif #if PIN_EXISTS(SUICIDE) PIN_SAY(SUICIDE_PIN); #endif #if defined(TC1) && TC1 >= 0 ANALOG_PIN_SAY(TC1); #endif #if defined(TC2) && TC2 >= 0 ANALOG_PIN_SAY(TC2); #endif #if PIN_EXISTS(TEMP_0) ANALOG_PIN_SAY(TEMP_0_PIN); #endif #if PIN_EXISTS(TEMP_1) ANALOG_PIN_SAY(TEMP_1_PIN); #endif #if PIN_EXISTS(TEMP_2) ANALOG_PIN_SAY(TEMP_2_PIN); #endif #if PIN_EXISTS(TEMP_3) ANALOG_PIN_SAY(TEMP_3_PIN); #endif #if PIN_EXISTS(TEMP_4) ANALOG_PIN_SAY(TEMP_4_PIN); #endif #if PIN_EXISTS(TEMP_BED) ANALOG_PIN_SAY(TEMP_BED_PIN); #endif #if PIN_EXISTS(TEMP_X) ANALOG_PIN_SAY(TEMP_X_PIN); #endif #if defined(TLC_BLANK_BIT) && TLC_BLANK_BIT >= 0 PIN_SAY(TLC_BLANK_BIT); #endif #if PIN_EXISTS(TLC_BLANK) PIN_SAY(TLC_BLANK_PIN); #endif #if defined(TLC_CLOCK_BIT) && TLC_CLOCK_BIT >= 0 PIN_SAY(TLC_CLOCK_BIT); #endif #if PIN_EXISTS(TLC_CLOCK) PIN_SAY(TLC_CLOCK_PIN); #endif #if defined(TLC_DATA_BIT) && TLC_DATA_BIT >= 0 PIN_SAY(TLC_DATA_BIT); #endif #if PIN_EXISTS(TLC_DATA) PIN_SAY(TLC_DATA_PIN); #endif #if PIN_EXISTS(TLC_XLAT) PIN_SAY(TLC_XLAT_PIN); #endif #if PIN_EXISTS(TX_ENABLE) PIN_SAY(TX_ENABLE_PIN); #endif #if defined(UNUSED_PWM) && UNUSED_PWM >= 0 PIN_SAY(UNUSED_PWM); #endif #if PIN_EXISTS(X_ATT) PIN_SAY(X_ATT_PIN); #endif #if PIN_EXISTS(X_DIR) PIN_SAY(X_DIR_PIN); #endif #if PIN_EXISTS(X_ENABLE) PIN_SAY(X_ENABLE_PIN); #endif #if PIN_EXISTS(X_MAX) PIN_SAY(X_MAX_PIN); #endif #if PIN_EXISTS(X_MIN) PIN_SAY(X_MIN_PIN); #endif #if PIN_EXISTS(X_MS1) PIN_SAY(X_MS1_PIN); #endif #if PIN_EXISTS(X_MS2) PIN_SAY(X_MS2_PIN); #endif #if PIN_EXISTS(X_STEP) PIN_SAY(X_STEP_PIN); #endif #if PIN_EXISTS(X_STOP) PIN_SAY(X_STOP_PIN); #endif #if PIN_EXISTS(X2_DIR) PIN_SAY(X2_DIR_PIN); #endif #if PIN_EXISTS(X2_ENABLE) PIN_SAY(X2_ENABLE_PIN); #endif #if PIN_EXISTS(X2_STEP) PIN_SAY(X2_STEP_PIN); #endif #if PIN_EXISTS(Y_ATT) PIN_SAY(Y_ATT_PIN); #endif #if PIN_EXISTS(Y_DIR) PIN_SAY(Y_DIR_PIN); #endif #if PIN_EXISTS(Y_ENABLE) PIN_SAY(Y_ENABLE_PIN); #endif #if PIN_EXISTS(Y_MAX) PIN_SAY(Y_MAX_PIN); #endif #if PIN_EXISTS(Y_MIN) PIN_SAY(Y_MIN_PIN); #endif #if PIN_EXISTS(Y_MS1) PIN_SAY(Y_MS1_PIN); #endif #if PIN_EXISTS(Y_MS2) PIN_SAY(Y_MS2_PIN); #endif #if PIN_EXISTS(Y_STEP) PIN_SAY(Y_STEP_PIN); #endif #if PIN_EXISTS(Y_STOP) PIN_SAY(Y_STOP_PIN); #endif #if PIN_EXISTS(Y2_DIR) PIN_SAY(Y2_DIR_PIN); #endif #if PIN_EXISTS(Y2_ENABLE) PIN_SAY(Y2_ENABLE_PIN); #endif #if PIN_EXISTS(Y2_STEP) PIN_SAY(Y2_STEP_PIN); #endif #if PIN_EXISTS(Z_ATT) PIN_SAY(Z_ATT_PIN); #endif #if PIN_EXISTS(Z_DIR) PIN_SAY(Z_DIR_PIN); #endif #if PIN_EXISTS(Z_ENABLE) PIN_SAY(Z_ENABLE_PIN); #endif #if PIN_EXISTS(Z_MAX) PIN_SAY(Z_MAX_PIN); #endif #if PIN_EXISTS(Z_MIN) PIN_SAY(Z_MIN_PIN); #endif #if PIN_EXISTS(Z_MIN_PROBE) PIN_SAY(Z_MIN_PROBE_PIN); #endif #if PIN_EXISTS(Z_MS1) PIN_SAY(Z_MS1_PIN); #endif #if PIN_EXISTS(Z_MS2) PIN_SAY(Z_MS2_PIN); #endif #if PIN_EXISTS(Z_STEP) PIN_SAY(Z_STEP_PIN); #endif #if PIN_EXISTS(Z_STOP) PIN_SAY(Z_STOP_PIN); #endif #if PIN_EXISTS(Z2_DIR) PIN_SAY(Z2_DIR_PIN); #endif #if PIN_EXISTS(Z2_ENABLE) PIN_SAY(Z2_ENABLE_PIN); #endif #if PIN_EXISTS(Z2_STEP) PIN_SAY(Z2_STEP_PIN); #endif sprintf(buffer, NAME_FORMAT, " "); SERIAL_ECHO(buffer); return false; } // report_pin_name #define PWM_PRINT(V) do{ sprintf(buffer, "PWM: %4d", V); SERIAL_ECHO(buffer); }while(0) #define PWM_CASE(N) \ case TIMER##N: \ if (TCCR##N & (_BV(COM## N ##1) | _BV(COM## N ##0))) { \ PWM_PRINT(OCR##N); \ return true; \ } else return false /** * Print a pin's PWM status. * Return true if it's currently a PWM pin. */ static bool PWM_status(uint8_t pin) { char buffer[20]; // for the sprintf statements switch(digitalPinToTimer(pin)) { #if defined(TCCR0A) && defined(COM0A1) PWM_CASE(0A); PWM_CASE(0B); #endif #if defined(TCCR1A) && defined(COM1A1) PWM_CASE(1A); PWM_CASE(1B); PWM_CASE(1C); #endif #if defined(TCCR2A) && defined(COM2A1) PWM_CASE(2A); PWM_CASE(2B); #endif #if defined(TCCR3A) && defined(COM3A1) PWM_CASE(3A); PWM_CASE(3B); PWM_CASE(3C); #endif #ifdef TCCR4A PWM_CASE(4A); PWM_CASE(4B); PWM_CASE(4C); #endif #if defined(TCCR5A) && defined(COM5A1) PWM_CASE(5A); PWM_CASE(5B); PWM_CASE(5C); #endif case NOT_ON_TIMER: default: return false; } SERIAL_PROTOCOLPGM(" "); } //PWM_status static void PWM_details(uint8_t pin) { uint8_t WGM; switch(digitalPinToTimer(pin)) { #if defined(TCCR0A) && defined(COM0A1) case TIMER0A: SERIAL_PROTOCOLPGM(" TIMER0A"); WGM = ((TCCR0B & _BV(WGM02)) >> 1 ) | (TCCR0A & (_BV(WGM00) | _BV(WGM01) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK0: ", TIMSK0); if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK0 & _BV(OCIE0A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK0 & _BV(TOIE0) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER0B: SERIAL_PROTOCOLPGM(" TIMER0B"); WGM = ((TCCR0B & _BV(WGM02)) >> 1 ) | (TCCR0A & (_BV(WGM00) | _BV(WGM01) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK0: ", TIMSK0); if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK0 & _BV(OCIE0B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK0 & _BV(TOIE0) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; #endif #if defined(TCCR1A) && defined(COM1A1) case TIMER1A: SERIAL_PROTOCOLPGM(" TIMER1A"); WGM = ((TCCR1B & (_BV(WGM12) | _BV(WGM13) )) >> 1 ) | (TCCR1A & (_BV(WGM10) | _BV(WGM11) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK1: ", TIMSK1); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK1 & _BV(OCIE1A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK1 & (_BV(TOIE1) | _BV(ICIE1)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER1B: SERIAL_PROTOCOLPGM(" TIMER1B"); WGM = ((TCCR1B & (_BV(WGM12) | _BV(WGM13) )) >> 1 ) | (TCCR1A & (_BV(WGM10) | _BV(WGM11) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK1: ", TIMSK1); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK1 & _BV(OCIE1B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK1 & (_BV(TOIE1) | _BV(ICIE1)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER1C: SERIAL_PROTOCOLPGM(" TIMER1C"); WGM = ((TCCR1B & (_BV(WGM12) | _BV(WGM13) )) >> 1 ) | (TCCR1A & (_BV(WGM10) | _BV(WGM11) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK1: ", TIMSK1); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK1 & _BV(OCIE1C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK1 & (_BV(TOIE1) | _BV(ICIE1)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; #endif #if defined(TCCR2A) && defined(COM2A1) case TIMER2A: SERIAL_PROTOCOLPGM(" TIMER2A"); WGM = ((TCCR2B & _BV(WGM22) ) >> 1 ) | (TCCR2A & (_BV(WGM20) | _BV(WGM21) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK2: ", TIMSK2); if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK2 & (_BV(TOIE2) | _BV(OCIE2A))) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK2 & _BV(TOIE2) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER2B: SERIAL_PROTOCOLPGM(" TIMER2B"); WGM = ((TCCR2B & _BV(WGM22) ) >> 1 ) | (TCCR2A & (_BV(WGM20) | _BV(WGM21) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK2: ", TIMSK2); if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK2 & _BV(OCIE2B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK2 & _BV(TOIE2) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; #endif #if defined(TCCR3A) && defined(COM3A1) case TIMER3A: SERIAL_PROTOCOLPGM(" TIMER3A"); WGM = ((TCCR3B & _BV(WGM32) ) >> 1 ) | (TCCR3A & (_BV(WGM30) | _BV(WGM31) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK3: ", TIMSK3); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK3 & _BV(OCIE3A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER3B: SERIAL_PROTOCOLPGM(" TIMER3B"); WGM = ((TCCR3B & _BV(WGM32) ) >> 1 ) | (TCCR3A & (_BV(WGM30) | _BV(WGM31) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK3: ", TIMSK3); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK3 & _BV(OCIE3B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER3C: SERIAL_PROTOCOLPGM(" TIMER3C"); WGM = ((TCCR3B & _BV(WGM32) ) >> 1 ) | (TCCR3A & (_BV(WGM30) | _BV(WGM31) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK3: ", TIMSK3); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK3 & _BV(OCIE3C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; #endif #if defined(TCCR4A) case TIMER4A: SERIAL_PROTOCOLPGM(" TIMER4A"); WGM = ((TCCR4B & (_BV(WGM42) | _BV(WGM43) )) >> 1 ) | (TCCR4A & (_BV(WGM40) | _BV(WGM41) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK4: ", TIMSK4); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK4 & _BV(OCIE4A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK4 & (_BV(TOIE4) | _BV(ICIE4)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER4B: SERIAL_PROTOCOLPGM(" TIMER4B"); WGM = ((TCCR4B & (_BV(WGM42) | _BV(WGM43) )) >> 1 ) | (TCCR4A & (_BV(WGM40) | _BV(WGM41) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK4: ", TIMSK4); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK4 & _BV(OCIE4B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK4 & (_BV(TOIE4) | _BV(ICIE4)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER4C: SERIAL_PROTOCOLPGM(" TIMER4C"); WGM = ((TCCR4B & (_BV(WGM42) | _BV(WGM43) )) >> 1 ) | (TCCR4A & (_BV(WGM40) | _BV(WGM41) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK4: ", TIMSK4); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK4 & _BV(OCIE4C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK4 & (_BV(TOIE4) | _BV(ICIE4)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; #endif #if defined(TCCR5A) && defined(COM5A1) case TIMER5A: SERIAL_PROTOCOLPGM(" TIMER5A"); WGM = ((TCCR5B & (_BV(WGM52) | _BV(WGM53) )) >> 1 ) | (TCCR5A & (_BV(WGM50) | _BV(WGM51) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK5: ", TIMSK5); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK5 & _BV(OCIE5A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK5 & (_BV(TOIE5) | _BV(ICIE5)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER5B: SERIAL_PROTOCOLPGM(" TIMER5B"); WGM = ((TCCR5B & (_BV(WGM52) | _BV(WGM53) )) >> 1 ) | (TCCR5A & (_BV(WGM50) | _BV(WGM51) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK5: ", TIMSK5); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK5 & _BV(OCIE5B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK5 & (_BV(TOIE5) | _BV(ICIE5)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; case TIMER5C: SERIAL_PROTOCOLPGM(" TIMER5C"); WGM = ((TCCR5B & (_BV(WGM52) | _BV(WGM53) )) >> 1 ) | (TCCR5A & (_BV(WGM50) | _BV(WGM51) )); SERIAL_PROTOCOLPAIR(" WGM: ", WGM); SERIAL_PROTOCOLPAIR(" TIMSK5: ", TIMSK5); if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode"); else if (TIMSK5 & _BV(OCIE5C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt"); else if (TIMSK5 & (_BV(TOIE5) | _BV(ICIE5)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt"); else SERIAL_PROTOCOLPGM(" can be used as PWM "); break; #endif case NOT_ON_TIMER: break; } SERIAL_PROTOCOLPGM(" "); } // PWM_details inline void report_pin_state(int8_t pin) { SERIAL_ECHO((int)pin); SERIAL_CHAR(' '); bool dummy; if (report_pin_name(pin, dummy)) { if (pin_is_protected(pin)) SERIAL_ECHOPGM(" (protected)"); else { SERIAL_ECHOPGM(" = "); pinMode(pin, INPUT_PULLUP); SERIAL_ECHO(digitalRead(pin)); if (IS_ANALOG(pin)) { SERIAL_CHAR(' '); SERIAL_CHAR('('); SERIAL_ECHO(analogRead(pin - analogInputToDigitalPin(0))); SERIAL_CHAR(')'); } } } SERIAL_EOL; } bool get_pinMode(int8_t pin) { return *portModeRegister(digitalPinToPort(pin)) & digitalPinToBitMask(pin); } // pretty report with PWM info inline void report_pin_state_extended(int8_t pin, bool ignore) { char buffer[30]; // for the sprintf statements // report pin number sprintf(buffer, "PIN:% 3d ", pin); SERIAL_ECHO(buffer); // report pin name bool analog_pin; report_pin_name(pin, analog_pin); // report pin state if (pin_is_protected(pin) && !ignore) SERIAL_ECHOPGM("protected "); else { if (analog_pin) { sprintf(buffer, "Analog in =% 5d", analogRead(pin - analogInputToDigitalPin(0))); SERIAL_ECHO(buffer); } else { if (!get_pinMode(pin)) { pinMode(pin, INPUT_PULLUP); // make sure input isn't floating SERIAL_PROTOCOLPAIR("Input = ", digitalRead_mod(pin)); } else if (PWM_status(pin)) { // do nothing } else SERIAL_PROTOCOLPAIR("Output = ", digitalRead_mod(pin)); } } // report PWM capabilities PWM_details(pin); SERIAL_EOL; }