Firmware/Marlin/endstops.cpp
2018-09-22 03:22:55 -04:00

789 lines
22 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* endstops.cpp - A singleton object to manage endstops
*/
#include "Marlin.h"
#include "cardreader.h"
#include "endstops.h"
#include "temperature.h"
#include "stepper.h"
#include "ultralcd.h"
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
#include "endstop_interrupts.h"
#endif
Endstops endstops;
// public:
bool Endstops::enabled, Endstops::enabled_globally; // Initialized by settings.load()
volatile uint8_t Endstops::hit_state;
Endstops::esbits_t Endstops::live_state = 0;
#if ENABLED(ENDSTOP_NOISE_FILTER)
Endstops::esbits_t Endstops::validated_live_state;
uint8_t Endstops::endstop_poll_count;
#endif
#if HAS_BED_PROBE
volatile bool Endstops::z_probe_enabled = false;
#endif
// Initialized by settings.load()
#if ENABLED(X_DUAL_ENDSTOPS)
float Endstops::x_endstop_adj;
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
float Endstops::y_endstop_adj;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
float Endstops::z_endstop_adj;
#endif
/**
* Class and Instance Methods
*/
void Endstops::init() {
#if HAS_X_MIN
#if ENABLED(ENDSTOPPULLUP_XMIN)
SET_INPUT_PULLUP(X_MIN_PIN);
#else
SET_INPUT(X_MIN_PIN);
#endif
#endif
#if HAS_X2_MIN
#if ENABLED(ENDSTOPPULLUP_XMIN)
SET_INPUT_PULLUP(X2_MIN_PIN);
#else
SET_INPUT(X2_MIN_PIN);
#endif
#endif
#if HAS_Y_MIN
#if ENABLED(ENDSTOPPULLUP_YMIN)
SET_INPUT_PULLUP(Y_MIN_PIN);
#else
SET_INPUT(Y_MIN_PIN);
#endif
#endif
#if HAS_Y2_MIN
#if ENABLED(ENDSTOPPULLUP_YMIN)
SET_INPUT_PULLUP(Y2_MIN_PIN);
#else
SET_INPUT(Y2_MIN_PIN);
#endif
#endif
#if HAS_Z_MIN
#if ENABLED(ENDSTOPPULLUP_ZMIN)
SET_INPUT_PULLUP(Z_MIN_PIN);
#else
SET_INPUT(Z_MIN_PIN);
#endif
#endif
#if HAS_Z2_MIN
#if ENABLED(ENDSTOPPULLUP_ZMIN)
SET_INPUT_PULLUP(Z2_MIN_PIN);
#else
SET_INPUT(Z2_MIN_PIN);
#endif
#endif
#if HAS_X_MAX
#if ENABLED(ENDSTOPPULLUP_XMAX)
SET_INPUT_PULLUP(X_MAX_PIN);
#else
SET_INPUT(X_MAX_PIN);
#endif
#endif
#if HAS_X2_MAX
#if ENABLED(ENDSTOPPULLUP_XMAX)
SET_INPUT_PULLUP(X2_MAX_PIN);
#else
SET_INPUT(X2_MAX_PIN);
#endif
#endif
#if HAS_Y_MAX
#if ENABLED(ENDSTOPPULLUP_YMAX)
SET_INPUT_PULLUP(Y_MAX_PIN);
#else
SET_INPUT(Y_MAX_PIN);
#endif
#endif
#if HAS_Y2_MAX
#if ENABLED(ENDSTOPPULLUP_YMAX)
SET_INPUT_PULLUP(Y2_MAX_PIN);
#else
SET_INPUT(Y2_MAX_PIN);
#endif
#endif
#if HAS_Z_MAX
#if ENABLED(ENDSTOPPULLUP_ZMAX)
SET_INPUT_PULLUP(Z_MAX_PIN);
#else
SET_INPUT(Z_MAX_PIN);
#endif
#endif
#if HAS_Z2_MAX
#if ENABLED(ENDSTOPPULLUP_ZMAX)
SET_INPUT_PULLUP(Z2_MAX_PIN);
#else
SET_INPUT(Z2_MAX_PIN);
#endif
#endif
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE)
SET_INPUT_PULLUP(Z_MIN_PROBE_PIN);
#else
SET_INPUT(Z_MIN_PROBE_PIN);
#endif
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
setup_endstop_interrupts();
#endif
// Enable endstops
enable_globally(
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
true
#else
false
#endif
);
} // Endstops::init
// Called at ~1KHz from Temperature ISR: Poll endstop state if required
void Endstops::poll() {
#if ENABLED(PINS_DEBUGGING)
run_monitor(); // report changes in endstop status
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) && ENABLED(ENDSTOP_NOISE_FILTER)
if (endstop_poll_count) update();
#elif DISABLED(ENDSTOP_INTERRUPTS_FEATURE) || ENABLED(ENDSTOP_NOISE_FILTER)
update();
#endif
}
void Endstops::enable_globally(const bool onoff) {
enabled_globally = enabled = onoff;
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
update();
#endif
}
// Enable / disable endstop checking
void Endstops::enable(const bool onoff) {
enabled = onoff;
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
update();
#endif
}
// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable
void Endstops::not_homing() {
enabled = enabled_globally;
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
update();
#endif
}
#if ENABLED(VALIDATE_HOMING_ENDSTOPS)
// If the last move failed to trigger an endstop, call kill
void Endstops::validate_homing_move() {
if (trigger_state()) hit_on_purpose();
else kill(PSTR(MSG_ERR_HOMING_FAILED));
}
#endif
// Enable / disable endstop z-probe checking
#if HAS_BED_PROBE
void Endstops::enable_z_probe(const bool onoff) {
z_probe_enabled = onoff;
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
update();
#endif
}
#endif
#if ENABLED(PINS_DEBUGGING)
void Endstops::run_monitor() {
if (!monitor_flag) return;
static uint8_t monitor_count = 16; // offset this check from the others
monitor_count += _BV(1); // 15 Hz
monitor_count &= 0x7F;
if (!monitor_count) monitor(); // report changes in endstop status
}
#endif
void Endstops::event_handler() {
static uint8_t prev_hit_state; // = 0
if (hit_state && hit_state != prev_hit_state) {
#if ENABLED(ULTRA_LCD)
char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' ';
#define _SET_STOP_CHAR(A,C) (chr## A = C)
#else
#define _SET_STOP_CHAR(A,C) ;
#endif
#define _ENDSTOP_HIT_ECHO(A,C) do{ \
SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); \
_SET_STOP_CHAR(A,C); }while(0)
#define _ENDSTOP_HIT_TEST(A,C) \
if (TEST(hit_state, A ##_MIN) || TEST(hit_state, A ##_MAX)) \
_ENDSTOP_HIT_ECHO(A,C)
#define ENDSTOP_HIT_TEST_X() _ENDSTOP_HIT_TEST(X,'X')
#define ENDSTOP_HIT_TEST_Y() _ENDSTOP_HIT_TEST(Y,'Y')
#define ENDSTOP_HIT_TEST_Z() _ENDSTOP_HIT_TEST(Z,'Z')
SERIAL_ECHO_START();
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
ENDSTOP_HIT_TEST_X();
ENDSTOP_HIT_TEST_Y();
ENDSTOP_HIT_TEST_Z();
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#define P_AXIS Z_AXIS
if (TEST(hit_state, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P');
#endif
SERIAL_EOL();
#if ENABLED(ULTRA_LCD)
lcd_status_printf_P(0, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP);
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT)
if (planner.abort_on_endstop_hit) {
card.sdprinting = false;
card.closefile();
quickstop_stepper();
thermalManager.disable_all_heaters(); // switch off all heaters.
}
#endif
}
prev_hit_state = hit_state;
} // Endstops::report_state
static void print_es_state(const bool is_hit, const char * const label=NULL) {
if (label) serialprintPGM(label);
SERIAL_PROTOCOLPGM(": ");
serialprintPGM(is_hit ? PSTR(MSG_ENDSTOP_HIT) : PSTR(MSG_ENDSTOP_OPEN));
SERIAL_EOL();
}
void _O2 Endstops::M119() {
SERIAL_PROTOCOLLNPGM(MSG_M119_REPORT);
#define ES_REPORT(S) print_es_state(READ(S##_PIN) != S##_ENDSTOP_INVERTING, PSTR(MSG_##S))
#if HAS_X_MIN
ES_REPORT(X_MIN);
#endif
#if HAS_X2_MIN
ES_REPORT(X2_MIN);
#endif
#if HAS_X_MAX
ES_REPORT(X_MAX);
#endif
#if HAS_X2_MAX
ES_REPORT(X2_MAX);
#endif
#if HAS_Y_MIN
ES_REPORT(Y_MIN);
#endif
#if HAS_Y2_MIN
ES_REPORT(Y2_MIN);
#endif
#if HAS_Y_MAX
ES_REPORT(Y_MAX);
#endif
#if HAS_Y2_MAX
ES_REPORT(Y2_MAX);
#endif
#if HAS_Z_MIN
ES_REPORT(Z_MIN);
#endif
#if HAS_Z2_MIN
ES_REPORT(Z2_MIN);
#endif
#if HAS_Z_MAX
ES_REPORT(Z_MAX);
#endif
#if HAS_Z2_MAX
ES_REPORT(Z2_MAX);
#endif
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
print_es_state(READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING, PSTR(MSG_Z_PROBE));
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
#define FRS_COUNT (1 + PIN_EXISTS(FIL_RUNOUT2) + PIN_EXISTS(FIL_RUNOUT3) + PIN_EXISTS(FIL_RUNOUT4) + PIN_EXISTS(FIL_RUNOUT5))
#if FRS_COUNT == 1
print_es_state(READ(FIL_RUNOUT_PIN) != FIL_RUNOUT_INVERTING, MSG_FILAMENT_RUNOUT_SENSOR);
#else
for (uint8_t i = 1; i <=
#if FRS_COUNT == 5
5
#elif FRS_COUNT == 4
4
#elif FRS_COUNT == 3
3
#elif FRS_COUNT == 2
2
#endif
; i++
) {
pin_t pin;
switch (i) {
default: continue;
case 1: pin = FIL_RUNOUT_PIN; break;
#if PIN_EXISTS(FIL_RUNOUT2)
case 2: pin = FIL_RUNOUT2_PIN; break;
#endif
#if PIN_EXISTS(FIL_RUNOUT3)
case 3: pin = FIL_RUNOUT3_PIN; break;
#endif
#if PIN_EXISTS(FIL_RUNOUT4)
case 4: pin = FIL_RUNOUT4_PIN; break;
#endif
#if PIN_EXISTS(FIL_RUNOUT5)
case 5: pin = FIL_RUNOUT5_PIN; break;
#endif
}
SERIAL_PROTOCOLPGM(MSG_FILAMENT_RUNOUT_SENSOR);
if (i > 1) { SERIAL_CHAR(' '); SERIAL_CHAR('0' + i); }
print_es_state(digitalRead(pin) != FIL_RUNOUT_INVERTING);
}
#endif
#endif
} // Endstops::M119
// The following routines are called from an ISR context. It could be the temperature ISR, the
// endstop ISR or the Stepper ISR.
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
// Check endstops - Could be called from Temperature ISR!
void Endstops::update() {
#if DISABLED(ENDSTOP_NOISE_FILTER)
if (!abort_enabled()) return;
#endif
#define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT_TO(live_state, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
#define COPY_LIVE_STATE(SRC_BIT, DST_BIT) SET_BIT_TO(live_state, DST_BIT, TEST(live_state, SRC_BIT))
#if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN_PROBE) && !(CORE_IS_XY || CORE_IS_XZ)
// If G38 command is active check Z_MIN_PROBE for ALL movement
if (G38_move) UPDATE_ENDSTOP_BIT(Z, MIN_PROBE);
#endif
// With Dual X, endstops are only checked in the homing direction for the active extruder
#if ENABLED(DUAL_X_CARRIAGE)
#define E0_ACTIVE stepper.movement_extruder() == 0
#define X_MIN_TEST ((X_HOME_DIR < 0 && E0_ACTIVE) || (X2_HOME_DIR < 0 && !E0_ACTIVE))
#define X_MAX_TEST ((X_HOME_DIR > 0 && E0_ACTIVE) || (X2_HOME_DIR > 0 && !E0_ACTIVE))
#else
#define X_MIN_TEST true
#define X_MAX_TEST true
#endif
// Use HEAD for core axes, AXIS for others
#if CORE_IS_XY || CORE_IS_XZ
#define X_AXIS_HEAD X_HEAD
#else
#define X_AXIS_HEAD X_AXIS
#endif
#if CORE_IS_XY || CORE_IS_YZ
#define Y_AXIS_HEAD Y_HEAD
#else
#define Y_AXIS_HEAD Y_AXIS
#endif
#if CORE_IS_XZ || CORE_IS_YZ
#define Z_AXIS_HEAD Z_HEAD
#else
#define Z_AXIS_HEAD Z_AXIS
#endif
/**
* Check and update endstops
*/
#if HAS_X_MIN
#if ENABLED(X_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(X, MIN);
#if HAS_X2_MIN
UPDATE_ENDSTOP_BIT(X2, MIN);
#else
COPY_LIVE_STATE(X_MIN, X2_MIN);
#endif
#else
UPDATE_ENDSTOP_BIT(X, MIN);
#endif
#endif
#if HAS_X_MAX
#if ENABLED(X_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(X, MAX);
#if HAS_X2_MAX
UPDATE_ENDSTOP_BIT(X2, MAX);
#else
COPY_LIVE_STATE(X_MAX, X2_MAX);
#endif
#else
UPDATE_ENDSTOP_BIT(X, MAX);
#endif
#endif
#if HAS_Y_MIN
#if ENABLED(Y_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Y, MIN);
#if HAS_Y2_MIN
UPDATE_ENDSTOP_BIT(Y2, MIN);
#else
COPY_LIVE_STATE(Y_MIN, Y2_MIN);
#endif
#else
UPDATE_ENDSTOP_BIT(Y, MIN);
#endif
#endif
#if HAS_Y_MAX
#if ENABLED(Y_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Y, MAX);
#if HAS_Y2_MAX
UPDATE_ENDSTOP_BIT(Y2, MAX);
#else
COPY_LIVE_STATE(Y_MAX, Y2_MAX);
#endif
#else
UPDATE_ENDSTOP_BIT(Y, MAX);
#endif
#endif
#if HAS_Z_MIN
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
UPDATE_ENDSTOP_BIT(Z2, MIN);
#else
COPY_LIVE_STATE(Z_MIN, Z2_MIN);
#endif
#elif ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
UPDATE_ENDSTOP_BIT(Z, MIN);
#elif Z_HOME_DIR < 0
UPDATE_ENDSTOP_BIT(Z, MIN);
#endif
#endif
// When closing the gap check the enabled probe
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
UPDATE_ENDSTOP_BIT(Z, MIN_PROBE);
#endif
#if HAS_Z_MAX
// Check both Z dual endstops
#if ENABLED(Z_DUAL_ENDSTOPS)
UPDATE_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
UPDATE_ENDSTOP_BIT(Z2, MAX);
#else
COPY_LIVE_STATE(Z_MAX, Z2_MAX);
#endif
#elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN
// If this pin isn't the bed probe it's the Z endstop
UPDATE_ENDSTOP_BIT(Z, MAX);
#endif
#endif
#if ENABLED(ENDSTOP_NOISE_FILTER)
/**
* Filtering out noise on endstops requires a delayed decision. Let's assume, due to noise,
* that 50% of endstop signal samples are good and 50% are bad (assuming normal distribution
* of random noise). Then the first sample has a 50% chance to be good or bad. The 2nd sample
* also has a 50% chance to be good or bad. The chances of 2 samples both being bad becomes
* 50% of 50%, or 25%. That was the previous implementation of Marlin endstop handling. It
* reduces chances of bad readings in half, at the cost of 1 extra sample period, but chances
* still exist. The only way to reduce them further is to increase the number of samples.
* To reduce the chance to 1% (1/128th) requires 7 samples (adding 7ms of delay).
*/
static esbits_t old_live_state;
if (old_live_state != live_state) {
endstop_poll_count = 7;
old_live_state = live_state;
}
else if (endstop_poll_count && !--endstop_poll_count)
validated_live_state = live_state;
if (!abort_enabled()) return;
#endif
// Test the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(state(), ENDSTOP))
// Record endstop was hit
#define _ENDSTOP_HIT(AXIS, MINMAX) SBI(hit_state, _ENDSTOP(AXIS, MINMAX))
// Call the endstop triggered routine for single endstops
#define PROCESS_ENDSTOP(AXIS,MINMAX) do { \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX))) { \
_ENDSTOP_HIT(AXIS, MINMAX); \
planner.endstop_triggered(_AXIS(AXIS)); \
} \
}while(0)
// Call the endstop triggered routine for dual endstops
#define PROCESS_DUAL_ENDSTOP(AXIS1, AXIS2, MINMAX) do { \
const byte dual_hit = TEST_ENDSTOP(_ENDSTOP(AXIS1, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(AXIS2, MINMAX)) << 1); \
if (dual_hit) { \
_ENDSTOP_HIT(AXIS1, MINMAX); \
/* if not performing home or if both endstops were trigged during homing... */ \
if (!stepper.homing_dual_axis || dual_hit == 0b11) \
planner.endstop_triggered(_AXIS(AXIS1)); \
} \
}while(0)
#if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN_PROBE) && !(CORE_IS_XY || CORE_IS_XZ)
// If G38 command is active check Z_MIN_PROBE for ALL movement
if (G38_move) {
if (TEST_ENDSTOP(_ENDSTOP(Z, MIN_PROBE))) {
if (stepper.axis_is_moving(X_AXIS)) { _ENDSTOP_HIT(X, MIN); planner.endstop_triggered(X_AXIS); }
else if (stepper.axis_is_moving(Y_AXIS)) { _ENDSTOP_HIT(Y, MIN); planner.endstop_triggered(Y_AXIS); }
else if (stepper.axis_is_moving(Z_AXIS)) { _ENDSTOP_HIT(Z, MIN); planner.endstop_triggered(Z_AXIS); }
G38_endstop_hit = true;
}
}
#endif
// Now, we must signal, after validation, if an endstop limit is pressed or not
if (stepper.axis_is_moving(X_AXIS)) {
if (stepper.motor_direction(X_AXIS_HEAD)) { // -direction
#if HAS_X_MIN
#if ENABLED(X_DUAL_ENDSTOPS)
PROCESS_DUAL_ENDSTOP(X, X2, MIN);
#else
if (X_MIN_TEST) PROCESS_ENDSTOP(X, MIN);
#endif
#endif
}
else { // +direction
#if HAS_X_MAX
#if ENABLED(X_DUAL_ENDSTOPS)
PROCESS_DUAL_ENDSTOP(X, X2, MAX);
#else
if (X_MAX_TEST) PROCESS_ENDSTOP(X, MAX);
#endif
#endif
}
}
if (stepper.axis_is_moving(Y_AXIS)) {
if (stepper.motor_direction(Y_AXIS_HEAD)) { // -direction
#if HAS_Y_MIN
#if ENABLED(Y_DUAL_ENDSTOPS)
PROCESS_DUAL_ENDSTOP(Y, Y2, MIN);
#else
PROCESS_ENDSTOP(Y, MIN);
#endif
#endif
}
else { // +direction
#if HAS_Y_MAX
#if ENABLED(Y_DUAL_ENDSTOPS)
PROCESS_DUAL_ENDSTOP(Y, Y2, MAX);
#else
PROCESS_ENDSTOP(Y, MAX);
#endif
#endif
}
}
if (stepper.axis_is_moving(Z_AXIS)) {
if (stepper.motor_direction(Z_AXIS_HEAD)) { // Z -direction. Gantry down, bed up.
#if HAS_Z_MIN
#if ENABLED(Z_DUAL_ENDSTOPS)
PROCESS_DUAL_ENDSTOP(Z, Z2, MIN);
#else
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
if (z_probe_enabled) PROCESS_ENDSTOP(Z, MIN);
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
if (!z_probe_enabled) PROCESS_ENDSTOP(Z, MIN);
#else
PROCESS_ENDSTOP(Z, MIN);
#endif
#endif
#endif
// When closing the gap check the enabled probe
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
if (z_probe_enabled) PROCESS_ENDSTOP(Z, MIN_PROBE);
#endif
}
else { // Z +direction. Gantry up, bed down.
#if HAS_Z_MAX
#if ENABLED(Z_DUAL_ENDSTOPS)
PROCESS_DUAL_ENDSTOP(Z, Z2, MAX);
#elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN
// If this pin is not hijacked for the bed probe
// then it belongs to the Z endstop
PROCESS_ENDSTOP(Z, MAX);
#endif
#endif
}
}
} // Endstops::update()
#if ENABLED(PINS_DEBUGGING)
bool Endstops::monitor_flag = false;
/**
* monitors endstops & Z probe for changes
*
* If a change is detected then the LED is toggled and
* a message is sent out the serial port
*
* Yes, we could miss a rapid back & forth change but
* that won't matter because this is all manual.
*
*/
void Endstops::monitor() {
static uint16_t old_live_state_local = 0;
static uint8_t local_LED_status = 0;
uint16_t live_state_local = 0;
#if HAS_X_MIN
if (READ(X_MIN_PIN)) SBI(live_state_local, X_MIN);
#endif
#if HAS_X_MAX
if (READ(X_MAX_PIN)) SBI(live_state_local, X_MAX);
#endif
#if HAS_Y_MIN
if (READ(Y_MIN_PIN)) SBI(live_state_local, Y_MIN);
#endif
#if HAS_Y_MAX
if (READ(Y_MAX_PIN)) SBI(live_state_local, Y_MAX);
#endif
#if HAS_Z_MIN
if (READ(Z_MIN_PIN)) SBI(live_state_local, Z_MIN);
#endif
#if HAS_Z_MAX
if (READ(Z_MAX_PIN)) SBI(live_state_local, Z_MAX);
#endif
#if HAS_Z_MIN_PROBE_PIN
if (READ(Z_MIN_PROBE_PIN)) SBI(live_state_local, Z_MIN_PROBE);
#endif
#if HAS_X2_MIN
if (READ(X2_MIN_PIN)) SBI(live_state_local, X2_MIN);
#endif
#if HAS_X2_MAX
if (READ(X2_MAX_PIN)) SBI(live_state_local, X2_MAX);
#endif
#if HAS_Y2_MIN
if (READ(Y2_MIN_PIN)) SBI(live_state_local, Y2_MIN);
#endif
#if HAS_Y2_MAX
if (READ(Y2_MAX_PIN)) SBI(live_state_local, Y2_MAX);
#endif
#if HAS_Z2_MIN
if (READ(Z2_MIN_PIN)) SBI(live_state_local, Z2_MIN);
#endif
#if HAS_Z2_MAX
if (READ(Z2_MAX_PIN)) SBI(live_state_local, Z2_MAX);
#endif
uint16_t endstop_change = live_state_local ^ old_live_state_local;
if (endstop_change) {
#if HAS_X_MIN
if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR(" X_MIN:", TEST(live_state_local, X_MIN));
#endif
#if HAS_X_MAX
if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", TEST(live_state_local, X_MAX));
#endif
#if HAS_Y_MIN
if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", TEST(live_state_local, Y_MIN));
#endif
#if HAS_Y_MAX
if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", TEST(live_state_local, Y_MAX));
#endif
#if HAS_Z_MIN
if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", TEST(live_state_local, Z_MIN));
#endif
#if HAS_Z_MAX
if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", TEST(live_state_local, Z_MAX));
#endif
#if HAS_Z_MIN_PROBE_PIN
if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", TEST(live_state_local, Z_MIN_PROBE));
#endif
#if HAS_X2_MIN
if (TEST(endstop_change, X2_MIN)) SERIAL_PROTOCOLPAIR(" X2_MIN:", TEST(live_state_local, X2_MIN));
#endif
#if HAS_X2_MAX
if (TEST(endstop_change, X2_MAX)) SERIAL_PROTOCOLPAIR(" X2_MAX:", TEST(live_state_local, X2_MAX));
#endif
#if HAS_Y2_MIN
if (TEST(endstop_change, Y2_MIN)) SERIAL_PROTOCOLPAIR(" Y2_MIN:", TEST(live_state_local, Y2_MIN));
#endif
#if HAS_Y2_MAX
if (TEST(endstop_change, Y2_MAX)) SERIAL_PROTOCOLPAIR(" Y2_MAX:", TEST(live_state_local, Y2_MAX));
#endif
#if HAS_Z2_MIN
if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", TEST(live_state_local, Z2_MIN));
#endif
#if HAS_Z2_MAX
if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", TEST(live_state_local, Z2_MAX));
#endif
SERIAL_PROTOCOLPGM("\n\n");
analogWrite(LED_PIN, local_LED_status);
local_LED_status ^= 255;
old_live_state_local = live_state_local;
}
}
#endif // PINS_DEBUGGING