Firmware/Marlin/planner.cpp
2018-04-04 18:27:09 -05:00

1686 lines
60 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* planner.cpp
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
*
*
* Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
*
* s == speed, a == acceleration, t == time, d == distance
*
* Basic definitions:
* Speed[s_, a_, t_] := s + (a*t)
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
*
* Distance to reach a specific speed with a constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
* d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
*
* Speed after a given distance of travel with constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
* m -> Sqrt[2 a d + s^2]
*
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
*
* When to start braking (di) to reach a specified destination speed (s2) after accelerating
* from initial speed s1 without ever stopping at a plateau:
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
* di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
*
* IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*
*/
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "ultralcd.h"
#include "language.h"
#include "parser.h"
#include "Marlin.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#endif
#if ENABLED(AUTO_POWER_CONTROL)
#include "power.h"
#endif
Planner planner;
// public:
/**
* A ring buffer of moves described in steps
*/
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head = 0, // Index of the next block to be pushed
Planner::block_buffer_tail = 0;
float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
Planner::axis_steps_per_mm[XYZE_N],
Planner::steps_to_mm[XYZE_N];
#if ENABLED(DISTINCT_E_FACTORS)
uint8_t Planner::last_extruder = 0; // Respond to extruder change
#endif
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); // The flow percentage and volumetric multiplier combine to scale E movement
#if DISABLED(NO_VOLUMETRICS)
float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
#endif
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
uint32_t Planner::min_segment_time_us;
// Initialized by settings.load()
float Planner::min_feedrate_mm_s,
Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
Planner::max_jerk[XYZE], // The largest speed change requiring no acceleration
Planner::min_travel_feedrate_mm_s;
#if HAS_LEVELING
bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
#if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner::z_fade_height, // Initialized by settings.load()
Planner::inverse_z_fade_height,
Planner::last_fade_z;
#endif
#else
constexpr bool Planner::leveling_active;
#endif
#if ENABLED(SKEW_CORRECTION)
#if ENABLED(SKEW_CORRECTION_GCODE)
float Planner::xy_skew_factor;
#else
constexpr float Planner::xy_skew_factor;
#endif
#if ENABLED(SKEW_CORRECTION_FOR_Z) && ENABLED(SKEW_CORRECTION_GCODE)
float Planner::xz_skew_factor, Planner::yz_skew_factor;
#else
constexpr float Planner::xz_skew_factor, Planner::yz_skew_factor;
#endif
#endif
#if ENABLED(AUTOTEMP)
float Planner::autotemp_max = 250,
Planner::autotemp_min = 210,
Planner::autotemp_factor = 0.1;
bool Planner::autotemp_enabled = false;
#endif
// private:
int32_t Planner::position[NUM_AXIS] = { 0 };
uint32_t Planner::cutoff_long;
float Planner::previous_speed[NUM_AXIS],
Planner::previous_nominal_speed;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
#endif
#ifdef XY_FREQUENCY_LIMIT
// Old direction bits. Used for speed calculations
unsigned char Planner::old_direction_bits = 0;
// Segment times (in µs). Used for speed calculations
uint32_t Planner::axis_segment_time_us[2][3] = { { MAX_FREQ_TIME_US + 1, 0, 0 }, { MAX_FREQ_TIME_US + 1, 0, 0 } };
#endif
#if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_K, // Initialized by settings.load()
Planner::position_float[XYZE]; // Needed for accurate maths. Steps cannot be used!
#endif
#if ENABLED(ULTRA_LCD)
volatile uint32_t Planner::block_buffer_runtime_us = 0;
#endif
/**
* Class and Instance Methods
*/
Planner::Planner() { init(); }
void Planner::init() {
block_buffer_head = block_buffer_tail = 0;
ZERO(position);
#if ENABLED(LIN_ADVANCE)
ZERO(position_float);
#endif
ZERO(previous_speed);
previous_nominal_speed = 0.0;
#if ABL_PLANAR
bed_level_matrix.set_to_identity();
#endif
}
#define MINIMAL_STEP_RATE 120
/**
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
* by the provided factors.
*/
void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
// Limit minimal step rate (Otherwise the timer will overflow.)
NOLESS(initial_rate, MINIMAL_STEP_RATE);
NOLESS(final_rate, MINIMAL_STEP_RATE);
const int32_t accel = block->acceleration_steps_per_s2;
// Steps required for acceleration, deceleration to/from nominal rate
int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
// Steps between acceleration and deceleration, if any
plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
// Does accelerate_steps + decelerate_steps exceed step_event_count?
// Then we can't possibly reach the nominal rate, there will be no cruising.
// Use intersection_distance() to calculate accel / braking time in order to
// reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0;
}
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps + plateau_steps;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
}
CRITICAL_SECTION_END;
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
//inline float junction_jerk(block_t *before, block_t *after) {
// return SQRT(
// POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
//}
// The kernel called by recalculate() when scanning the plan from last to first entry.
void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) {
if (!current || !next) return;
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
float max_entry_speed = current->max_entry_speed;
if (current->entry_speed != max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
current->entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed)
? max_entry_speed
: min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
SBI(current->flag, BLOCK_BIT_RECALCULATE);
}
}
/**
* recalculate() needs to go over the current plan twice.
* Once in reverse and once forward. This implements the reverse pass.
*/
void Planner::reverse_pass() {
if (movesplanned() > 2) {
const uint8_t endnr = BLOCK_MOD(block_buffer_tail + 1); // tail is running. tail+1 shouldn't be altered because it's connected to the running block.
uint8_t blocknr = prev_block_index(block_buffer_head);
block_t* current = &block_buffer[blocknr];
// Last/newest block in buffer:
const float max_entry_speed = current->max_entry_speed;
if (current->entry_speed != max_entry_speed) {
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false.
current->entry_speed = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH)
? max_entry_speed
: min(max_entry_speed, max_allowable_speed(-current->acceleration, MINIMUM_PLANNER_SPEED, current->millimeters));
SBI(current->flag, BLOCK_BIT_RECALCULATE);
}
do {
const block_t * const next = current;
blocknr = prev_block_index(blocknr);
current = &block_buffer[blocknr];
reverse_pass_kernel(current, next);
} while (blocknr != endnr);
}
}
// The kernel called by recalculate() when scanning the plan from first to last entry.
void Planner::forward_pass_kernel(const block_t * const previous, block_t* const current) {
if (!previous) return;
// If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
// speeds have already been reset, maximized, and reverse planned by reverse planner.
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) {
if (previous->entry_speed < current->entry_speed) {
float entry_speed = min(current->entry_speed,
max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
// Check for junction speed change
if (current->entry_speed != entry_speed) {
current->entry_speed = entry_speed;
SBI(current->flag, BLOCK_BIT_RECALCULATE);
}
}
}
}
/**
* recalculate() needs to go over the current plan twice.
* Once in reverse and once forward. This implements the forward pass.
*/
void Planner::forward_pass() {
block_t* block[3] = { NULL, NULL, NULL };
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[b];
forward_pass_kernel(block[0], block[1]);
}
forward_pass_kernel(block[1], block[2]);
}
/**
* Recalculate the trapezoid speed profiles for all blocks in the plan
* according to the entry_factor for each junction. Must be called by
* recalculate() after updating the blocks.
*/
void Planner::recalculate_trapezoids() {
int8_t block_index = block_buffer_tail;
block_t *current, *next = NULL;
while (block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
// Recalculate if current block entry or exit junction speed has changed.
if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
const float nomr = 1.0 / current->nominal_speed;
calculate_trapezoid_for_block(current, current->entry_speed * nomr, next->entry_speed * nomr);
#if ENABLED(LIN_ADVANCE)
if (current->use_advance_lead) {
const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS];
current->max_adv_steps = current->nominal_speed * comp;
current->final_adv_steps = next->entry_speed * comp;
}
#endif
CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed
}
}
block_index = next_block_index(block_index);
}
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if (next) {
const float nomr = 1.0 / next->nominal_speed;
calculate_trapezoid_for_block(next, next->entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr);
#if ENABLED(LIN_ADVANCE)
if (next->use_advance_lead) {
const float comp = next->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS];
next->max_adv_steps = next->nominal_speed * comp;
next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp;
}
#endif
CBI(next->flag, BLOCK_BIT_RECALCULATE);
}
}
/**
* Recalculate the motion plan according to the following algorithm:
*
* 1. Go over every block in reverse order...
*
* Calculate a junction speed reduction (block_t.entry_factor) so:
*
* a. The junction jerk is within the set limit, and
*
* b. No speed reduction within one block requires faster
* deceleration than the one, true constant acceleration.
*
* 2. Go over every block in chronological order...
*
* Dial down junction speed reduction values if:
* a. The speed increase within one block would require faster
* acceleration than the one, true constant acceleration.
*
* After that, all blocks will have an entry_factor allowing all speed changes to
* be performed using only the one, true constant acceleration, and where no junction
* jerk is jerkier than the set limit, Jerky. Finally it will:
*
* 3. Recalculate "trapezoids" for all blocks.
*/
void Planner::recalculate() {
reverse_pass();
forward_pass();
recalculate_trapezoids();
}
#if ENABLED(AUTOTEMP)
void Planner::getHighESpeed() {
static float oldt = 0;
if (!autotemp_enabled) return;
if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
float high = 0.0;
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block_t* block = &block_buffer[b];
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
NOLESS(high, se);
}
}
float t = autotemp_min + high * autotemp_factor;
t = constrain(t, autotemp_min, autotemp_max);
if (t < oldt) t = t * (1 - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT);
oldt = t;
thermalManager.setTargetHotend(t, 0);
}
#endif // AUTOTEMP
/**
* Maintain fans, paste extruder pressure,
*/
void Planner::check_axes_activity() {
unsigned char axis_active[NUM_AXIS] = { 0 },
tail_fan_speed[FAN_COUNT];
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
uint8_t tail_valve_pressure;
#endif
#if HAS_HEATER_2
uint8_t tail_e_to_p_pressure;
#endif
#endif
if (has_blocks_queued()) {
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++)
tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
#endif
block_t* block;
#if ENABLED(BARICUDA)
block = &block_buffer[block_buffer_tail];
#if HAS_HEATER_1
tail_valve_pressure = block->valve_pressure;
#endif
#if HAS_HEATER_2
tail_e_to_p_pressure = block->e_to_p_pressure;
#endif
#endif
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block = &block_buffer[b];
LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
}
}
else {
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
tail_valve_pressure = baricuda_valve_pressure;
#endif
#if HAS_HEATER_2
tail_e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
#endif
}
#if ENABLED(DISABLE_X)
if (!axis_active[X_AXIS]) disable_X();
#endif
#if ENABLED(DISABLE_Y)
if (!axis_active[Y_AXIS]) disable_Y();
#endif
#if ENABLED(DISABLE_Z)
if (!axis_active[Z_AXIS]) disable_Z();
#endif
#if ENABLED(DISABLE_E)
if (!axis_active[E_AXIS]) disable_e_steppers();
#endif
#if FAN_COUNT > 0
#if FAN_KICKSTART_TIME > 0
static millis_t fan_kick_end[FAN_COUNT] = { 0 };
#define KICKSTART_FAN(f) \
if (tail_fan_speed[f]) { \
millis_t ms = millis(); \
if (fan_kick_end[f] == 0) { \
fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
tail_fan_speed[f] = 255; \
} else if (PENDING(ms, fan_kick_end[f])) \
tail_fan_speed[f] = 255; \
} else fan_kick_end[f] = 0
#if HAS_FAN0
KICKSTART_FAN(0);
#endif
#if HAS_FAN1
KICKSTART_FAN(1);
#endif
#if HAS_FAN2
KICKSTART_FAN(2);
#endif
#endif // FAN_KICKSTART_TIME > 0
#ifdef FAN_MIN_PWM
#define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
#else
#define CALC_FAN_SPEED(f) tail_fan_speed[f]
#endif
#if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0
thermalManager.soft_pwm_amount_fan[0] = CALC_FAN_SPEED(0);
#endif
#if HAS_FAN1
thermalManager.soft_pwm_amount_fan[1] = CALC_FAN_SPEED(1);
#endif
#if HAS_FAN2
thermalManager.soft_pwm_amount_fan[2] = CALC_FAN_SPEED(2);
#endif
#else
#if HAS_FAN0
analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
#endif
#if HAS_FAN1
analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
#endif
#if HAS_FAN2
analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
#endif
#endif
#endif // FAN_COUNT > 0
#if ENABLED(AUTOTEMP)
getHighESpeed();
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
analogWrite(HEATER_1_PIN, tail_valve_pressure);
#endif
#if HAS_HEATER_2
analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
#endif
#endif
}
#if DISABLED(NO_VOLUMETRICS)
/**
* Get a volumetric multiplier from a filament diameter.
* This is the reciprocal of the circular cross-section area.
* Return 1.0 with volumetric off or a diameter of 0.0.
*/
inline float calculate_volumetric_multiplier(const float &diameter) {
return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
}
/**
* Convert the filament sizes into volumetric multipliers.
* The multiplier converts a given E value into a length.
*/
void Planner::calculate_volumetric_multipliers() {
for (uint8_t i = 0; i < COUNT(filament_size); i++) {
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
refresh_e_factor(i);
}
}
#endif // !NO_VOLUMETRICS
#if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* Convert the ratio value given by the filament width sensor
* into a volumetric multiplier. Conversion differs when using
* linear extrusion vs volumetric extrusion.
*/
void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) {
// Reconstitute the nominal/measured ratio
const float nom_meas_ratio = 1.0 + 0.01 * encoded_ratio,
ratio_2 = sq(nom_meas_ratio);
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5) // Volumetric uses a true volumetric multiplier
: ratio_2; // Linear squares the ratio, which scales the volume
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
}
#endif
#if PLANNER_LEVELING
/**
* rx, ry, rz - Cartesian positions in mm
* Leveled XYZ on completion
*/
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
#if ENABLED(SKEW_CORRECTION)
skew(rx, ry, rz);
#endif
if (!leveling_active) return;
#if ABL_PLANAR
float dx = rx - (X_TILT_FULCRUM),
dy = ry - (Y_TILT_FULCRUM);
apply_rotation_xyz(bed_level_matrix, dx, dy, rz);
rx = dx + X_TILT_FULCRUM;
ry = dy + Y_TILT_FULCRUM;
#elif HAS_MESH
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
#else
constexpr float fade_scaling_factor = 1.0;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float raw[XYZ] = { rx, ry, 0 };
#endif
rz += (
#if ENABLED(MESH_BED_LEVELING)
mbl.get_z(rx, ry
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
)
#elif ENABLED(AUTO_BED_LEVELING_UBL)
fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(rx, ry) : 0.0
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
#endif
);
#endif
}
void Planner::unapply_leveling(float raw[XYZ]) {
if (leveling_active) {
#if ABL_PLANAR
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
raw[X_AXIS] = dx + X_TILT_FULCRUM;
raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
#elif HAS_MESH
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
#else
constexpr float fade_scaling_factor = 1.0;
#endif
raw[Z_AXIS] -= (
#if ENABLED(MESH_BED_LEVELING)
mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
)
#elif ENABLED(AUTO_BED_LEVELING_UBL)
fade_scaling_factor ? fade_scaling_factor * ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) : 0.0
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
fade_scaling_factor ? fade_scaling_factor * bilinear_z_offset(raw) : 0.0
#endif
);
#endif
}
#if ENABLED(SKEW_CORRECTION)
unskew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
#endif
}
#endif // PLANNER_LEVELING
/**
* Planner::_buffer_steps
*
* Add a new linear movement to the buffer (in terms of steps).
*
* target - target position in steps units
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
void Planner::_buffer_steps(const int32_t (&target)[XYZE]
#if ENABLED(LIN_ADVANCE)
, const float (&target_float)[XYZE]
#endif
, float fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/
) {
const int32_t da = target[A_AXIS] - position[A_AXIS],
db = target[B_AXIS] - position[B_AXIS],
dc = target[C_AXIS] - position[C_AXIS];
int32_t de = target[E_AXIS] - position[E_AXIS];
/* <-- add a slash to enable
SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s);
SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
SERIAL_ECHOPAIR(" (", db);
SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
SERIAL_ECHOPAIR(" (", dc);
SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
SERIAL_ECHOPAIR(" (", de);
SERIAL_ECHOLNPGM(" steps)");
//*/
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = target_float[E_AXIS];
#endif
de = 0; // no difference
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#endif // PREVENT_COLD_EXTRUSION
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = target_float[E_AXIS];
#endif
de = 0; // no difference
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif // PREVENT_LENGTHY_EXTRUDE
}
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
// Compute direction bit-mask for this block
uint8_t dm = 0;
#if CORE_IS_XY
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
if (dc < 0) SBI(dm, Z_AXIS);
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
#elif CORE_IS_XZ
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
#elif CORE_IS_YZ
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
#else
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_AXIS);
#endif
if (de < 0) SBI(dm, E_AXIS);
const float esteps_float = de * e_factor[extruder];
const int32_t esteps = abs(esteps_float) + 0.5;
// Calculate the buffer head after we push this byte
const uint8_t next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle();
// Prepare to set up new block
block_t* block = &block_buffer[block_buffer_head];
// Clear all flags, including the "busy" bit
block->flag = 0x00;
// Set direction bits
block->direction_bits = dm;
// Number of steps for each axis
// See http://www.corexy.com/theory.html
#if CORE_IS_XY
block->steps[A_AXIS] = labs(da + db);
block->steps[B_AXIS] = labs(da - db);
block->steps[Z_AXIS] = labs(dc);
#elif CORE_IS_XZ
block->steps[A_AXIS] = labs(da + dc);
block->steps[Y_AXIS] = labs(db);
block->steps[C_AXIS] = labs(da - dc);
#elif CORE_IS_YZ
block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc);
#else
// default non-h-bot planning
block->steps[A_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db);
block->steps[C_AXIS] = labs(dc);
#endif
block->steps[E_AXIS] = esteps;
block->step_event_count = MAX4(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], esteps);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
// For a mixing extruder, get a magnified step_event_count for each
#if ENABLED(MIXING_EXTRUDER)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
block->mix_event_count[i] = mixing_factor[i] * block->step_event_count;
#endif
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
block->valve_pressure = baricuda_valve_pressure;
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
block->active_extruder = extruder;
#if ENABLED(AUTO_POWER_CONTROL)
if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS])
powerManager.power_on();
#endif
//enable active axes
#if CORE_IS_XY
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
enable_X();
enable_Y();
}
#if DISABLED(Z_LATE_ENABLE)
if (block->steps[Z_AXIS]) enable_Z();
#endif
#elif CORE_IS_XZ
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
enable_X();
enable_Z();
}
if (block->steps[Y_AXIS]) enable_Y();
#elif CORE_IS_YZ
if (block->steps[B_AXIS] || block->steps[C_AXIS]) {
enable_Y();
enable_Z();
}
if (block->steps[X_AXIS]) enable_X();
#else
if (block->steps[X_AXIS]) enable_X();
if (block->steps[Y_AXIS]) enable_Y();
#if DISABLED(Z_LATE_ENABLE)
if (block->steps[Z_AXIS]) enable_Z();
#endif
#endif
// Enable extruder(s)
if (esteps) {
#if ENABLED(AUTO_POWER_CONTROL)
powerManager.power_on();
#endif
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
#define DISABLE_IDLE_E(N) if (!g_uc_extruder_last_move[N]) disable_E##N();
for (uint8_t i = 0; i < EXTRUDERS; i++)
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
switch (extruder) {
case 0:
#if EXTRUDERS > 1
DISABLE_IDLE_E(1);
#if EXTRUDERS > 2
DISABLE_IDLE_E(2);
#if EXTRUDERS > 3
DISABLE_IDLE_E(3);
#if EXTRUDERS > 4
DISABLE_IDLE_E(4);
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
enable_E0();
g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
if (extruder_duplication_enabled) {
enable_E1();
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
}
#endif
break;
#if EXTRUDERS > 1
case 1:
DISABLE_IDLE_E(0);
#if EXTRUDERS > 2
DISABLE_IDLE_E(2);
#if EXTRUDERS > 3
DISABLE_IDLE_E(3);
#if EXTRUDERS > 4
DISABLE_IDLE_E(4);
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
enable_E1();
g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
break;
#if EXTRUDERS > 2
case 2:
DISABLE_IDLE_E(0);
DISABLE_IDLE_E(1);
#if EXTRUDERS > 3
DISABLE_IDLE_E(3);
#if EXTRUDERS > 4
DISABLE_IDLE_E(4);
#endif
#endif
enable_E2();
g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
break;
#if EXTRUDERS > 3
case 3:
DISABLE_IDLE_E(0);
DISABLE_IDLE_E(1);
DISABLE_IDLE_E(2);
#if EXTRUDERS > 4
DISABLE_IDLE_E(4);
#endif
enable_E3();
g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
break;
#if EXTRUDERS > 4
case 4:
DISABLE_IDLE_E(0);
DISABLE_IDLE_E(1);
DISABLE_IDLE_E(2);
DISABLE_IDLE_E(3);
enable_E4();
g_uc_extruder_last_move[4] = (BLOCK_BUFFER_SIZE) * 2;
break;
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
}
#else
enable_E0();
enable_E1();
enable_E2();
enable_E3();
enable_E4();
#endif
}
if (esteps)
NOLESS(fr_mm_s, min_feedrate_mm_s);
else
NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
/**
* This part of the code calculates the total length of the movement.
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
*/
#if IS_CORE
float delta_mm[Z_HEAD + 1];
#if CORE_IS_XY
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
delta_mm[B_AXIS] = CORESIGN(da - db) * steps_to_mm[B_AXIS];
#elif CORE_IS_XZ
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
delta_mm[C_AXIS] = CORESIGN(da - dc) * steps_to_mm[C_AXIS];
#elif CORE_IS_YZ
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
delta_mm[C_AXIS] = CORESIGN(db - dc) * steps_to_mm[C_AXIS];
#endif
#else
float delta_mm[ABCE];
delta_mm[A_AXIS] = da * steps_to_mm[A_AXIS];
delta_mm[B_AXIS] = db * steps_to_mm[B_AXIS];
delta_mm[C_AXIS] = dc * steps_to_mm[C_AXIS];
#endif
delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
if (block->steps[A_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[B_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[C_AXIS] < MIN_STEPS_PER_SEGMENT) {
block->millimeters = FABS(delta_mm[E_AXIS]);
}
else if (!millimeters) {
block->millimeters = SQRT(
#if CORE_IS_XY
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
#elif CORE_IS_XZ
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
#elif CORE_IS_YZ
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
#else
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
#endif
);
}
else
block->millimeters = millimeters;
const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate inverse time for this move. No divide by zero due to previous checks.
// Example: At 120mm/s a 60mm move takes 0.5s. So this will give 2.0.
float inverse_secs = fr_mm_s * inverse_millimeters;
const uint8_t moves_queued = movesplanned();
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
#if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
// Segment time im micro seconds
uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
#endif
#if ENABLED(SLOWDOWN)
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
if (segment_time_us < min_segment_time_us) {
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
const uint32_t nst = segment_time_us + LROUND(2 * (min_segment_time_us - segment_time_us) / moves_queued);
inverse_secs = 1000000.0 / nst;
#if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
segment_time_us = nst;
#endif
}
}
#endif
#if ENABLED(ULTRA_LCD)
CRITICAL_SECTION_START
block_buffer_runtime_us += segment_time_us;
CRITICAL_SECTION_END
#endif
block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
//FMM update ring buffer used for delay with filament measurements
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
// increment counters with next move in e axis
filwidth_e_count += delta_mm[E_AXIS];
filwidth_delay_dist += delta_mm[E_AXIS];
// Only get new measurements on forward E movement
if (!UNEAR_ZERO(filwidth_e_count)) {
// Loop the delay distance counter (modulus by the mm length)
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
// Convert into an index into the measurement array
filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1);
// If the index has changed (must have gone forward)...
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
filwidth_e_count = 0; // Reset the E movement counter
const int8_t meas_sample = thermalManager.widthFil_to_size_ratio();
do {
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
} while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
}
}
}
#endif
// Calculate and limit speed in mm/sec for each axis
float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
LOOP_XYZE(i) {
const float cs = FABS((current_speed[i] = delta_mm[i] * inverse_secs));
#if ENABLED(DISTINCT_E_FACTORS)
if (i == E_AXIS) i += extruder;
#endif
if (cs > max_feedrate_mm_s[i]) NOMORE(speed_factor, max_feedrate_mm_s[i] / cs);
}
// Max segment time in µs.
#ifdef XY_FREQUENCY_LIMIT
// Check and limit the xy direction change frequency
const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits;
segment_time_us = LROUND((float)segment_time_us / speed_factor);
uint32_t xs0 = axis_segment_time_us[X_AXIS][0],
xs1 = axis_segment_time_us[X_AXIS][1],
xs2 = axis_segment_time_us[X_AXIS][2],
ys0 = axis_segment_time_us[Y_AXIS][0],
ys1 = axis_segment_time_us[Y_AXIS][1],
ys2 = axis_segment_time_us[Y_AXIS][2];
if (TEST(direction_change, X_AXIS)) {
xs2 = axis_segment_time_us[X_AXIS][2] = xs1;
xs1 = axis_segment_time_us[X_AXIS][1] = xs0;
xs0 = 0;
}
xs0 = axis_segment_time_us[X_AXIS][0] = xs0 + segment_time_us;
if (TEST(direction_change, Y_AXIS)) {
ys2 = axis_segment_time_us[Y_AXIS][2] = axis_segment_time_us[Y_AXIS][1];
ys1 = axis_segment_time_us[Y_AXIS][1] = axis_segment_time_us[Y_AXIS][0];
ys0 = 0;
}
ys0 = axis_segment_time_us[Y_AXIS][0] = ys0 + segment_time_us;
const uint32_t max_x_segment_time = MAX3(xs0, xs1, xs2),
max_y_segment_time = MAX3(ys0, ys1, ys2),
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
if (min_xy_segment_time < MAX_FREQ_TIME_US) {
const float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME_US);
NOMORE(speed_factor, low_sf);
}
#endif // XY_FREQUENCY_LIMIT
// Correct the speed
if (speed_factor < 1.0) {
LOOP_XYZE(i) current_speed[i] *= speed_factor;
block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
const float steps_per_mm = block->step_event_count * inverse_millimeters;
uint32_t accel;
if (!block->steps[A_AXIS] && !block->steps[B_AXIS] && !block->steps[C_AXIS]) {
// convert to: acceleration steps/sec^2
accel = CEIL(retract_acceleration * steps_per_mm);
#if ENABLED(LIN_ADVANCE)
block->use_advance_lead = false;
#endif
}
else {
#define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const uint32_t comp = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count; \
if (accel * block->steps[AXIS] > comp) accel = comp / block->steps[AXIS]; \
} \
}while(0)
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const float comp = (float)max_acceleration_steps_per_s2[AXIS+INDX] * (float)block->step_event_count; \
if ((float)accel * (float)block->steps[AXIS] > comp) accel = comp / (float)block->steps[AXIS]; \
} \
}while(0)
// Start with print or travel acceleration
accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
#if ENABLED(LIN_ADVANCE)
/**
*
* Use LIN_ADVANCE for blocks if all these are true:
*
* esteps : This is a print move, because we checked for A, B, C steps before.
*
* extruder_advance_K : There is an advance factor set.
*
* de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
*/
block->use_advance_lead = esteps
&& extruder_advance_K
&& de > 0;
if (block->use_advance_lead) {
block->e_D_ratio = (target_float[E_AXIS] - position_float[E_AXIS]) /
#if IS_KINEMATIC
block->millimeters
#else
SQRT(sq(target_float[X_AXIS] - position_float[X_AXIS])
+ sq(target_float[Y_AXIS] - position_float[Y_AXIS])
+ sq(target_float[Z_AXIS] - position_float[Z_AXIS]))
#endif
;
// Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
// This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
if (block->e_D_ratio > 3.0)
block->use_advance_lead = false;
else {
const uint32_t max_accel_steps_per_s2 = max_jerk[E_AXIS] / (extruder_advance_K * block->e_D_ratio) * steps_per_mm;
#if ENABLED(LA_DEBUG)
if (accel > max_accel_steps_per_s2)
SERIAL_ECHOLNPGM("Acceleration limited.");
#endif
NOMORE(accel, max_accel_steps_per_s2);
}
}
#endif
#if ENABLED(DISTINCT_E_FACTORS)
#define ACCEL_IDX extruder
#else
#define ACCEL_IDX 0
#endif
// Limit acceleration per axis
if (block->step_event_count <= cutoff_long) {
LIMIT_ACCEL_LONG(A_AXIS, 0);
LIMIT_ACCEL_LONG(B_AXIS, 0);
LIMIT_ACCEL_LONG(C_AXIS, 0);
LIMIT_ACCEL_LONG(E_AXIS, ACCEL_IDX);
}
else {
LIMIT_ACCEL_FLOAT(A_AXIS, 0);
LIMIT_ACCEL_FLOAT(B_AXIS, 0);
LIMIT_ACCEL_FLOAT(C_AXIS, 0);
LIMIT_ACCEL_FLOAT(E_AXIS, ACCEL_IDX);
}
}
block->acceleration_steps_per_s2 = accel;
block->acceleration = accel / steps_per_mm;
block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
#if ENABLED(LIN_ADVANCE)
if (block->use_advance_lead) {
block->advance_speed = ((F_CPU) * 0.125) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS]);
#if ENABLED(LA_DEBUG)
if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio)
SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");
if (block->advance_speed < 200)
SERIAL_ECHOLNPGM("eISR running at > 10kHz.");
#endif
}
#endif
// Initial limit on the segment entry velocity
float vmax_junction;
#if 0 // Use old jerk for now
float junction_deviation = 0.1;
// Compute path unit vector
double unit_vec[XYZ] = {
delta_mm[A_AXIS] * inverse_millimeters,
delta_mm[B_AXIS] * inverse_millimeters,
delta_mm[C_AXIS] * inverse_millimeters
};
/*
Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
Let a circle be tangent to both previous and current path line segments, where the junction
deviation is defined as the distance from the junction to the closest edge of the circle,
collinear with the circle center.
The circular segment joining the two paths represents the path of centripetal acceleration.
Solve for max velocity based on max acceleration about the radius of the circle, defined
indirectly by junction deviation.
This may be also viewed as path width or max_jerk in the previous grbl version. This approach
does not actually deviate from path, but used as a robust way to compute cornering speeds, as
it takes into account the nonlinearities of both the junction angle and junction velocity.
*/
vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
const float cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS];
// Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed, block->nominal_speed);
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
if (cos_theta > -0.95) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation
float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
}
}
}
#endif
/**
* Adapted from Průša MKS firmware
* https://github.com/prusa3d/Prusa-Firmware
*
* Start with a safe speed (from which the machine may halt to stop immediately).
*/
// Exit speed limited by a jerk to full halt of a previous last segment
static float previous_safe_speed;
float safe_speed = block->nominal_speed;
uint8_t limited = 0;
LOOP_XYZE(i) {
const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
if (jerk > maxj) {
if (limited) {
const float mjerk = maxj * block->nominal_speed;
if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk;
}
else {
++limited;
safe_speed = maxj;
}
}
}
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
// Estimate a maximum velocity allowed at a joint of two successive segments.
// If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
// then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = min(block->nominal_speed, previous_nominal_speed);
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1;
limited = 0;
// Now limit the jerk in all axes.
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
LOOP_XYZE(axis) {
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
float v_exit = previous_speed[axis] * smaller_speed_factor,
v_entry = current_speed[axis];
if (limited) {
v_exit *= v_factor;
v_entry *= v_factor;
}
// Calculate jerk depending on whether the axis is coasting in the same direction or reversing.
const float jerk = (v_exit > v_entry)
? // coasting axis reversal
( (v_entry > 0 || v_exit < 0) ? (v_exit - v_entry) : max(v_exit, -v_entry) )
: // v_exit <= v_entry coasting axis reversal
( (v_entry < 0 || v_exit > 0) ? (v_entry - v_exit) : max(-v_exit, v_entry) );
if (jerk > max_jerk[axis]) {
v_factor *= max_jerk[axis] / jerk;
++limited;
}
}
if (limited) vmax_junction *= v_factor;
// Now the transition velocity is known, which maximizes the shared exit / entry velocity while
// respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
const float vmax_junction_threshold = vmax_junction * 0.99f;
if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold)
vmax_junction = safe_speed;
}
else
vmax_junction = safe_speed;
// Max entry speed of this block equals the max exit speed of the previous block.
block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
// If stepper ISR is disabled, this indicates buffer_segment wants to add a split block.
// In this case start with the max. allowed speed to avoid an interrupted first move.
block->entry_speed = TEST(TIMSK1, OCIE1A) ? MINIMUM_PLANNER_SPEED : min(vmax_junction, v_allowable);
// Initialize planner efficiency flags
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
// the current block and next block junction speeds are guaranteed to always be at their maximum
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks.
block->flag |= block->nominal_speed <= v_allowable ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE;
// Update previous path unit_vector and nominal speed
COPY(previous_speed, current_speed);
previous_nominal_speed = block->nominal_speed;
previous_safe_speed = safe_speed;
// Move buffer head
block_buffer_head = next_buffer_head;
// Update the position (only when a move was queued)
static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!");
COPY(position, target);
#if ENABLED(LIN_ADVANCE)
COPY(position_float, target_float);
#endif
recalculate();
} // _buffer_steps()
/**
* Planner::buffer_segment
*
* Add a new linear movement to the buffer in axis units.
*
* Leveling and kinematics should be applied ahead of calling this.
*
* a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move
* extruder - target extruder
* millimeters - the length of the movement, if known
*/
void Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/) {
// When changing extruders recalculate steps corresponding to the E position
#if ENABLED(DISTINCT_E_FACTORS)
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
last_extruder = extruder;
}
#endif
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
const int32_t target[ABCE] = {
LROUND(a * axis_steps_per_mm[A_AXIS]),
LROUND(b * axis_steps_per_mm[B_AXIS]),
LROUND(c * axis_steps_per_mm[C_AXIS]),
LROUND(e * axis_steps_per_mm[E_AXIS_N])
};
#if ENABLED(LIN_ADVANCE)
const float target_float[XYZE] = { a, b, c, e };
#endif
// DRYRUN prevents E moves from taking place
if (DEBUGGING(DRYRUN)) {
position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
#endif
}
/* <-- add a slash to enable
SERIAL_ECHOPAIR(" buffer_segment FR:", fr_mm_s);
#if IS_KINEMATIC
SERIAL_ECHOPAIR(" A:", a);
SERIAL_ECHOPAIR(" (", position[A_AXIS]);
SERIAL_ECHOPAIR("->", target[A_AXIS]);
SERIAL_ECHOPAIR(") B:", b);
#else
SERIAL_ECHOPAIR(" X:", a);
SERIAL_ECHOPAIR(" (", position[X_AXIS]);
SERIAL_ECHOPAIR("->", target[X_AXIS]);
SERIAL_ECHOPAIR(") Y:", b);
#endif
SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
SERIAL_ECHOPAIR("->", target[Y_AXIS]);
#if ENABLED(DELTA)
SERIAL_ECHOPAIR(") C:", c);
#else
SERIAL_ECHOPAIR(") Z:", c);
#endif
SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
SERIAL_ECHOPAIR("->", target[Z_AXIS]);
SERIAL_ECHOPAIR(") E:", e);
SERIAL_ECHOPAIR(" (", position[E_AXIS]);
SERIAL_ECHOPAIR("->", target[E_AXIS]);
SERIAL_ECHOLNPGM(")");
//*/
// Always split the first move into two (if not homing or probing)
if (!has_blocks_queued()) {
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
const int32_t between[ABCE] = { _BETWEEN(A), _BETWEEN(B), _BETWEEN(C), _BETWEEN(E) };
#if ENABLED(LIN_ADVANCE)
#define _BETWEEN_F(A) (position_float[A##_AXIS] + target_float[A##_AXIS]) * 0.5
const float between_float[ABCE] = { _BETWEEN_F(A), _BETWEEN_F(B), _BETWEEN_F(C), _BETWEEN_F(E) };
#endif
DISABLE_STEPPER_DRIVER_INTERRUPT();
_buffer_steps(between
#if ENABLED(LIN_ADVANCE)
, between_float
#endif
, fr_mm_s, extruder, millimeters * 0.5
);
const uint8_t next = block_buffer_head;
_buffer_steps(target
#if ENABLED(LIN_ADVANCE)
, target_float
#endif
, fr_mm_s, extruder, millimeters * 0.5
);
SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED);
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
else
_buffer_steps(target
#if ENABLED(LIN_ADVANCE)
, target_float
#endif
, fr_mm_s, extruder, millimeters
);
stepper.wake_up();
} // buffer_segment()
/**
* Directly set the planner XYZ position (and stepper positions)
* converting mm (or angles for SCARA) into steps.
*
* On CORE machines stepper ABC will be translated from the given XYZ.
*/
void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
#if ENABLED(DISTINCT_E_FACTORS)
#define _EINDEX (E_AXIS + active_extruder)
last_extruder = active_extruder;
#else
#define _EINDEX E_AXIS
#endif
const int32_t na = position[A_AXIS] = LROUND(a * axis_steps_per_mm[A_AXIS]),
nb = position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]),
nc = position[C_AXIS] = LROUND(c * axis_steps_per_mm[C_AXIS]),
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
stepper.set_position(na, nb, nc, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
ZERO(previous_speed);
}
void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) {
#if PLANNER_LEVELING
float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
apply_leveling(raw);
#else
const float (&raw)[XYZE] = cart;
#endif
#if IS_KINEMATIC
inverse_kinematics(raw);
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS]);
#else
_set_position_mm(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS]);
#endif
}
/**
* Sync from the stepper positions. (e.g., after an interrupted move)
*/
void Planner::sync_from_steppers() {
LOOP_XYZE(i) {
position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE)
position_float[i] = position[i] * steps_to_mm[i
#if ENABLED(DISTINCT_E_FACTORS)
+ (i == E_AXIS ? active_extruder : 0)
#endif
];
#endif
}
}
/**
* Setters for planner position (also setting stepper position).
*/
void Planner::set_position_mm(const AxisEnum axis, const float &v) {
#if ENABLED(DISTINCT_E_FACTORS)
const uint8_t axis_index = axis + (axis == E_AXIS ? active_extruder : 0);
last_extruder = active_extruder;
#else
const uint8_t axis_index = axis;
#endif
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE)
position_float[axis] = v;
#endif
stepper.set_position(axis, v);
previous_speed[axis] = 0.0;
}
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner::reset_acceleration_rates() {
#if ENABLED(DISTINCT_E_FACTORS)
#define HIGHEST_CONDITION (i < E_AXIS || i == E_AXIS + active_extruder)
#else
#define HIGHEST_CONDITION true
#endif
uint32_t highest_rate = 1;
LOOP_XYZE_N(i) {
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
if (HIGHEST_CONDITION) NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
}
cutoff_long = 4294967295UL / highest_rate;
}
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
void Planner::refresh_positioning() {
LOOP_XYZE_N(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
set_position_mm_kinematic(current_position);
reset_acceleration_rates();
}
#if ENABLED(AUTOTEMP)
void Planner::autotemp_M104_M109() {
if ((autotemp_enabled = parser.seen('F'))) autotemp_factor = parser.value_float();
if (parser.seen('S')) autotemp_min = parser.value_celsius();
if (parser.seen('B')) autotemp_max = parser.value_celsius();
}
#endif