Firmware/Marlin/ubl_G29.cpp
Scott Lahteine ccb225f43a
Float maths updates for 2.0.x parity (#11213)
Co-Authored-By: ejtagle <ejtagle@hotmail.com>
2018-07-06 21:44:33 -05:00

1821 lines
72 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
//#define UBL_DEVEL_DEBUGGING
#include "ubl.h"
#include "Marlin.h"
#include "hex_print_routines.h"
#include "configuration_store.h"
#include "ultralcd.h"
#include "stepper.h"
#include "planner.h"
#include "parser.h"
#include "serial.h"
#include "bitmap_flags.h"
#include <math.h>
#include "least_squares_fit.h"
#define UBL_G29_P31
extern float destination[XYZE], current_position[XYZE];
#if ENABLED(NEWPANEL)
void lcd_return_to_status();
void _lcd_ubl_output_map_lcd();
#endif
#define SIZE_OF_LITTLE_RAISE 1
#define BIG_RAISE_NOT_NEEDED 0
int unified_bed_leveling::g29_verbose_level,
unified_bed_leveling::g29_phase_value,
unified_bed_leveling::g29_repetition_cnt,
unified_bed_leveling::g29_storage_slot = 0,
unified_bed_leveling::g29_map_type;
bool unified_bed_leveling::g29_c_flag,
unified_bed_leveling::g29_x_flag,
unified_bed_leveling::g29_y_flag;
float unified_bed_leveling::g29_x_pos,
unified_bed_leveling::g29_y_pos,
unified_bed_leveling::g29_card_thickness = 0,
unified_bed_leveling::g29_constant = 0;
#if HAS_BED_PROBE
int unified_bed_leveling::g29_grid_size;
#endif
/**
* G29: Unified Bed Leveling by Roxy
*
* Parameters understood by this leveling system:
*
* A Activate Activate the Unified Bed Leveling system.
*
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem with P2.
* Note: A non-compressible Spark Gap feeler gauge is recommended over a business card.
* In this mode of G29 P2, a business or index card is used as a shim that the nozzle can
* grab onto as it is lowered. In principle, the nozzle-bed distance is the same when the
* same resistance is felt in the shim. You can omit the numerical value on first invocation
* of G29 P2 B to measure shim thickness. Subsequent use of 'B' will apply the previously-
* measured thickness by default.
*
* C Continue G29 P1 C continues the generation of a partially-constructed Mesh without invalidating
* previous measurements.
*
* C G29 P2 C tells the Manual Probe subsystem to not use the current nozzle
* location in its search for the closest unmeasured Mesh Point. Instead, attempt to
* start at one end of the uprobed points and Continue sequentially.
*
* G29 P3 C specifies the Constant for the fill. Otherwise, uses a "reasonable" value.
*
* C Current G29 Z C uses the Current location (instead of bed center or nearest edge).
*
* D Disable Disable the Unified Bed Leveling system.
*
* E Stow_probe Stow the probe after each sampled point.
*
* F # Fade Fade the amount of Mesh Based Compensation over a specified height. At the
* specified height, no correction is applied and natural printer kenimatics take over. If no
* number is specified for the command, 10mm is assumed to be reasonable.
*
* H # Height With P2, 'H' specifies the Height to raise the nozzle after each manual probe of the bed.
* If omitted, the nozzle will raise by Z_CLEARANCE_BETWEEN_PROBES.
*
* H # Offset With P4, 'H' specifies the Offset above the mesh height to place the nozzle.
* If omitted, Z_CLEARANCE_BETWEEN_PROBES will be used.
*
* I # Invalidate Invalidate the specified number of Mesh Points near the given 'X' 'Y'. If X or Y are omitted,
* the nozzle location is used. If no 'I' value is given, only the point nearest to the location
* is invalidated. Use 'T' to produce a map afterward. This command is useful to invalidate a
* portion of the Mesh so it can be adjusted using other UBL tools. When attempting to invalidate
* an isolated bad mesh point, the 'T' option shows the nozzle position in the Mesh with (#). You
* can move the nozzle around and use this feature to select the center of the area (or cell) to
* invalidate.
*
* J # Grid Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side.
* Not specifying a grid size will invoke the 3-Point leveling function.
*
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
* command literally performs a diff between two Meshes.
*
* L Load Load Mesh from the previously activated location in the EEPROM.
*
* L # Load Load Mesh from the specified location in the EEPROM. Set this location as activated
* for subsequent Load and Store operations.
*
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
* each additional Phase that processes it.
*
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
* was turned on. Setting the entire Mesh to Zero is a special case that allows
* a subsequent G or T leveling operation for backward compatibility.
*
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
* the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. For delta
* printers only the areas where the probe and nozzle can both reach will be automatically probed.
*
* Unreachable points will be handled in Phase 2 and Phase 3.
*
* Use 'C' to leave the previous mesh intact and automatically probe needed points. This allows you
* to invalidate parts of the Mesh but still use Automatic Probing.
*
* The 'X' and 'Y' parameters prioritize where to try and measure points. If omitted, the current
* probe position is used.
*
* Use 'T' (Topology) to generate a report of mesh generation.
*
* P1 will suspend Mesh generation if the controller button is held down. Note that you may need
* to press and hold the switch for several seconds if moves are underway.
*
* P2 Phase 2 Probe unreachable points.
*
* Use 'H' to set the height between Mesh points. If omitted, Z_CLEARANCE_BETWEEN_PROBES is used.
* Smaller values will be quicker. Move the nozzle down till it barely touches the bed. Make sure the
* nozzle is clean and unobstructed. Use caution and move slowly. This can damage your printer!
* (Uses SIZE_OF_LITTLE_RAISE mm if the nozzle is moving less than BIG_RAISE_NOT_NEEDED mm.)
*
* The 'H' value can be negative if the Mesh dips in a large area. Press and hold the
* controller button to terminate the current Phase 2 command. You can then re-issue "G29 P 2"
* with an 'H' parameter more suitable for the area you're manually probing. Note that the command
* tries to start in a corner of the bed where movement will be predictable. Override the distance
* calculation location with the X and Y parameters. You can print a Mesh Map (G29 T) to see where
* the mesh is invalidated and where the nozzle needs to move to complete the command. Use 'C' to
* indicate that the search should be based on the current position.
*
* The 'B' parameter for this command is described above. It places the manual probe subsystem into
* Business Card mode where the thickness of a business card is measured and then used to accurately
* set the nozzle height in all manual probing for the duration of the command. A Business card can
* be used, but you'll get better results with a flexible Shim that doesn't compress. This makes it
* easier to produce similar amounts of force and get more accurate measurements. Google if you're
* not sure how to use a shim.
*
* The 'T' (Map) parameter helps track Mesh building progress.
*
* NOTE: P2 requires an LCD controller!
*
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths to
* go down:
*
* - If a 'C' constant is specified, the closest invalid mesh points to the nozzle will be filled,
* and a repeat count can then also be specified with 'R'.
*
* - Leaving out 'C' invokes Smart Fill, which scans the mesh from the edges inward looking for
* invalid mesh points. Adjacent points are used to determine the bed slope. If the bed is sloped
* upward from the invalid point, it takes the value of the nearest point. If sloped downward, it's
* replaced by a value that puts all three points in a line. This version of G29 P3 is a quick, easy
* and (usually) safe way to populate unprobed mesh regions before continuing to G26 Mesh Validation
* Pattern. Note that this populates the mesh with unverified values. Pay attention and use caution.
*
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assumes the existence of
* an LCD Panel. It is possible to fine tune the mesh without an LCD Panel using
* G42 and M421. See the UBL documentation for further details.
*
* Phase 4 is meant to be used with G26 Mesh Validation to fine tune the mesh by direct editing
* of Mesh Points. Raise and lower points to fine tune the mesh until it gives consistently reliable
* adhesion.
*
* P4 moves to the closest Mesh Point (and/or the given X Y), raises the nozzle above the mesh height
* by the given 'H' offset (or default 0), and waits while the controller is used to adjust the nozzle
* height. On click the displayed height is saved in the mesh.
*
* Start Phase 4 at a specific location with X and Y. Adjust a specific number of Mesh Points with
* the 'R' (Repeat) parameter. (If 'R' is left out, the whole matrix is assumed.) This command can be
* terminated early (e.g., after editing the area of interest) by pressing and holding the encoder button.
*
* The general form is G29 P4 [R points] [X position] [Y position]
*
* The H [offset] parameter is useful if a shim is used to fine-tune the mesh. For a 0.4mm shim the
* command would be G29 P4 H0.4. The nozzle is moved to the shim height, you adjust height to the shim,
* and on click the height minus the shim thickness will be saved in the mesh.
*
* !!Use with caution, as a very poor mesh could cause the nozzle to crash into the bed!!
*
* NOTE: P4 is not available unless you have LCD support enabled!
*
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
* execute a G29 P6 C <mean height>.
*
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
* 0.000 at the Z Home location.
*
* Q Test Load specified Test Pattern to assist in checking correct operation of system. This
* command is not anticipated to be of much value to the typical user. It is intended
* for developers to help them verify correct operation of the Unified Bed Leveling System.
*
* R # Repeat Repeat this command the specified number of times. If no number is specified the
* command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
*
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
* current state of the Unified Bed Leveling system in the EEPROM.
*
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
* for subsequent Load and Store operations. Valid storage slot numbers begin at 0 and
* extend to a limit related to the available EEPROM storage.
*
* S -1 Store Print the current Mesh as G-code that can be used to restore the mesh anytime.
*
* T Topology Display the Mesh Map Topology.
* 'T' can be used alone (e.g., G29 T) or in combination with most of the other commands.
* This option works with all Phase commands (e.g., G29 P4 R 5 T X 50 Y100 C -.1 O)
* This parameter can also specify a Map Type. T0 (the default) is user-readable. T1 can
* is suitable to paste into a spreadsheet for a 3D graph of the mesh.
*
* U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds.
* Only used for G29 P1 T U. This speeds up the probing of the edge of the bed. Useful
* when the entire bed doesn't need to be probed because it will be adjusted.
*
* V # Verbosity Set the verbosity level (0-4) for extra details. (Default 0)
*
* W What? Display valuable Unified Bed Leveling System data.
*
* X # X Location for this command
*
* Y # Y Location for this command
*
*
* Release Notes:
* You MUST do M502, M500 to initialize the storage. Failure to do this will cause all
* kinds of problems. Enabling EEPROM Storage is required.
*
* When you do a G28 and G29 P1 to automatically build your first mesh, you are going to notice that
* UBL probes points increasingly further from the starting location. (The starting location defaults
* to the center of the bed.) In contrast, ABL and MBL follow a zigzag pattern. The spiral pattern is
* especially better for Delta printers, since it populates the center of the mesh first, allowing for
* a quicker test print to verify settings. You don't need to populate the entire mesh to use it.
* After all, you don't want to spend a lot of time generating a mesh only to realize the resolution
* or zprobe_zoffset are incorrect. Mesh-generation gathers points starting closest to the nozzle unless
* an (X,Y) coordinate pair is given.
*
* Unified Bed Leveling uses a lot of EEPROM storage to hold its data, and it takes some effort to get
* the mesh just right. To prevent this valuable data from being destroyed as the EEPROM structure
* evolves, UBL stores all mesh data at the end of EEPROM.
*
* UBL is founded on Edward Patel's Mesh Bed Leveling code. A big 'Thanks!' to him and the creators of
* 3-Point and Grid Based leveling. Combining their contributions we now have the functionality and
* features of all three systems combined.
*/
void unified_bed_leveling::G29() {
if (g29_parameter_parsing()) return; // Abort on parameter error
const int8_t p_val = parser.intval('P', -1);
const bool may_move = p_val == 1 || p_val == 2 || p_val == 4 || parser.seen('J');
// Check for commands that require the printer to be homed
if (may_move) {
if (axis_unhomed_error()) home_all_axes();
#if ENABLED(DUAL_X_CARRIAGE)
if (active_extruder != 0) tool_change(0);
#endif
}
// Invalidate Mesh Points. This command is a little bit asymmetrical because
// it directly specifies the repetition count and does not use the 'R' parameter.
if (parser.seen('I')) {
uint8_t cnt = 0;
g29_repetition_cnt = parser.has_value() ? parser.value_int() : 1;
if (g29_repetition_cnt >= GRID_MAX_POINTS) {
set_all_mesh_points_to_value(NAN);
}
else {
while (g29_repetition_cnt--) {
if (cnt > 20) { cnt = 0; idle(); }
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
if (location.x_index < 0) {
// No more REACHABLE mesh points to invalidate, so we ASSUME the user
// meant to invalidate the ENTIRE mesh, which cannot be done with
// find_closest_mesh_point loop which only returns REACHABLE points.
set_all_mesh_points_to_value(NAN);
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate
}
z_values[location.x_index][location.y_index] = NAN;
cnt++;
}
}
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
}
if (parser.seen('Q')) {
const int test_pattern = parser.has_value() ? parser.value_int() : -99;
if (!WITHIN(test_pattern, -1, 2)) {
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (-1 to 2)\n");
return;
}
SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n");
switch (test_pattern) {
case -1:
g29_eeprom_dump();
break;
case 0:
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a bowl shape - similar to
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
const float p1 = 0.5f * (GRID_MAX_POINTS_X) - x,
p2 = 0.5f * (GRID_MAX_POINTS_Y) - y;
z_values[x][y] += 2.0f * HYPOT(p1, p2);
}
}
break;
case 1:
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
z_values[x][x] += 9.999f;
z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999f; // We want the altered line several mesh points thick
}
break;
case 2:
// Allow the user to specify the height because 10mm is a little extreme in some cases.
for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
z_values[x][y] += parser.seen('C') ? g29_constant : 9.99f;
break;
}
}
#if HAS_BED_PROBE
if (parser.seen('J')) {
if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
save_ubl_active_state_and_disable();
tilt_mesh_based_on_probed_grid(false /* false says to do normal grid probing */ );
restore_ubl_active_state_and_leave();
}
else { // grid_size == 0 : A 3-Point leveling has been requested
save_ubl_active_state_and_disable();
tilt_mesh_based_on_probed_grid(true /* true says to do 3-Point leveling */ );
restore_ubl_active_state_and_leave();
}
do_blocking_move_to_xy(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)));
report_current_position();
}
#endif // HAS_BED_PROBE
if (parser.seen('P')) {
if (WITHIN(g29_phase_value, 0, 1) && storage_slot == -1) {
storage_slot = 0;
SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
}
switch (g29_phase_value) {
case 0:
//
// Zero Mesh Data
//
reset();
SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
break;
#if HAS_BED_PROBE
case 1:
//
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
if (!parser.seen('C')) {
invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
}
if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL(g29_y_pos);
SERIAL_PROTOCOLLNPGM(").\n");
}
probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
parser.seen('T'), parser.seen('E'), parser.seen('U'));
report_current_position();
break;
#endif // HAS_BED_PROBE
case 2: {
#if ENABLED(NEWPANEL)
//
// Manually Probe Mesh in areas that can't be reached by the probe
//
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (parser.seen('C') && !g29_x_flag && !g29_y_flag) {
/**
* Use a good default location for the path.
* The flipped > and < operators in these comparisons is intentional.
* It should cause the probed points to follow a nice path on Cartesian printers.
* It may make sense to have Delta printers default to the center of the bed.
* Until that is decided, this can be forced with the X and Y parameters.
*/
#if IS_KINEMATIC
g29_x_pos = X_HOME_POS;
g29_y_pos = Y_HOME_POS;
#else // cartesian
g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_BED_SIZE : 0;
g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_BED_SIZE : 0;
#endif
}
if (parser.seen('B')) {
g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness((float) Z_CLEARANCE_BETWEEN_PROBES);
if (ABS(g29_card_thickness) > 1.5f) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
return;
}
}
if (!position_is_reachable(g29_x_pos, g29_y_pos)) {
SERIAL_PROTOCOLLNPGM("XY outside printable radius.");
return;
}
const float height = parser.floatval('H', Z_CLEARANCE_BETWEEN_PROBES);
manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, parser.seen('T'));
SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
report_current_position();
#else
SERIAL_PROTOCOLLNPGM("?P2 is only available when an LCD is present.");
return;
#endif
} break;
case 3: {
/**
* Populate invalid mesh areas. Proceed with caution.
* Two choices are available:
* - Specify a constant with the 'C' parameter.
* - Allow 'G29 P3' to choose a 'reasonable' constant.
*/
if (g29_c_flag) {
if (g29_repetition_cnt >= GRID_MAX_POINTS) {
set_all_mesh_points_to_value(g29_constant);
}
else {
while (g29_repetition_cnt--) { // this only populates reachable mesh points near
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL);
if (location.x_index < 0) {
// No more REACHABLE INVALID mesh points to populate, so we ASSUME
// user meant to populate ALL INVALID mesh points to value
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (isnan(z_values[x][y]))
z_values[x][y] = g29_constant;
break; // No more invalid Mesh Points to populate
}
z_values[location.x_index][location.y_index] = g29_constant;
}
}
}
else {
const float cvf = parser.value_float();
switch ((int)truncf(cvf * 10.0f) - 30) { // 3.1 -> 1
#if ENABLED(UBL_G29_P31)
case 1: {
// P3.1 use least squares fit to fill missing mesh values
// P3.10 zero weighting for distance, all grid points equal, best fit tilted plane
// P3.11 10X weighting for nearest grid points versus farthest grid points
// P3.12 100X distance weighting
// P3.13 1000X distance weighting, approaches simple average of nearest points
const float weight_power = (cvf - 3.10f) * 100.0f, // 3.12345 -> 2.345
weight_factor = weight_power ? POW(10.0f, weight_power) : 0;
smart_fill_wlsf(weight_factor);
}
break;
#endif
case 0: // P3 or P3.0
default: // and anything P3.x that's not P3.1
smart_fill_mesh(); // Do a 'Smart' fill using nearby known values
break;
}
}
break;
}
case 4: // Fine Tune (i.e., Edit) the Mesh
#if ENABLED(NEWPANEL)
fine_tune_mesh(g29_x_pos, g29_y_pos, parser.seen('T'));
#else
SERIAL_PROTOCOLLNPGM("?P4 is only available when an LCD is present.");
return;
#endif
break;
case 5: adjust_mesh_to_mean(g29_c_flag, g29_constant); break;
case 6: shift_mesh_height(); break;
}
}
//
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
// good to have the extra information. Soon... we prune this to just a few items
//
if (parser.seen('W')) g29_what_command();
//
// When we are fully debugged, this may go away. But there are some valid
// use cases for the users. So we can wait and see what to do with it.
//
if (parser.seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
g29_compare_current_mesh_to_stored_mesh();
//
// Load a Mesh from the EEPROM
//
if (parser.seen('L')) { // Load Current Mesh Data
g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
return;
}
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
settings.load_mesh(g29_storage_slot);
storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done.");
}
//
// Store a Mesh in the EEPROM
//
if (parser.seen('S')) { // Store (or Save) Current Mesh Data
g29_storage_slot = parser.has_value() ? parser.value_int() : storage_slot;
if (g29_storage_slot == -1) // Special case, the user wants to 'Export' the mesh to the
return report_current_mesh(); // host program to be saved on the user's computer
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
goto LEAVE;
}
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
goto LEAVE;
}
settings.store_mesh(g29_storage_slot);
storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done.");
}
if (parser.seen('T'))
display_map(g29_map_type);
LEAVE:
#if ENABLED(NEWPANEL)
lcd_reset_alert_level();
lcd_quick_feedback(true);
lcd_reset_status();
lcd_external_control = false;
#endif
return;
}
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float value) {
float sum = 0;
int n = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y])) {
sum += z_values[x][y];
n++;
}
const float mean = sum / n;
//
// Sum the squares of difference from mean
//
float sum_of_diff_squared = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y]))
sum_of_diff_squared += sq(z_values[x][y] - mean);
SERIAL_ECHOLNPAIR("# of samples: ", n);
SERIAL_ECHOPGM("Mean Mesh Height: ");
SERIAL_ECHO_F(mean, 6);
SERIAL_EOL();
const float sigma = SQRT(sum_of_diff_squared / (n + 1));
SERIAL_ECHOPGM("Standard Deviation: ");
SERIAL_ECHO_F(sigma, 6);
SERIAL_EOL();
if (cflag)
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y]))
z_values[x][y] -= mean + value;
}
void unified_bed_leveling::shift_mesh_height() {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(z_values[x][y]))
z_values[x][y] += g29_constant;
}
#if ENABLED(NEWPANEL)
typedef void (*clickFunc_t)();
bool click_and_hold(const clickFunc_t func=NULL) {
if (is_lcd_clicked()) {
lcd_quick_feedback(false); // Do NOT clear button status! If cleared, the code
// code can not look for a 'click and hold'
const millis_t nxt = millis() + 1500UL;
while (is_lcd_clicked()) { // Loop while the encoder is pressed. Uses hardware flag!
idle(); // idle, of course
if (ELAPSED(millis(), nxt)) { // After 1.5 seconds
lcd_quick_feedback(true);
if (func) (*func)();
wait_for_release();
safe_delay(50); // Debounce the Encoder wheel
return true;
}
}
}
safe_delay(15);
return false;
}
#endif // NEWPANEL
#if HAS_BED_PROBE
/**
* Probe all invalidated locations of the mesh that can be reached by the probe.
* This attempts to fill in locations closest to the nozzle's start location first.
*/
void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) {
mesh_index_pair location;
#if ENABLED(NEWPANEL)
lcd_external_control = true;
#endif
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE();
uint16_t count = GRID_MAX_POINTS;
do {
if (do_ubl_mesh_map) display_map(g29_map_type);
#if ENABLED(NEWPANEL)
if (is_lcd_clicked()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
lcd_quick_feedback(false);
STOW_PROBE();
while (is_lcd_clicked()) idle();
lcd_external_control = false;
restore_ubl_active_state_and_leave();
lcd_quick_feedback(true);
safe_delay(50); // Debounce the Encoder wheel
return;
}
#endif
if (do_furthest)
location = find_furthest_invalid_mesh_point();
else
location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_PROBE_AS_REFERENCE, NULL);
if (location.x_index >= 0) { // mesh point found and is reachable by probe
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
const float measured_z = probe_pt(rawx, rawy, stow_probe ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling
z_values[location.x_index][location.y_index] = measured_z;
}
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (location.x_index >= 0 && --count);
STOW_PROBE();
#ifdef Z_AFTER_PROBING
move_z_after_probing();
#endif
restore_ubl_active_state_and_leave();
do_blocking_move_to_xy(
constrain(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_X, MESH_MAX_X),
constrain(ry - (Y_PROBE_OFFSET_FROM_EXTRUDER), MESH_MIN_Y, MESH_MAX_Y)
);
}
#endif // HAS_BED_PROBE
#if ENABLED(NEWPANEL)
void unified_bed_leveling::move_z_with_encoder(const float &multiplier) {
wait_for_release();
while (!is_lcd_clicked()) {
idle();
reset_stepper_timeout(); // Keep steppers powered
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * multiplier);
encoder_diff = 0;
}
}
}
float unified_bed_leveling::measure_point_with_encoder() {
KEEPALIVE_STATE(PAUSED_FOR_USER);
move_z_with_encoder(0.01f);
KEEPALIVE_STATE(IN_HANDLER);
return current_position[Z_AXIS];
}
static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
float unified_bed_leveling::measure_business_card_thickness(float in_height) {
lcd_external_control = true;
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
do_blocking_move_to(0.5f * (MESH_MAX_X - (MESH_MIN_X)), 0.5f * (MESH_MAX_Y - (MESH_MIN_Y)), in_height);
//, MIN(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]) * 0.5f);
planner.synchronize();
SERIAL_PROTOCOLPGM("Place shim under nozzle");
LCD_MESSAGEPGM(MSG_UBL_BC_INSERT);
lcd_return_to_status();
echo_and_take_a_measurement();
const float z1 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
planner.synchronize();
SERIAL_PROTOCOLPGM("Remove shim");
LCD_MESSAGEPGM(MSG_UBL_BC_REMOVE);
echo_and_take_a_measurement();
const float z2 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
const float thickness = ABS(z1 - z2);
if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPGM("Business Card is ");
SERIAL_PROTOCOL_F(thickness, 4);
SERIAL_PROTOCOLLNPGM("mm thick.");
}
lcd_external_control = false;
restore_ubl_active_state_and_leave();
return thickness;
}
void abort_manual_probe_remaining_mesh() {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_external_control = false;
KEEPALIVE_STATE(IN_HANDLER);
lcd_quick_feedback(true);
ubl.restore_ubl_active_state_and_leave();
}
void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
lcd_external_control = true;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_clearance);
lcd_return_to_status();
mesh_index_pair location;
do {
location = find_closest_mesh_point_of_type(INVALID, rx, ry, USE_NOZZLE_AS_REFERENCE, NULL);
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
const float xProbe = mesh_index_to_xpos(location.x_index),
yProbe = mesh_index_to_ypos(location.y_index);
if (!position_is_reachable(xProbe, yProbe)) break; // SHOULD NOT OCCUR (find_closest_mesh_point only returns reachable points)
LCD_MESSAGEPGM(MSG_UBL_MOVING_TO_NEXT);
do_blocking_move_to(xProbe, yProbe, Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_z(z_clearance);
KEEPALIVE_STATE(PAUSED_FOR_USER);
lcd_external_control = true;
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
serialprintPGM(parser.seen('B') ? PSTR(MSG_UBL_BC_INSERT) : PSTR(MSG_UBL_BC_INSERT2));
const float z_step = 0.01f; // existing behavior: 0.01mm per click, occasionally step
//const float z_step = planner.steps_to_mm[Z_AXIS]; // approx one step each click
move_z_with_encoder(z_step);
if (click_and_hold()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_external_control = false;
KEEPALIVE_STATE(IN_HANDLER);
restore_ubl_active_state_and_leave();
return;
}
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
if (g29_verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL();
}
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (location.x_index >= 0 && location.y_index >= 0);
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
restore_ubl_active_state_and_leave();
KEEPALIVE_STATE(IN_HANDLER);
do_blocking_move_to(rx, ry, Z_CLEARANCE_DEPLOY_PROBE);
}
#endif // NEWPANEL
bool unified_bed_leveling::g29_parameter_parsing() {
bool err_flag = false;
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM(MSG_UBL_DOING_G29);
lcd_quick_feedback(true);
#endif
g29_constant = 0;
g29_repetition_cnt = 0;
g29_x_flag = parser.seenval('X');
g29_x_pos = g29_x_flag ? parser.value_float() : current_position[X_AXIS];
g29_y_flag = parser.seenval('Y');
g29_y_pos = g29_y_flag ? parser.value_float() : current_position[Y_AXIS];
if (parser.seen('R')) {
g29_repetition_cnt = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS;
NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
if (g29_repetition_cnt < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
return UBL_ERR;
}
}
g29_verbose_level = parser.seen('V') ? parser.value_int() : 0;
if (!WITHIN(g29_verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).\n");
err_flag = true;
}
if (parser.seen('P')) {
const int pv = parser.value_int();
#if !HAS_BED_PROBE
if (pv == 1) {
SERIAL_PROTOCOLLNPGM("G29 P1 requires a probe.\n");
err_flag = true;
}
else
#endif
{
g29_phase_value = pv;
if (!WITHIN(g29_phase_value, 0, 6)) {
SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
err_flag = true;
}
}
}
if (parser.seen('J')) {
#if HAS_BED_PROBE
g29_grid_size = parser.has_value() ? parser.value_int() : 0;
if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
err_flag = true;
}
#else
SERIAL_PROTOCOLLNPGM("G29 J action requires a probe.\n");
err_flag = true;
#endif
}
if (g29_x_flag != g29_y_flag) {
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
err_flag = true;
}
// If X or Y are not valid, use center of the bed values
if (!WITHIN(g29_x_pos, X_MIN_BED, X_MAX_BED)) g29_x_pos = X_CENTER;
if (!WITHIN(g29_y_pos, Y_MIN_BED, Y_MAX_BED)) g29_y_pos = Y_CENTER;
if (err_flag) return UBL_ERR;
/**
* Activate or deactivate UBL
* Note: UBL's G29 restores the state set here when done.
* Leveling is being enabled here with old data, possibly
* none. Error handling should disable for safety...
*/
if (parser.seen('A')) {
if (parser.seen('D')) {
SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
return UBL_ERR;
}
set_bed_leveling_enabled(true);
report_state();
}
else if (parser.seen('D')) {
set_bed_leveling_enabled(false);
report_state();
}
// Set global 'C' flag and its value
if ((g29_c_flag = parser.seen('C')))
g29_constant = parser.value_float();
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (parser.seenval('F')) {
const float fh = parser.value_float();
if (!WITHIN(fh, 0, 100)) {
SERIAL_PROTOCOLLNPGM("?(F)ade height for Bed Level Correction not plausible.\n");
return UBL_ERR;
}
set_z_fade_height(fh);
}
#endif
g29_map_type = parser.intval('T');
if (!WITHIN(g29_map_type, 0, 2)) {
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
return UBL_ERR;
}
return UBL_OK;
}
static uint8_t ubl_state_at_invocation = 0;
#ifdef UBL_DEVEL_DEBUGGING
static uint8_t ubl_state_recursion_chk = 0;
#endif
void unified_bed_leveling::save_ubl_active_state_and_disable() {
#ifdef UBL_DEVEL_DEBUGGING
ubl_state_recursion_chk++;
if (ubl_state_recursion_chk != 1) {
SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row.");
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM(MSG_UBL_SAVE_ERROR);
lcd_quick_feedback(true);
#endif
return;
}
#endif
ubl_state_at_invocation = planner.leveling_active;
set_bed_leveling_enabled(false);
}
void unified_bed_leveling::restore_ubl_active_state_and_leave() {
#ifdef UBL_DEVEL_DEBUGGING
if (--ubl_state_recursion_chk) {
SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times.");
#if ENABLED(NEWPANEL)
LCD_MESSAGEPGM(MSG_UBL_RESTORE_ERROR);
lcd_quick_feedback(true);
#endif
return;
}
#endif
set_bed_leveling_enabled(ubl_state_at_invocation);
}
/**
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
* good to have the extra information. Soon... we prune this to just a few items
*/
void unified_bed_leveling::g29_what_command() {
report_state();
if (storage_slot == -1)
SERIAL_PROTOCOLPGM("No Mesh Loaded.");
else {
SERIAL_PROTOCOLPAIR("Mesh ", storage_slot);
SERIAL_PROTOCOLPGM(" Loaded.");
}
SERIAL_EOL();
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("UBL object count: ", (int)ubl_cnt);
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
SERIAL_PROTOCOLPGM("planner.z_fade_height : ");
SERIAL_PROTOCOL_F(planner.z_fade_height, 4);
SERIAL_EOL();
#endif
adjust_mesh_to_mean(g29_c_flag, g29_constant);
#if HAS_BED_PROBE
SERIAL_PROTOCOLPGM("zprobe_zoffset: ");
SERIAL_PROTOCOL_F(zprobe_zoffset, 7);
SERIAL_EOL();
#endif
SERIAL_ECHOLNPAIR("MESH_MIN_X " STRINGIFY(MESH_MIN_X) "=", MESH_MIN_X);
safe_delay(50);
SERIAL_ECHOLNPAIR("MESH_MIN_Y " STRINGIFY(MESH_MIN_Y) "=", MESH_MIN_Y);
safe_delay(50);
SERIAL_ECHOLNPAIR("MESH_MAX_X " STRINGIFY(MESH_MAX_X) "=", MESH_MAX_X);
safe_delay(50);
SERIAL_ECHOLNPAIR("MESH_MAX_Y " STRINGIFY(MESH_MAX_Y) "=", MESH_MAX_Y);
safe_delay(50);
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_X ", GRID_MAX_POINTS_X);
safe_delay(50);
SERIAL_ECHOLNPAIR("GRID_MAX_POINTS_Y ", GRID_MAX_POINTS_Y);
safe_delay(50);
SERIAL_ECHOLNPAIR("MESH_X_DIST ", MESH_X_DIST);
SERIAL_ECHOLNPAIR("MESH_Y_DIST ", MESH_Y_DIST);
safe_delay(50);
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
SERIAL_PROTOCOLPGM(" ");
safe_delay(25);
}
SERIAL_EOL();
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
SERIAL_PROTOCOLPGM(" ");
safe_delay(25);
}
SERIAL_EOL();
#if HAS_KILL
SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN);
SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN));
#endif
SERIAL_EOL();
safe_delay(50);
#ifdef UBL_DEVEL_DEBUGGING
SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation);
SERIAL_EOL();
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
SERIAL_EOL();
safe_delay(50);
SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()));
SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.meshes_end_index()));
safe_delay(50);
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
SERIAL_EOL();
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
SERIAL_EOL();
safe_delay(25);
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index())));
safe_delay(50);
SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());
SERIAL_PROTOCOLLNPGM(" meshes.\n");
safe_delay(25);
#endif // UBL_DEVEL_DEBUGGING
if (!sanity_check()) {
echo_name();
SERIAL_PROTOCOLLNPGM(" sanity checks passed.");
}
}
/**
* When we are fully debugged, the EEPROM dump command will get deleted also. But
* right now, it is good to have the extra information. Soon... we prune this.
*/
void unified_bed_leveling::g29_eeprom_dump() {
unsigned char cccc;
unsigned int kkkk; // Needs to be of unspecfied size to compile clean on all platforms
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("EEPROM Dump:");
for (uint16_t i = 0; i <= E2END; i += 16) {
if (!(i & 0x3)) idle();
print_hex_word(i);
SERIAL_ECHOPGM(": ");
for (uint16_t j = 0; j < 16; j++) {
kkkk = i + j;
eeprom_read_block(&cccc, (const void *)kkkk, sizeof(unsigned char));
print_hex_byte(cccc);
SERIAL_ECHO(' ');
}
SERIAL_EOL();
}
SERIAL_EOL();
}
/**
* When we are fully debugged, this may go away. But there are some valid
* use cases for the users. So we can wait and see what to do with it.
*/
void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
int16_t a = settings.calc_num_meshes();
if (!a) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
return;
}
if (!parser.has_value()) {
SERIAL_PROTOCOLLNPGM("?Storage slot # required.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
g29_storage_slot = parser.value_int();
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
settings.load_mesh(g29_storage_slot, &tmp_z_values);
SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
SERIAL_PROTOCOLLNPGM(" from current mesh.");
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
z_values[x][y] -= tmp_z_values[x][y];
}
mesh_index_pair unified_bed_leveling::find_furthest_invalid_mesh_point() {
bool found_a_NAN = false, found_a_real = false;
mesh_index_pair out_mesh;
out_mesh.x_index = out_mesh.y_index = -1;
out_mesh.distance = -99999.99f;
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (isnan(z_values[i][j])) { // Check to see if this location holds an invalid mesh point
const float mx = mesh_index_to_xpos(i),
my = mesh_index_to_ypos(j);
if (!position_is_reachable_by_probe(mx, my)) // make sure the probe can get to the mesh point
continue;
found_a_NAN = true;
int8_t closest_x = -1, closest_y = -1;
float d1, d2 = 99999.9f;
for (int8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
for (int8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
if (!isnan(z_values[k][l])) {
found_a_real = true;
// Add in a random weighting factor that scrambles the probing of the
// last half of the mesh (when every unprobed mesh point is one index
// from a probed location).
d1 = HYPOT(i - k, j - l) + (1.0f / ((millis() % 47) + 13));
if (d1 < d2) { // found a closer distance from invalid mesh point at (i,j) to defined mesh point at (k,l)
d2 = d1; // found a closer location with
closest_x = i; // an assigned mesh point value
closest_y = j;
}
}
}
}
//
// At this point d2 should have the closest defined mesh point to invalid mesh point (i,j)
//
if (found_a_real && (closest_x >= 0) && (d2 > out_mesh.distance)) {
out_mesh.distance = d2; // found an invalid location with a greater distance
out_mesh.x_index = closest_x; // to a defined mesh point
out_mesh.y_index = closest_y;
}
}
} // for j
} // for i
if (!found_a_real && found_a_NAN) { // if the mesh is totally unpopulated, start the probing
out_mesh.x_index = GRID_MAX_POINTS_X / 2;
out_mesh.y_index = GRID_MAX_POINTS_Y / 2;
out_mesh.distance = 1;
}
return out_mesh;
}
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &rx, const float &ry, const bool probe_as_reference, uint16_t bits[16]) {
mesh_index_pair out_mesh;
out_mesh.x_index = out_mesh.y_index = -1;
out_mesh.distance = -99999.9f;
// Get our reference position. Either the nozzle or probe location.
const float px = rx - (probe_as_reference == USE_PROBE_AS_REFERENCE ? X_PROBE_OFFSET_FROM_EXTRUDER : 0),
py = ry - (probe_as_reference == USE_PROBE_AS_REFERENCE ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0);
float best_so_far = 99999.99f;
for (int8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (int8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(z_values[i][j]))
|| (type == SET_IN_BITMAP && is_bitmap_set(bits, i, j))
) {
// We only get here if we found a Mesh Point of the specified type
const float mx = mesh_index_to_xpos(i),
my = mesh_index_to_ypos(j);
// If using the probe as the reference there are some unreachable locations.
// Also for round beds, there are grid points outside the bed the nozzle can't reach.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
if (probe_as_reference ? !position_is_reachable_by_probe(mx, my) : !position_is_reachable(mx, my))
continue;
// Reachable. Check if it's the best_so_far location to the nozzle.
float distance = HYPOT(px - mx, py - my);
// factor in the distance from the current location for the normal case
// so the nozzle isn't running all over the bed.
distance += HYPOT(current_position[X_AXIS] - mx, current_position[Y_AXIS] - my) * 0.1f;
if (distance < best_so_far) {
best_so_far = distance; // We found a closer location with
out_mesh.x_index = i; // the specified type of mesh value.
out_mesh.y_index = j;
out_mesh.distance = best_so_far;
}
}
} // for j
} // for i
return out_mesh;
}
#if ENABLED(NEWPANEL)
void abort_fine_tune() {
lcd_return_to_status();
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
lcd_quick_feedback(true);
}
void unified_bed_leveling::fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map) {
if (!parser.seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
const float h_offset = parser.seenval('H') ? parser.value_linear_units() : 0;
if (!WITHIN(h_offset, 0, 10)) {
SERIAL_PROTOCOLLNPGM("Offset out of bounds. (0 to 10mm)\n");
return;
}
#endif
mesh_index_pair location;
if (!position_is_reachable(rx, ry)) {
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
return;
}
save_ubl_active_state_and_disable();
LCD_MESSAGEPGM(MSG_UBL_FINE_TUNE_MESH);
lcd_external_control = true; // Take over control of the LCD encoder
do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES); // Move to the given XY with probe clearance
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
do_blocking_move_to_z(h_offset); // Move Z to the given 'H' offset
#endif
uint16_t not_done[16];
memset(not_done, 0xFF, sizeof(not_done));
do {
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, rx, ry, USE_NOZZLE_AS_REFERENCE, not_done);
if (location.x_index < 0) break; // Stop when there are no more reachable points
bitmap_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so a new
// location is used on the next loop
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
if (!position_is_reachable(rawx, rawy)) break; // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
do_blocking_move_to(rawx, rawy, Z_CLEARANCE_BETWEEN_PROBES); // Move the nozzle to the edit point with probe clearance
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
do_blocking_move_to_z(h_offset); // Move Z to the given 'H' offset before editing
#endif
KEEPALIVE_STATE(PAUSED_FOR_USER);
if (do_ubl_mesh_map) display_map(g29_map_type); // Display the current point
lcd_refresh();
float new_z = z_values[location.x_index][location.y_index];
if (isnan(new_z)) new_z = 0; // Invalid points begin at 0
new_z = FLOOR(new_z * 1000) * 0.001f; // Chop off digits after the 1000ths place
lcd_mesh_edit_setup(new_z);
do {
new_z = lcd_mesh_edit();
#if ENABLED(UBL_MESH_EDIT_MOVES_Z)
do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
#endif
idle();
SERIAL_FLUSH(); // Prevent host M105 buffer overrun.
} while (!is_lcd_clicked());
if (!lcd_map_control) lcd_return_to_status(); // Just editing a single point? Return to status
if (click_and_hold(abort_fine_tune)) goto FINE_TUNE_EXIT; // If the click is held down, abort editing
z_values[location.x_index][location.y_index] = new_z; // Save the updated Z value
safe_delay(20); // No switch noise
lcd_refresh();
} while (location.x_index >= 0 && --g29_repetition_cnt > 0);
FINE_TUNE_EXIT:
lcd_external_control = false;
KEEPALIVE_STATE(IN_HANDLER);
if (do_ubl_mesh_map) display_map(g29_map_type);
restore_ubl_active_state_and_leave();
do_blocking_move_to(rx, ry, Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGEPGM(MSG_UBL_DONE_EDITING_MESH);
SERIAL_ECHOLNPGM("Done Editing Mesh");
if (lcd_map_control)
lcd_goto_screen(_lcd_ubl_output_map_lcd);
else
lcd_return_to_status();
}
#endif // NEWPANEL
/**
* 'Smart Fill': Scan from the outward edges of the mesh towards the center.
* If an invalid location is found, use the next two points (if valid) to
* calculate a 'reasonable' value for the unprobed mesh point.
*/
bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
const int8_t x1 = x + xdir, x2 = x1 + xdir,
y1 = y + ydir, y2 = y1 + ydir;
// A NAN next to a pair of real values?
if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
else
z_values[x][y] = 2.0f * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
return true;
}
return false;
}
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
void unified_bed_leveling::smart_fill_mesh() {
static const smart_fill_info
info0 PROGMEM = { 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
info1 PROGMEM = { 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
info2 PROGMEM = { 0, GRID_MAX_POINTS_X - 2, 0, GRID_MAX_POINTS_Y, true }, // Left side of the mesh looking right
info3 PROGMEM = { GRID_MAX_POINTS_X - 1, 0, 0, GRID_MAX_POINTS_Y, true }; // Right side of the mesh looking left
static const smart_fill_info * const info[] PROGMEM = { &info0, &info1, &info2, &info3 };
for (uint8_t i = 0; i < COUNT(info); ++i) {
const smart_fill_info *f = (smart_fill_info*)pgm_read_ptr(&info[i]);
const int8_t sx = pgm_read_byte(&f->sx), sy = pgm_read_byte(&f->sy),
ex = pgm_read_byte(&f->ex), ey = pgm_read_byte(&f->ey);
if (pgm_read_byte(&f->yfirst)) {
const int8_t dir = ex > sx ? 1 : -1;
for (uint8_t y = sy; y != ey; ++y)
for (uint8_t x = sx; x != ex; x += dir)
if (smart_fill_one(x, y, dir, 0)) break;
}
else {
const int8_t dir = ey > sy ? 1 : -1;
for (uint8_t x = sx; x != ex; ++x)
for (uint8_t y = sy; y != ey; y += dir)
if (smart_fill_one(x, y, 0, dir)) break;
}
}
}
#if HAS_BED_PROBE
#include "vector_3.h"
void unified_bed_leveling::tilt_mesh_based_on_probed_grid(const bool do_3_pt_leveling) {
constexpr int16_t x_min = MAX(MIN_PROBE_X, MESH_MIN_X),
x_max = MIN(MAX_PROBE_X, MESH_MAX_X),
y_min = MAX(MIN_PROBE_Y, MESH_MIN_Y),
y_max = MIN(MAX_PROBE_Y, MESH_MAX_Y);
bool abort_flag = false;
float measured_z;
const float dx = float(x_max - x_min) / (g29_grid_size - 1),
dy = float(y_max - y_min) / (g29_grid_size - 1);
struct linear_fit_data lsf_results;
//float z1, z2, z3; // Needed for algorithm validation down below.
incremental_LSF_reset(&lsf_results);
if (do_3_pt_leveling) {
measured_z = probe_pt(PROBE_PT_1_X, PROBE_PT_1_Y, PROBE_PT_RAISE, g29_verbose_level);
if (isnan(measured_z))
abort_flag = true;
else {
measured_z -= get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y);
//z1 = measured_z;
if (g29_verbose_level > 3) {
serial_spaces(16);
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, PROBE_PT_1_X, PROBE_PT_1_Y, measured_z);
}
if (!abort_flag) {
measured_z = probe_pt(PROBE_PT_2_X, PROBE_PT_2_Y, PROBE_PT_RAISE, g29_verbose_level);
//z2 = measured_z;
if (isnan(measured_z))
abort_flag = true;
else {
measured_z -= get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y);
if (g29_verbose_level > 3) {
serial_spaces(16);
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, PROBE_PT_2_X, PROBE_PT_2_Y, measured_z);
}
}
if (!abort_flag) {
measured_z = probe_pt(PROBE_PT_3_X, PROBE_PT_3_Y, PROBE_PT_STOW, g29_verbose_level);
//z3 = measured_z;
if (isnan(measured_z))
abort_flag = true;
else {
measured_z -= get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y);
if (g29_verbose_level > 3) {
serial_spaces(16);
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, PROBE_PT_3_X, PROBE_PT_3_Y, measured_z);
}
}
STOW_PROBE();
#ifdef Z_AFTER_PROBING
move_z_after_probing();
#endif
if (abort_flag) {
SERIAL_ECHOPGM("?Error probing point. Aborting operation.\n");
return;
}
}
else { // !do_3_pt_leveling
bool zig_zag = false;
for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
const float rx = float(x_min) + ix * dx;
for (int8_t iy = 0; iy < g29_grid_size; iy++) {
const float ry = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
if (!abort_flag) {
measured_z = probe_pt(rx, ry, parser.seen('E') ? PROBE_PT_STOW : PROBE_PT_RAISE, g29_verbose_level); // TODO: Needs error handling
abort_flag = isnan(measured_z);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_CHAR('(');
SERIAL_PROTOCOL_F(rx, 7);
SERIAL_CHAR(',');
SERIAL_PROTOCOL_F(ry, 7);
SERIAL_ECHOPGM(") logical: ");
SERIAL_CHAR('(');
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 7);
SERIAL_CHAR(',');
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 7);
SERIAL_ECHOPGM(") measured: ");
SERIAL_PROTOCOL_F(measured_z, 7);
SERIAL_ECHOPGM(" correction: ");
SERIAL_PROTOCOL_F(get_z_correction(rx, ry), 7);
}
#endif
measured_z -= get_z_correction(rx, ry) /* + zprobe_zoffset */ ;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM(" final >>>---> ");
SERIAL_PROTOCOL_F(measured_z, 7);
SERIAL_EOL();
}
#endif
if (g29_verbose_level > 3) {
serial_spaces(16);
SERIAL_ECHOLNPAIR("Corrected_Z=", measured_z);
}
incremental_LSF(&lsf_results, rx, ry, measured_z);
}
}
zig_zag ^= true;
}
}
STOW_PROBE();
#ifdef Z_AFTER_PROBING
move_z_after_probing();
#endif
if (abort_flag || finish_incremental_LSF(&lsf_results)) {
SERIAL_ECHOPGM("Could not complete LSF!");
return;
}
vector_3 normal = vector_3(lsf_results.A, lsf_results.B, 1).get_normal();
if (g29_verbose_level > 2) {
SERIAL_ECHOPGM("bed plane normal = [");
SERIAL_PROTOCOL_F(normal.x, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.y, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.z, 7);
SERIAL_ECHOLNPGM("]");
}
matrix_3x3 rotation = matrix_3x3::create_look_at(vector_3(lsf_results.A, lsf_results.B, 1));
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
float x_tmp = mesh_index_to_xpos(i),
y_tmp = mesh_index_to_ypos(j),
z_tmp = z_values[i][j];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("before rotation = [");
SERIAL_PROTOCOL_F(x_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(y_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(z_tmp, 7);
SERIAL_ECHOPGM("] ---> ");
safe_delay(20);
}
#endif
apply_rotation_xyz(rotation, x_tmp, y_tmp, z_tmp);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("after rotation = [");
SERIAL_PROTOCOL_F(x_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(y_tmp, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(z_tmp, 7);
SERIAL_ECHOLNPGM("]");
safe_delay(55);
}
#endif
z_values[i][j] = z_tmp - lsf_results.D;
}
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
rotation.debug(PSTR("rotation matrix:\n"));
SERIAL_ECHOPGM("LSF Results A=");
SERIAL_PROTOCOL_F(lsf_results.A, 7);
SERIAL_ECHOPGM(" B=");
SERIAL_PROTOCOL_F(lsf_results.B, 7);
SERIAL_ECHOPGM(" D=");
SERIAL_PROTOCOL_F(lsf_results.D, 7);
SERIAL_EOL();
safe_delay(55);
SERIAL_ECHOPGM("bed plane normal = [");
SERIAL_PROTOCOL_F(normal.x, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.y, 7);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL_F(normal.z, 7);
SERIAL_ECHOPGM("]\n");
SERIAL_EOL();
/**
* The following code can be used to check the validity of the mesh tilting algorithm.
* When a 3-Point Mesh Tilt is done, the same algorithm is used as the grid based tilting.
* The only difference is just 3 points are used in the calculations. That fact guarantees
* each probed point should have an exact match when a get_z_correction() for that location
* is calculated. The Z error between the probed point locations and the get_z_correction()
* numbers for those locations should be 0.
*/
#if 0
float t, t1, d;
t = normal.x * (PROBE_PT_1_X) + normal.y * (PROBE_PT_1_Y);
d = t + normal.z * z1;
SERIAL_ECHOPGM("D from 1st point: ");
SERIAL_ECHO_F(d, 6);
SERIAL_ECHOPGM(" Z error: ");
SERIAL_ECHO_F(normal.z*z1-get_z_correction(PROBE_PT_1_X, PROBE_PT_1_Y), 6);
SERIAL_EOL();
t = normal.x * (PROBE_PT_2_X) + normal.y * (PROBE_PT_2_Y);
d = t + normal.z * z2;
SERIAL_EOL();
SERIAL_ECHOPGM("D from 2nd point: ");
SERIAL_ECHO_F(d, 6);
SERIAL_ECHOPGM(" Z error: ");
SERIAL_ECHO_F(normal.z*z2-get_z_correction(PROBE_PT_2_X, PROBE_PT_2_Y), 6);
SERIAL_EOL();
t = normal.x * (PROBE_PT_3_X) + normal.y * (PROBE_PT_3_Y);
d = t + normal.z * z3;
SERIAL_ECHOPGM("D from 3rd point: ");
SERIAL_ECHO_F(d, 6);
SERIAL_ECHOPGM(" Z error: ");
SERIAL_ECHO_F(normal.z*z3-get_z_correction(PROBE_PT_3_X, PROBE_PT_3_Y), 6);
SERIAL_EOL();
t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT);
d = t + normal.z * 0;
SERIAL_ECHOPGM("D from home location with Z=0 : ");
SERIAL_ECHO_F(d, 6);
SERIAL_EOL();
t = normal.x * (Z_SAFE_HOMING_X_POINT) + normal.y * (Z_SAFE_HOMING_Y_POINT);
d = t + get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT); // normal.z * 0;
SERIAL_ECHOPGM("D from home location using mesh value for Z: ");
SERIAL_ECHO_F(d, 6);
SERIAL_ECHOPAIR(" Z error: (", Z_SAFE_HOMING_X_POINT);
SERIAL_ECHOPAIR(",", Z_SAFE_HOMING_Y_POINT );
SERIAL_ECHOPGM(") = ");
SERIAL_ECHO_F(get_z_correction(Z_SAFE_HOMING_X_POINT, Z_SAFE_HOMING_Y_POINT), 6);
SERIAL_EOL();
#endif
} // DEBUGGING(LEVELING)
#endif
}
#endif // HAS_BED_PROBE
#if ENABLED(UBL_G29_P31)
void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
// For each undefined mesh point, compute a distance-weighted least squares fit
// from all the originally populated mesh points, weighted toward the point
// being extrapolated so that nearby points will have greater influence on
// the point being extrapolated. Then extrapolate the mesh point from WLSF.
static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
struct linear_fit_data lsf_results;
SERIAL_ECHOPGM("Extrapolating mesh...");
const float weight_scaled = weight_factor * MAX(MESH_X_DIST, MESH_Y_DIST);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
if (!isnan(z_values[jx][jy]))
SBI(bitmap[jx], jy);
for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
const float px = mesh_index_to_xpos(ix);
for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
const float py = mesh_index_to_ypos(iy);
if (isnan(z_values[ix][iy])) {
// undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
incremental_LSF_reset(&lsf_results);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
const float rx = mesh_index_to_xpos(jx);
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
if (TEST(bitmap[jx], jy)) {
const float ry = mesh_index_to_ypos(jy),
rz = z_values[jx][jy],
w = 1 + weight_scaled / HYPOT((rx - px), (ry - py));
incremental_WLSF(&lsf_results, rx, ry, rz, w);
}
}
}
if (finish_incremental_LSF(&lsf_results)) {
SERIAL_ECHOLNPGM("Insufficient data");
return;
}
const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
z_values[ix][iy] = ez;
idle(); // housekeeping
}
}
}
SERIAL_ECHOLNPGM("done");
}
#endif // UBL_G29_P31
#endif // AUTO_BED_LEVELING_UBL