Firmware2/Marlin/ultralcd_implementation_hitachi_HD44780.h

958 lines
29 KiB
C
Raw Normal View History

/**
2016-03-24 18:01:20 +00:00
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H
#define ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H
/**
* Implementation of the LCD display routines for a Hitachi HD44780 display. These are common LCD character displays.
**/
extern volatile uint8_t buttons; //an extended version of the last checked buttons in a bit array.
////////////////////////////////////
// Setup button and encode mappings for each panel (into 'buttons' variable
//
2015-05-13 02:02:19 -07:00
// This is just to map common functions (across different panels) onto the same
// macro name. The mapping is independent of whether the button is directly connected or
// via a shift/i2c register.
#if ENABLED(ULTIPANEL)
// All UltiPanels might have an encoder - so this is always be mapped onto first two bits
#define BLEN_B 1
#define BLEN_A 0
2016-02-27 04:51:44 -08:00
#define EN_B (_BV(BLEN_B)) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
#define EN_A (_BV(BLEN_A))
2015-05-13 02:02:19 -07:00
#if defined(BTN_ENC) && BTN_ENC > -1
// encoder click is directly connected
#define BLEN_C 2
2016-02-27 04:51:44 -08:00
#define EN_C (_BV(BLEN_C))
2015-05-13 02:02:19 -07:00
#endif
//
// Setup other button mappings of each panel
//
#if ENABLED(LCD_I2C_VIKI)
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
2015-05-13 02:02:19 -07:00
// button and encoder bit positions within 'buttons'
#define B_LE (BUTTON_LEFT<<B_I2C_BTN_OFFSET) // The remaining normalized buttons are all read via I2C
#define B_UP (BUTTON_UP<<B_I2C_BTN_OFFSET)
#define B_MI (BUTTON_SELECT<<B_I2C_BTN_OFFSET)
#define B_DW (BUTTON_DOWN<<B_I2C_BTN_OFFSET)
#define B_RI (BUTTON_RIGHT<<B_I2C_BTN_OFFSET)
#if defined(BTN_ENC) && BTN_ENC > -1
// the pause/stop/restart button is connected to BTN_ENC when used
#define B_ST (EN_C) // Map the pause/stop/resume button into its normalized functional name
#undef LCD_CLICKED
#define LCD_CLICKED (buttons&(B_MI|B_RI|B_ST)) // pause/stop button also acts as click until we implement proper pause/stop.
#else
#undef LCD_CLICKED
#define LCD_CLICKED (buttons&(B_MI|B_RI))
#endif
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#elif ENABLED(LCD_I2C_PANELOLU2)
// encoder click can be read through I2C if not directly connected
#if BTN_ENC <= 0
#define B_I2C_BTN_OFFSET 3 // (the first three bit positions reserved for EN_A, EN_B, EN_C)
#define B_MI (PANELOLU2_ENCODER_C<<B_I2C_BTN_OFFSET) // requires LiquidTWI2 library v1.2.3 or later
#undef LCD_CLICKED
#define LCD_CLICKED (buttons&B_MI)
// I2C buttons take too long to read inside an interrupt context and so we read them during lcd_update
#define LCD_HAS_SLOW_BUTTONS
#else
#undef LCD_CLICKED
#define LCD_CLICKED (buttons&EN_C)
#endif
#elif ENABLED(REPRAPWORLD_KEYPAD)
// define register bit values, don't change it
#define BLEN_REPRAPWORLD_KEYPAD_F3 0
#define BLEN_REPRAPWORLD_KEYPAD_F2 1
#define BLEN_REPRAPWORLD_KEYPAD_F1 2
#define BLEN_REPRAPWORLD_KEYPAD_UP 6
#define BLEN_REPRAPWORLD_KEYPAD_RIGHT 4
#define BLEN_REPRAPWORLD_KEYPAD_MIDDLE 5
#define BLEN_REPRAPWORLD_KEYPAD_DOWN 3
#define BLEN_REPRAPWORLD_KEYPAD_LEFT 7
#define REPRAPWORLD_BTN_OFFSET 0 // bit offset into buttons for shift register values
2016-02-27 04:51:44 -08:00
#define EN_REPRAPWORLD_KEYPAD_F3 (_BV(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F2 (_BV(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_F1 (_BV(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_UP (_BV(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_RIGHT (_BV(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (_BV(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_DOWN (_BV(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
#define EN_REPRAPWORLD_KEYPAD_LEFT (_BV(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
//#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
//#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
//#define REPRAPWORLD_KEYPAD_MOVE_Y_UP (buttons&EN_REPRAPWORLD_KEYPAD_UP)
//#define REPRAPWORLD_KEYPAD_MOVE_HOME (buttons&EN_REPRAPWORLD_KEYPAD_MIDDLE)
#elif ENABLED(NEWPANEL)
#define LCD_CLICKED (buttons&EN_C)
#else // old style ULTIPANEL
//bits in the shift register that carry the buttons for:
// left up center down right red(stop)
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
//automatic, do not change
2016-02-27 04:51:44 -08:00
#define B_LE (_BV(BL_LE))
#define B_UP (_BV(BL_UP))
#define B_MI (_BV(BL_MI))
#define B_DW (_BV(BL_DW))
#define B_RI (_BV(BL_RI))
#define B_ST (_BV(BL_ST))
#define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif
#endif //ULTIPANEL
////////////////////////////////////
// Create LCD class instance and chipset-specific information
#if ENABLED(LCD_I2C_TYPE_PCF8575)
// note: these are register mapped pins on the PCF8575 controller not Arduino pins
#define LCD_I2C_PIN_BL 3
#define LCD_I2C_PIN_EN 2
#define LCD_I2C_PIN_RW 1
#define LCD_I2C_PIN_RS 0
#define LCD_I2C_PIN_D4 4
#define LCD_I2C_PIN_D5 5
#define LCD_I2C_PIN_D6 6
#define LCD_I2C_PIN_D7 7
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_I2C_PIN_EN, LCD_I2C_PIN_RW, LCD_I2C_PIN_RS, LCD_I2C_PIN_D4, LCD_I2C_PIN_D5, LCD_I2C_PIN_D6, LCD_I2C_PIN_D7);
2015-05-13 02:02:19 -07:00
#elif ENABLED(LCD_I2C_TYPE_MCP23017)
//for the LED indicators (which maybe mapped to different things in lcd_implementation_update_indicators())
#define LED_A 0x04 //100
#define LED_B 0x02 //010
#define LED_C 0x01 //001
#define LCD_HAS_STATUS_INDICATORS
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
#if ENABLED(DETECT_DEVICE)
2015-05-13 02:02:19 -07:00
LCD_CLASS lcd(LCD_I2C_ADDRESS, 1);
#else
2015-05-13 02:02:19 -07:00
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#endif
2015-05-13 02:02:19 -07:00
#elif ENABLED(LCD_I2C_TYPE_MCP23008)
#include <Wire.h>
#include <LiquidTWI2.h>
#define LCD_CLASS LiquidTWI2
#if ENABLED(DETECT_DEVICE)
2015-05-13 02:02:19 -07:00
LCD_CLASS lcd(LCD_I2C_ADDRESS, 1);
#else
2015-05-13 02:02:19 -07:00
LCD_CLASS lcd(LCD_I2C_ADDRESS);
#endif
#elif ENABLED(LCD_I2C_TYPE_PCA8574)
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(LCD_I2C_ADDRESS, LCD_WIDTH, LCD_HEIGHT);
2015-05-13 02:02:19 -07:00
// 2 wire Non-latching LCD SR from:
2015-05-13 02:02:19 -07:00
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/schematics#!shiftregister-connection
#elif ENABLED(SR_LCD_2W_NL)
extern "C" void __cxa_pure_virtual() { while (1); }
#include <LCD.h>
#include <LiquidCrystal_SR.h>
#define LCD_CLASS LiquidCrystal_SR
LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN);
#elif ENABLED(LCM1602)
#include <Wire.h>
#include <LCD.h>
#include <LiquidCrystal_I2C.h>
#define LCD_CLASS LiquidCrystal_I2C
LCD_CLASS lcd(0x27, 2, 1, 0, 4, 5, 6, 7, 3, POSITIVE);
#else
// Standard directly connected LCD implementations
#include <LiquidCrystal.h>
#define LCD_CLASS LiquidCrystal
LCD_CLASS lcd(LCD_PINS_RS, LCD_PINS_ENABLE, LCD_PINS_D4, LCD_PINS_D5, LCD_PINS_D6, LCD_PINS_D7); //RS,Enable,D4,D5,D6,D7
#endif
#include "utf_mapper.h"
#if ENABLED(SHOW_BOOTSCREEN)
static void bootscreen();
static bool show_bootscreen = true;
#endif
#if ENABLED(LCD_PROGRESS_BAR)
static millis_t progress_bar_ms = 0;
2014-12-27 22:26:14 -08:00
#if PROGRESS_MSG_EXPIRE > 0
static millis_t expire_status_ms = 0;
2014-12-27 22:26:14 -08:00
#endif
#define LCD_STR_PROGRESS "\x03\x04\x05"
#endif
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
static void lcd_implementation_update_indicators();
#endif
2014-12-27 22:26:14 -08:00
static void lcd_set_custom_characters(
#if ENABLED(LCD_PROGRESS_BAR)
bool progress_bar_set = true
2014-12-27 22:26:14 -08:00
#endif
) {
byte bedTemp[8] = {
B00000,
B11111,
B10101,
B10001,
B10101,
B11111,
B00000,
B00000
}; //thanks Sonny Mounicou
byte degree[8] = {
B01100,
B10010,
B10010,
B01100,
B00000,
B00000,
B00000,
B00000
};
byte thermometer[8] = {
B00100,
B01010,
B01010,
B01010,
B01010,
B10001,
B10001,
B01110
};
byte uplevel[8] = {
B00100,
B01110,
B11111,
B00100,
B11100,
B00000,
B00000,
B00000
}; //thanks joris
byte refresh[8] = {
B00000,
B00110,
B11001,
B11000,
B00011,
B10011,
B01100,
B00000,
}; //thanks joris
byte folder[8] = {
B00000,
B11100,
B11111,
B10001,
B10001,
B11111,
B00000,
B00000
}; //thanks joris
byte feedrate[8] = {
B11100,
B10000,
B11000,
B10111,
B00101,
B00110,
B00101,
B00000
}; //thanks Sonny Mounicou
byte clock[8] = {
B00000,
B01110,
B10011,
B10101,
B10001,
B01110,
B00000,
B00000
}; //thanks Sonny Mounicou
#if ENABLED(LCD_PROGRESS_BAR)
2014-12-27 22:26:14 -08:00
static bool char_mode = false;
byte progress[3][8] = { {
B00000,
B10000,
B10000,
B10000,
B10000,
B10000,
B10000,
B00000
}, {
B00000,
B10100,
B10100,
B10100,
B10100,
B10100,
B10100,
B00000
}, {
B00000,
B10101,
B10101,
B10101,
B10101,
B10101,
B10101,
B00000
} };
if (progress_bar_set != char_mode) {
char_mode = progress_bar_set;
lcd.createChar(LCD_STR_BEDTEMP[0], bedTemp);
lcd.createChar(LCD_STR_DEGREE[0], degree);
lcd.createChar(LCD_STR_THERMOMETER[0], thermometer);
lcd.createChar(LCD_STR_FEEDRATE[0], feedrate);
lcd.createChar(LCD_STR_CLOCK[0], clock);
if (progress_bar_set) {
// Progress bar characters for info screen
for (int i = 3; i--;) lcd.createChar(LCD_STR_PROGRESS[i], progress[i]);
2014-12-27 22:26:14 -08:00
}
else {
// Custom characters for submenus
lcd.createChar(LCD_STR_UPLEVEL[0], uplevel);
lcd.createChar(LCD_STR_REFRESH[0], refresh);
lcd.createChar(LCD_STR_FOLDER[0], folder);
}
}
#else
lcd.createChar(LCD_STR_BEDTEMP[0], bedTemp);
lcd.createChar(LCD_STR_DEGREE[0], degree);
lcd.createChar(LCD_STR_THERMOMETER[0], thermometer);
lcd.createChar(LCD_STR_UPLEVEL[0], uplevel);
lcd.createChar(LCD_STR_REFRESH[0], refresh);
lcd.createChar(LCD_STR_FOLDER[0], folder);
lcd.createChar(LCD_STR_FEEDRATE[0], feedrate);
lcd.createChar(LCD_STR_CLOCK[0], clock);
#endif
}
static void lcd_implementation_init(
#if ENABLED(LCD_PROGRESS_BAR)
bool progress_bar_set = true
2014-12-27 22:26:14 -08:00
#endif
) {
#if ENABLED(LCD_I2C_TYPE_PCF8575)
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
2015-05-13 02:02:19 -07:00
#ifdef LCD_I2C_PIN_BL
lcd.setBacklightPin(LCD_I2C_PIN_BL, POSITIVE);
lcd_implementation_update_indicators();
2015-05-13 02:02:19 -07:00
#endif
#elif ENABLED(LCD_I2C_TYPE_MCP23017)
lcd.setMCPType(LTI_TYPE_MCP23017);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
lcd_implementation_update_indicators();
2015-05-13 02:02:19 -07:00
#elif ENABLED(LCD_I2C_TYPE_MCP23008)
lcd.setMCPType(LTI_TYPE_MCP23008);
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
#elif ENABLED(LCD_I2C_TYPE_PCA8574)
2015-05-13 02:02:19 -07:00
lcd.init();
lcd.backlight();
#else
lcd.begin(LCD_WIDTH, LCD_HEIGHT);
2015-05-13 02:02:19 -07:00
#endif
#if ENABLED(SHOW_BOOTSCREEN)
if (show_bootscreen) bootscreen();
#endif
2015-05-13 02:02:19 -07:00
lcd_set_custom_characters(
#if ENABLED(LCD_PROGRESS_BAR)
2015-05-13 02:02:19 -07:00
progress_bar_set
#endif
);
2014-12-27 22:26:14 -08:00
2015-05-13 02:02:19 -07:00
lcd.clear();
}
2015-05-13 02:02:19 -07:00
static void lcd_implementation_clear() { lcd.clear(); }
/* Arduino < 1.0.0 is missing a function to print PROGMEM strings, so we need to implement our own */
char lcd_printPGM(const char* str) {
2015-05-13 02:02:19 -07:00
char c, n = 0;
while ((c = pgm_read_byte(str++))) n += charset_mapper(c);
return n;
}
char lcd_print(const char* str) {
2015-05-21 18:15:29 -07:00
char c, n = 0;
unsigned char i = 0;
2015-05-13 02:02:19 -07:00
while ((c = str[i++])) n += charset_mapper(c);
return n;
}
2015-05-13 02:02:19 -07:00
unsigned lcd_print(char c) { return charset_mapper(c); }
#if ENABLED(SHOW_BOOTSCREEN)
2015-07-31 23:29:52 +02:00
void lcd_erase_line(int line) {
lcd.setCursor(0, line);
for (int i = 0; i < LCD_WIDTH; i++)
2015-07-31 23:29:52 +02:00
lcd_print(' ');
}
// Scroll the PSTR 'text' in a 'len' wide field for 'time' milliseconds at position col,line
void lcd_scroll(int col, int line, const char* text, int len, int time) {
char tmp[LCD_WIDTH + 1] = {0};
int n = max(lcd_strlen_P(text) - len, 0);
for (int i = 0; i <= n; i++) {
strncpy_P(tmp, text + i, min(len, LCD_WIDTH));
2015-07-31 23:29:52 +02:00
lcd.setCursor(col, line);
lcd_print(tmp);
delay(time / max(n, 1));
2015-07-31 23:29:52 +02:00
}
}
static void bootscreen() {
show_bootscreen = false;
byte top_left[8] = {
B00000,
B00000,
B00000,
B00000,
B00001,
B00010,
B00100,
B00100
};
byte top_right[8] = {
B00000,
B00000,
B00000,
B11100,
B11100,
B01100,
B00100,
B00100
};
byte botom_left[8] = {
B00100,
B00010,
B00001,
B00000,
B00000,
B00000,
B00000,
B00000
};
byte botom_right[8] = {
B00100,
B01000,
B10000,
B00000,
B00000,
B00000,
B00000,
B00000
};
lcd.createChar(0, top_left);
lcd.createChar(1, top_right);
lcd.createChar(2, botom_left);
lcd.createChar(3, botom_right);
lcd.clear();
2015-07-31 23:29:52 +02:00
#define TEXT_SCREEN_LOGO_SHIFT ((LCD_WIDTH/2) - 4)
lcd.setCursor(TEXT_SCREEN_LOGO_SHIFT, 0); lcd.print('\x00'); lcd_printPGM(PSTR( "------" )); lcd.print('\x01');
lcd.setCursor(TEXT_SCREEN_LOGO_SHIFT, 1); lcd_printPGM(PSTR("|Marlin|"));
lcd.setCursor(TEXT_SCREEN_LOGO_SHIFT, 2); lcd.print('\x02'); lcd_printPGM(PSTR( "------" )); lcd.print('\x03');
delay(2000);
#ifdef STRING_SPLASH_LINE1
2015-07-31 23:29:52 +02:00
lcd_erase_line(3);
lcd_scroll(0, 3, PSTR(STRING_SPLASH_LINE1), LCD_WIDTH, 1000);
#endif
#ifdef STRING_SPLASH_LINE2
2015-07-31 23:29:52 +02:00
lcd_erase_line(3);
lcd_scroll(0, 3, PSTR(STRING_SPLASH_LINE2), LCD_WIDTH, 1000);
#endif
}
#endif // SHOW_BOOTSCREEN
/**
Possible status screens:
16x2 |000/000 B000/000|
|0123456789012345|
16x4 |000/000 B000/000|
|SD100% Z 000.00|
|F100% T--:--|
|0123456789012345|
20x2 |T000/000D B000/000D |
|01234567890123456789|
20x4 |T000/000D B000/000D |
|X 000 Y 000 Z 000.00|
|F100% SD100% T--:--|
|01234567890123456789|
20x4 |T000/000D B000/000D |
|T000/000D Z 000.00|
|F100% SD100% T--:--|
|01234567890123456789|
*/
static void lcd_implementation_status_screen() {
#define LCD_TEMP_ONLY(T1,T2) \
lcd.print(itostr3(T1 + 0.5)); \
lcd.print('/'); \
lcd.print(itostr3left(T2 + 0.5))
#define LCD_TEMP(T1,T2,PREFIX) \
lcd.print(PREFIX); \
LCD_TEMP_ONLY(T1,T2); \
lcd_printPGM(PSTR(LCD_STR_DEGREE " ")); \
if (T2 < 10) lcd.print(' ')
//
// Line 1
//
lcd.setCursor(0, 0);
#if LCD_WIDTH < 20
//
// Hotend 0 Temperature
//
LCD_TEMP_ONLY(degHotend(0), degTargetHotend(0));
//
// Hotend 1 or Bed Temperature
//
#if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
lcd.setCursor(8, 0);
#if EXTRUDERS > 1
lcd.print(LCD_STR_THERMOMETER[0]);
LCD_TEMP_ONLY(degHotend(1), degTargetHotend(1));
#else
lcd.print(LCD_STR_BEDTEMP[0]);
LCD_TEMP_ONLY(degBed(), degTargetBed());
#endif
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
#else // LCD_WIDTH >= 20
//
// Hotend 0 Temperature
//
LCD_TEMP(degHotend(0), degTargetHotend(0), LCD_STR_THERMOMETER[0]);
//
// Hotend 1 or Bed Temperature
//
#if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
lcd.setCursor(10, 0);
#if EXTRUDERS > 1
LCD_TEMP(degHotend(1), degTargetHotend(1), LCD_STR_THERMOMETER[0]);
#else
LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]);
#endif
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
#endif // LCD_WIDTH >= 20
//
// Line 2
//
#if LCD_HEIGHT > 2
#if LCD_WIDTH < 20
#if ENABLED(SDSUPPORT)
lcd.setCursor(0, 2);
lcd_printPGM(PSTR("SD"));
if (IS_SD_PRINTING)
lcd.print(itostr3(card.percentDone()));
else
lcd_printPGM(PSTR("---"));
lcd.print('%');
#endif // SDSUPPORT
#else // LCD_WIDTH >= 20
lcd.setCursor(0, 1);
#if EXTRUDERS > 1 && TEMP_SENSOR_BED != 0
// If we both have a 2nd extruder and a heated bed,
// show the heated bed temp on the left,
// since the first line is filled with extruder temps
LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]);
#else
// Before homing the axis letters are blinking 'X' <-> '?'.
// When axis is homed but axis_known_position is false the axis letters are blinking 'X' <-> ' '.
// When everything is ok you see a constant 'X'.
if (blink & 1)
lcd_printPGM(PSTR("X"));
else {
if (!axis_homed[X_AXIS])
lcd_printPGM(PSTR("?"));
else
#if DISABLED(DISABLE_REDUCED_ACCURACY_WARNING)
if (!axis_known_position[X_AXIS])
lcd_printPGM(PSTR(" "));
else
#endif
lcd_printPGM(PSTR("X"));
}
lcd.print(ftostr4sign(current_position[X_AXIS]));
lcd_printPGM(PSTR(" "));
if (blink & 1)
lcd_printPGM(PSTR("Y"));
else {
if (!axis_homed[Y_AXIS])
lcd_printPGM(PSTR("?"));
else
#if DISABLED(DISABLE_REDUCED_ACCURACY_WARNING)
if (!axis_known_position[Y_AXIS])
lcd_printPGM(PSTR(" "));
else
#endif
lcd_printPGM(PSTR("Y"));
}
lcd.print(ftostr4sign(current_position[Y_AXIS]));
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
#endif // LCD_WIDTH >= 20
lcd.setCursor(LCD_WIDTH - 8, 1);
if (blink & 1)
lcd_printPGM(PSTR("Z"));
else {
if (!axis_homed[Z_AXIS])
lcd_printPGM(PSTR("?"));
else
#if DISABLED(DISABLE_REDUCED_ACCURACY_WARNING)
if (!axis_known_position[Z_AXIS])
lcd_printPGM(PSTR(" "));
else
#endif
lcd_printPGM(PSTR("Z"));
}
lcd.print(ftostr32sp(current_position[Z_AXIS] + 0.00001));
#endif // LCD_HEIGHT > 2
//
// Line 3
//
#if LCD_HEIGHT > 3
lcd.setCursor(0, 2);
lcd.print(LCD_STR_FEEDRATE[0]);
2015-04-13 17:17:36 -07:00
lcd.print(itostr3(feedrate_multiplier));
lcd.print('%');
#if LCD_WIDTH > 19 && ENABLED(SDSUPPORT)
lcd.setCursor(7, 2);
lcd_printPGM(PSTR("SD"));
if (IS_SD_PRINTING)
lcd.print(itostr3(card.percentDone()));
else
lcd_printPGM(PSTR("---"));
lcd.print('%');
#endif // LCD_WIDTH > 19 && SDSUPPORT
lcd.setCursor(LCD_WIDTH - 6, 2);
lcd.print(LCD_STR_CLOCK[0]);
2015-04-13 17:17:36 -07:00
if (print_job_start_ms != 0) {
2016-03-10 11:52:43 +00:00
uint16_t time = (((print_job_stop_ms > print_job_start_ms)
? print_job_stop_ms : millis()) - print_job_start_ms) / 60000;
lcd.print(itostr2(time / 60));
lcd.print(':');
lcd.print(itostr2(time % 60));
}
else {
lcd_printPGM(PSTR("--:--"));
}
#endif // LCD_HEIGHT > 3
//
// Last Line
// Status Message (which may be a Progress Bar or Filament display)
//
2014-12-27 22:26:14 -08:00
lcd.setCursor(0, LCD_HEIGHT - 1);
#if ENABLED(LCD_PROGRESS_BAR)
2014-12-27 22:26:14 -08:00
if (card.isFileOpen()) {
// Draw the progress bar if the message has shown long enough
// or if there is no message set.
if (millis() >= progress_bar_ms + PROGRESS_BAR_MSG_TIME || !lcd_status_message[0]) {
2016-03-12 22:38:55 -08:00
int tix = (int)(card.percentDone() * (LCD_WIDTH) * 3) / 100,
2014-12-27 22:26:14 -08:00
cel = tix / 3, rem = tix % 3, i = LCD_WIDTH;
char msg[LCD_WIDTH + 1], b = ' ';
2014-12-27 22:26:14 -08:00
msg[i] = '\0';
while (i--) {
if (i == cel - 1)
b = LCD_STR_PROGRESS[2];
else if (i == cel && rem != 0)
b = LCD_STR_PROGRESS[rem - 1];
2014-12-27 22:26:14 -08:00
msg[i] = b;
}
2014-12-27 22:26:14 -08:00
lcd.print(msg);
return;
}
} //card.isFileOpen
#elif ENABLED(FILAMENT_LCD_DISPLAY)
2014-12-27 22:26:14 -08:00
// Show Filament Diameter and Volumetric Multiplier %
// After allowing lcd_status_message to show for 5 seconds
2015-04-12 18:07:08 -07:00
if (millis() >= previous_lcd_status_ms + 5000) {
2014-12-27 22:26:14 -08:00
lcd_printPGM(PSTR("Dia "));
lcd.print(ftostr12ns(filament_width_meas));
lcd_printPGM(PSTR(" V"));
lcd.print(itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
2015-10-13 03:51:34 -07:00
lcd.print('%');
return;
2014-12-27 22:26:14 -08:00
}
#endif // FILAMENT_LCD_DISPLAY
2014-12-27 22:26:14 -08:00
lcd_print(lcd_status_message);
}
static void lcd_implementation_drawmenu_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char post_char) {
char c;
uint8_t n = LCD_WIDTH - 2;
lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) {
n -= lcd_print(c);
pstr++;
}
while (n--) lcd.print(' ');
lcd.print(post_char);
}
static void lcd_implementation_drawmenu_setting_edit_generic(bool sel, uint8_t row, const char* pstr, char pre_char, char* data) {
char c;
uint8_t n = LCD_WIDTH - 2 - lcd_strlen(data);
lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) {
n -= lcd_print(c);
pstr++;
}
lcd.print(':');
while (n--) lcd.print(' ');
lcd_print(data);
}
static void lcd_implementation_drawmenu_setting_edit_generic_P(bool sel, uint8_t row, const char* pstr, char pre_char, const char* data) {
char c;
uint8_t n = LCD_WIDTH - 2 - lcd_strlen_P(data);
lcd.setCursor(0, row);
lcd.print(sel ? pre_char : ' ');
while ((c = pgm_read_byte(pstr)) && n > 0) {
n -= lcd_print(c);
pstr++;
}
lcd.print(':');
while (n--) lcd.print(' ');
lcd_printPGM(data);
}
2015-03-20 04:29:35 -07:00
#define lcd_implementation_drawmenu_setting_edit_int3(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', itostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float3(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float32(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr32(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float43(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr43(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float5(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float52(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr52(*(data)))
#define lcd_implementation_drawmenu_setting_edit_float51(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr51(*(data)))
#define lcd_implementation_drawmenu_setting_edit_long5(sel, row, pstr, pstr2, data, minValue, maxValue) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
//Add version for callback functions
2015-03-20 04:29:35 -07:00
#define lcd_implementation_drawmenu_setting_edit_callback_int3(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', itostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_float3(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr3(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_float32(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr32(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_float43(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr43(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_float5(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_float52(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr52(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_float51(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr51(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_long5(sel, row, pstr, pstr2, data, minValue, maxValue, callback) lcd_implementation_drawmenu_setting_edit_generic(sel, row, pstr, '>', ftostr5(*(data)))
#define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
void lcd_implementation_drawedit(const char* pstr, const char* value) {
lcd.setCursor(1, 1);
lcd_printPGM(pstr);
lcd.print(':');
lcd.setCursor(LCD_WIDTH - lcd_strlen(value), 1);
lcd_print(value);
}
#if ENABLED(SDSUPPORT)
static void lcd_implementation_drawmenu_sd(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename, uint8_t concat, char post_char) {
char c;
uint8_t n = LCD_WIDTH - concat;
lcd.setCursor(0, row);
lcd.print(sel ? '>' : ' ');
if (longFilename[0]) {
filename = longFilename;
longFilename[n] = '\0';
}
while ((c = *filename) && n > 0) {
n -= lcd_print(c);
filename++;
}
while (n--) lcd.print(' ');
lcd.print(post_char);
}
static void lcd_implementation_drawmenu_sdfile(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) {
lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, ' ');
}
static void lcd_implementation_drawmenu_sddirectory(bool sel, uint8_t row, const char* pstr, const char* filename, char* longFilename) {
lcd_implementation_drawmenu_sd(sel, row, pstr, filename, longFilename, 2, LCD_STR_FOLDER[0]);
}
#endif //SDSUPPORT
#define lcd_implementation_drawmenu_back(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, LCD_STR_UPLEVEL[0], LCD_STR_UPLEVEL[0])
#define lcd_implementation_drawmenu_submenu(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', LCD_STR_ARROW_RIGHT[0])
#define lcd_implementation_drawmenu_gcode(sel, row, pstr, gcode) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ')
#define lcd_implementation_drawmenu_function(sel, row, pstr, data) lcd_implementation_drawmenu_generic(sel, row, pstr, '>', ' ')
#if ENABLED(LCD_HAS_STATUS_INDICATORS)
2015-04-12 18:07:08 -07:00
static void lcd_implementation_update_indicators() {
// Set the LEDS - referred to as backlights by the LiquidTWI2 library
static uint8_t ledsprev = 0;
uint8_t leds = 0;
2016-03-05 18:27:45 -08:00
if (target_temperature_bed > 0) leds |= LED_A;
2016-03-05 18:27:45 -08:00
if (target_temperature[0] > 0) leds |= LED_B;
2016-03-05 18:27:45 -08:00
#if FAN_COUNT > 0
if (0
#if HAS_FAN0
|| fanSpeeds[0]
#endif
#if HAS_FAN1
|| fanSpeeds[1]
#endif
#if HAS_FAN2
|| fanSpeeds[2]
#endif
) leds |= LED_C;
#endif // FAN_COUNT > 0
#if EXTRUDERS > 1
if (target_temperature[1] > 0) leds |= LED_C;
#endif
2016-03-05 18:27:45 -08:00
if (leds != ledsprev) {
lcd.setBacklight(leds);
ledsprev = leds;
}
2016-03-05 18:27:45 -08:00
2015-04-12 18:07:08 -07:00
}
#endif // LCD_HAS_STATUS_INDICATORS
#if ENABLED(LCD_HAS_SLOW_BUTTONS)
2015-04-12 18:07:08 -07:00
extern millis_t next_button_update_ms;
static uint8_t lcd_implementation_read_slow_buttons() {
#if ENABLED(LCD_I2C_TYPE_MCP23017)
2015-04-12 18:07:08 -07:00
uint8_t slow_buttons;
// Reading these buttons this is likely to be too slow to call inside interrupt context
// so they are called during normal lcd_update
slow_buttons = lcd.readButtons() << B_I2C_BTN_OFFSET;
#if ENABLED(LCD_I2C_VIKI)
if ((slow_buttons & (B_MI | B_RI)) && millis() < next_button_update_ms) // LCD clicked
slow_buttons &= ~(B_MI | B_RI); // Disable LCD clicked buttons if screen is updated
2015-04-12 18:07:08 -07:00
#endif
return slow_buttons;
#endif
2015-04-12 18:07:08 -07:00
}
#endif // LCD_HAS_SLOW_BUTTONS
2015-05-13 02:02:19 -07:00
#endif // ULTRALCD_IMPLEMENTATION_HITACHI_HD44780_H