Firmware2/Marlin/UBL_line_to_destination.cpp

533 lines
21 KiB
C++
Raw Normal View History

2017-03-18 16:14:31 +01:00
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
2017-03-20 07:42:41 +01:00
#include "MarlinConfig.h"
2017-03-18 16:14:31 +01:00
#if ENABLED(AUTO_BED_LEVELING_UBL)
2017-03-20 07:42:41 +01:00
#include "Marlin.h"
2017-03-18 16:14:31 +01:00
#include "UBL.h"
#include "planner.h"
#include <avr/io.h>
#include <math.h>
extern void set_current_to_destination();
2017-03-20 07:42:41 +01:00
extern void debug_current_and_destination(char *title);
void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi,
current_xi, current_yi,
dxi, dyi, xi_cnt, yi_cnt;
float x_start, y_start,
x, y, z1, z2, z0 /*, z_optimized */,
next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1,
on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start,
dx, dy, adx, ady, m, c;
/**
* Much of the nozzle movement will be within the same cell. So we will do as little computation
* as possible to determine if this is the case. If this move is within the same cell, we will
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
*/
2017-03-18 16:14:31 +01:00
x_start = current_position[X_AXIS];
y_start = current_position[Y_AXIS];
z_start = current_position[Z_AXIS];
e_start = current_position[E_AXIS];
2017-03-20 07:42:41 +01:00
cell_start_xi = ubl.get_cell_index_x(x_start);
cell_start_yi = ubl.get_cell_index_y(y_start);
cell_dest_xi = ubl.get_cell_index_x(x_end);
cell_dest_yi = ubl.get_cell_index_y(y_end);
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
if (g26_debug_flag) {
SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
2017-03-18 16:14:31 +01:00
SERIAL_ECHO(x_end);
2017-03-20 07:42:41 +01:00
SERIAL_ECHOPGM(", ye=");
2017-03-18 16:14:31 +01:00
SERIAL_ECHO(y_end);
2017-03-20 07:42:41 +01:00
SERIAL_ECHOPGM(", ze=");
2017-03-18 16:14:31 +01:00
SERIAL_ECHO(z_end);
2017-03-20 07:42:41 +01:00
SERIAL_ECHOPGM(", ee=");
2017-03-18 16:14:31 +01:00
SERIAL_ECHO(e_end);
SERIAL_ECHOPGM(")\n");
2017-03-20 07:42:41 +01:00
debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
2017-03-18 16:14:31 +01:00
}
2017-03-20 07:42:41 +01:00
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
/**
* we don't need to break up the move
*
* If we are moving off the print bed, we are going to allow the move at this level.
* But we detect it and isolate it. For now, we just pass along the request.
*/
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
// Note: There is no Z Correction in this case. We are off the grid and don't know what
2017-03-18 16:14:31 +01:00
// a reasonable correction would be.
2017-03-20 07:42:41 +01:00
planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
2017-03-18 16:14:31 +01:00
set_current_to_destination();
2017-03-20 07:42:41 +01:00
if (g26_debug_flag)
debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
2017-03-18 16:14:31 +01:00
return;
}
FINAL_MOVE:
2017-03-20 07:42:41 +01:00
/**
* Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
* generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
* We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
* We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
* instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/
a0ma1diva2ma1 = (x_end - mesh_index_to_x_location[cell_dest_xi]) * 0.1 * (MESH_X_DIST);
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + a0ma1diva2ma1 *
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]);
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + a0ma1diva2ma1 *
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
2017-03-18 16:14:31 +01:00
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
2017-03-20 07:42:41 +01:00
a0ma1diva2ma1 = (y_end - mesh_index_to_y_location[cell_dest_yi]) * 0.1 * (MESH_Y_DIST);
2017-03-18 16:14:31 +01:00
z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
2017-03-20 07:42:41 +01:00
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
2017-03-18 16:14:31 +01:00
/*
z_optimized = z0;
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction( x_end, y_end);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
2017-03-18 16:14:31 +01:00
SERIAL_ECHOPAIR(" x_end=", x_end);
SERIAL_ECHOPAIR(" y_end=", y_end);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
SERIAL_EOL;
}
2017-03-20 07:42:41 +01:00
//*/
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
if (g26_debug_flag)
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
2017-03-18 16:14:31 +01:00
set_current_to_destination();
return;
}
2017-03-20 07:42:41 +01:00
/**
* If we get here, we are processing a move that crosses at least one Mesh Line. We will check
* for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
* of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
* computation and in fact most lines are of this nature. We will check for that in the following
* blocks of code:
*/
2017-03-18 16:14:31 +01:00
dx = x_end - x_start;
dy = y_end - y_start;
2017-03-20 07:42:41 +01:00
const int left_flag = dx < 0.0 ? 1 : 0,
down_flag = dy < 0.0 ? 1 : 0;
if (left_flag) { // figure out which way we need to move to get to the next cell
2017-03-18 16:14:31 +01:00
dxi = -1;
2017-03-20 07:42:41 +01:00
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
2017-03-18 16:14:31 +01:00
}
2017-03-20 07:42:41 +01:00
else { // We may as well generate the appropriate values for adx and ady right now
2017-03-18 16:14:31 +01:00
dxi = 1; // to save setting up the abs() function call and actually doing the call.
adx = dx;
}
2017-03-20 07:42:41 +01:00
if (dy < 0.0) {
2017-03-18 16:14:31 +01:00
dyi = -1;
ady = -dy; // absolute value of dy
}
else {
dyi = 1;
ady = dy;
}
if (cell_start_xi == cell_dest_xi) dxi = 0;
if (cell_start_yi == cell_dest_yi) dyi = 0;
2017-03-20 07:42:41 +01:00
/**
* Compute the scaling factor for the extruder for each partial move.
* We need to watch out for zero length moves because it will cause us to
* have an infinate scaling factor. We are stuck doing a floating point
* divide to get our scaling factor, but after that, we just multiply by this
* number. We also pick our scaling factor based on whether the X or Y
* component is larger. We use the biggest of the two to preserve precision.
*/
const bool use_x_dist = adx > ady;
on_axis_distance = use_x_dist ? x_end - x_start : y_end - y_start;
2017-03-18 16:14:31 +01:00
e_position = e_end - e_start;
e_normalized_dist = e_position / on_axis_distance;
z_position = z_end - z_start;
z_normalized_dist = z_position / on_axis_distance;
2017-03-20 07:42:41 +01:00
const bool inf_normalized_flag = e_normalized_dist == INFINITY || e_normalized_dist == -INFINITY;
2017-03-18 16:14:31 +01:00
current_xi = cell_start_xi;
current_yi = cell_start_yi;
m = dy / dx;
2017-03-20 07:42:41 +01:00
c = y_start - m * x_start;
const bool inf_m_flag = (m == INFINITY || m == -INFINITY);
/**
* This block handles vertical lines. These are lines that stay within the same
* X Cell column. They do not need to be perfectly vertical. They just can
* not cross into another X Cell column.
*/
2017-03-18 16:14:31 +01:00
if (dxi == 0) { // Check for a vertical line
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi;
2017-03-20 07:42:41 +01:00
next_mesh_line_y = mesh_index_to_y_location[current_yi];
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
/**
* inf_m_flag? the slope of the line is infinite, we won't do the calculations
* else, we know the next X is the same so we can recover and continue!
* Calculate X at the next Y mesh line
*/
x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m;
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
2017-03-18 16:14:31 +01:00
/*
z_optimized = z0;
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction( x, next_mesh_line_y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"VERTICAL z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
2017-03-18 16:14:31 +01:00
SERIAL_ECHOPAIR(" x=", x);
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
2017-03-20 07:42:41 +01:00
//*/
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
y = mesh_index_to_y_location[current_yi];
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
* happens, it might be best to remove the check and always 'schedule' the move because
* the planner.buffer_line() routine will filter it if that happens.
*/
if (y != y_start) {
if (!inf_normalized_flag) {
on_axis_distance = y - y_start; // we don't need to check if the extruder position
2017-03-18 16:14:31 +01:00
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
2017-03-20 07:42:41 +01:00
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
2017-03-18 16:14:31 +01:00
} //else printf("FIRST MOVE PRUNED ");
}
2017-03-20 07:42:41 +01:00
if (g26_debug_flag)
debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
2017-03-18 16:14:31 +01:00
//
2017-03-20 07:42:41 +01:00
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
2017-03-18 16:14:31 +01:00
//
2017-03-20 07:42:41 +01:00
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
2017-03-18 16:14:31 +01:00
goto FINAL_MOVE;
2017-03-20 07:42:41 +01:00
2017-03-18 16:14:31 +01:00
set_current_to_destination();
return;
}
2017-03-20 07:42:41 +01:00
/**
*
* This block handles horizontal lines. These are lines that stay within the same
* Y Cell row. They do not need to be perfectly horizontal. They just can
* not cross into another Y Cell row.
*
*/
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
if (dyi == 0) { // Check for a horizontal line
2017-03-18 16:14:31 +01:00
current_xi += left_flag; // Line is heading left, we just want to go to the left
2017-03-20 07:42:41 +01:00
// edge of this cell for the first move.
2017-03-18 16:14:31 +01:00
while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi;
2017-03-20 07:42:41 +01:00
next_mesh_line_x = mesh_index_to_x_location[current_xi];
2017-03-18 16:14:31 +01:00
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
2017-03-18 16:14:31 +01:00
/*
z_optimized = z0;
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction( next_mesh_line_x, y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"HORIZONTAL z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
2017-03-18 16:14:31 +01:00
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
2017-03-20 07:42:41 +01:00
//*/
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
x = mesh_index_to_x_location[current_xi];
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often
* that happens, it might be best to remove the check and always 'schedule' the move because
* the planner.buffer_line() routine will filter it if that happens.
*/
if (x != x_start) {
if (!inf_normalized_flag) {
on_axis_distance = x - x_start; // we don't need to check if the extruder position
2017-03-18 16:14:31 +01:00
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
2017-03-20 07:42:41 +01:00
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
2017-03-18 16:14:31 +01:00
} //else printf("FIRST MOVE PRUNED ");
}
2017-03-20 07:42:41 +01:00
if (g26_debug_flag)
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
2017-03-18 16:14:31 +01:00
goto FINAL_MOVE;
2017-03-20 07:42:41 +01:00
2017-03-18 16:14:31 +01:00
set_current_to_destination();
return;
}
2017-03-20 07:42:41 +01:00
/**
*
* This block handles the generic case of a line crossing both X and Y Mesh lines.
*
*/
2017-03-18 16:14:31 +01:00
xi_cnt = cell_start_xi - cell_dest_xi;
2017-03-20 07:42:41 +01:00
if (xi_cnt < 0) xi_cnt = -xi_cnt;
2017-03-18 16:14:31 +01:00
yi_cnt = cell_start_yi - cell_dest_yi;
2017-03-20 07:42:41 +01:00
if (yi_cnt < 0) yi_cnt = -yi_cnt;
2017-03-18 16:14:31 +01:00
current_xi += left_flag;
current_yi += down_flag;
2017-03-20 07:42:41 +01:00
while (xi_cnt > 0 || yi_cnt > 0) {
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
next_mesh_line_x = mesh_index_to_x_location[current_xi + dxi];
next_mesh_line_y = mesh_index_to_y_location[current_yi + dyi];
2017-03-18 16:14:31 +01:00
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
2017-03-20 07:42:41 +01:00
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
2017-03-18 16:14:31 +01:00
// about m being equal to 0.0 If this was the case, we would have
// detected this as a vertical line move up above and we wouldn't
// be down here doing a generic type of move.
2017-03-20 07:42:41 +01:00
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
2017-03-18 16:14:31 +01:00
//
// Yes! Crossing a Y Mesh Line next
//
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi);
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
2017-03-18 16:14:31 +01:00
/*
z_optimized = z0;
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction( x, next_mesh_line_y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"General_1: z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); {
2017-03-18 16:14:31 +01:00
SERIAL_ECHOPAIR(" x=", x);
}
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
2017-03-20 07:42:41 +01:00
//*/
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
z0 *= ubl.fade_scaling_factor_for_z(z_end);
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start;
2017-03-18 16:14:31 +01:00
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
2017-03-20 07:42:41 +01:00
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
2017-03-18 16:14:31 +01:00
current_yi += dyi;
yi_cnt--;
}
else {
//
// Yes! Crossing a X Mesh Line next
//
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag);
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
* that the correct value is being passed to planner.buffer_line()
*/
2017-03-18 16:14:31 +01:00
/*
z_optimized = z0;
2017-03-20 07:42:41 +01:00
z0 = ubl.get_z_correction( next_mesh_line_x, y);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"General_2: z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
2017-03-18 16:14:31 +01:00
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
2017-03-20 07:42:41 +01:00
//*/
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
/**
* If part of the Mesh is undefined, it will show up as NAN
* in z_values[][] and propagate through the
* calculations. If our correction is NAN, we throw it out
* because part of the Mesh is undefined and we don't have the
* information we need to complete the height correction.
*/
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start;
2017-03-18 16:14:31 +01:00
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
2017-03-20 07:42:41 +01:00
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
2017-03-18 16:14:31 +01:00
current_xi += dxi;
xi_cnt--;
}
}
2017-03-20 07:42:41 +01:00
if (g26_debug_flag)
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
if (current_position[0] != x_end || current_position[1] != y_end)
goto FINAL_MOVE;
2017-03-18 16:14:31 +01:00
2017-03-20 07:42:41 +01:00
set_current_to_destination();
2017-03-18 16:14:31 +01:00
}
#endif