2019-05-04 06:53:15 +02:00
|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2019-05-21 04:34:08 +02:00
|
|
|
#include "../inc/MarlinConfigPre.h"
|
2019-05-04 06:53:15 +02:00
|
|
|
|
|
|
|
#if ENABLED(BACKLASH_COMPENSATION)
|
|
|
|
|
|
|
|
#include "backlash.h"
|
2019-05-21 04:34:08 +02:00
|
|
|
|
|
|
|
#include "../module/motion.h"
|
2019-05-04 06:53:15 +02:00
|
|
|
#include "../module/planner.h"
|
|
|
|
|
2019-05-21 04:34:23 +02:00
|
|
|
#ifdef BACKLASH_DISTANCE_MM
|
|
|
|
#if ENABLED(BACKLASH_GCODE)
|
2019-05-04 06:53:15 +02:00
|
|
|
float Backlash::distance_mm[XYZ] = BACKLASH_DISTANCE_MM;
|
2019-05-21 04:34:23 +02:00
|
|
|
#else
|
|
|
|
const float Backlash::distance_mm[XYZ] = BACKLASH_DISTANCE_MM;
|
2019-05-04 06:53:15 +02:00
|
|
|
#endif
|
2019-05-21 04:34:23 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(BACKLASH_GCODE)
|
|
|
|
uint8_t Backlash::correction = (BACKLASH_CORRECTION) * 0xFF;
|
2019-05-04 06:53:15 +02:00
|
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
|
|
float Backlash::smoothing_mm = BACKLASH_SMOOTHING_MM;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
|
|
|
|
float Backlash::measured_mm[XYZ] = { 0 };
|
|
|
|
uint8_t Backlash::measured_count[XYZ] = { 0 };
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Backlash backlash;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* To minimize seams in the printed part, backlash correction only adds
|
|
|
|
* steps to the current segment (instead of creating a new segment, which
|
|
|
|
* causes discontinuities and print artifacts).
|
|
|
|
*
|
|
|
|
* With a non-zero BACKLASH_SMOOTHING_MM value the backlash correction is
|
|
|
|
* spread over multiple segments, smoothing out artifacts even more.
|
|
|
|
*/
|
|
|
|
|
|
|
|
void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const int32_t &dc, const uint8_t dm, block_t * const block) {
|
|
|
|
static uint8_t last_direction_bits;
|
|
|
|
uint8_t changed_dir = last_direction_bits ^ dm;
|
|
|
|
// Ignore direction change if no steps are taken in that direction
|
|
|
|
if (da == 0) CBI(changed_dir, X_AXIS);
|
|
|
|
if (db == 0) CBI(changed_dir, Y_AXIS);
|
|
|
|
if (dc == 0) CBI(changed_dir, Z_AXIS);
|
|
|
|
last_direction_bits ^= changed_dir;
|
|
|
|
|
|
|
|
if (correction == 0) return;
|
|
|
|
|
|
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
|
|
// The segment proportion is a value greater than 0.0 indicating how much residual_error
|
|
|
|
// is corrected for in this segment. The contribution is based on segment length and the
|
|
|
|
// smoothing distance. Since the computation of this proportion involves a floating point
|
|
|
|
// division, defer computation until needed.
|
|
|
|
float segment_proportion = 0;
|
|
|
|
|
|
|
|
// Residual error carried forward across multiple segments, so correction can be applied
|
|
|
|
// to segments where there is no direction change.
|
|
|
|
static int32_t residual_error[XYZ] = { 0 };
|
|
|
|
#else
|
|
|
|
// No direction change, no correction.
|
|
|
|
if (!changed_dir) return;
|
2019-05-21 04:34:08 +02:00
|
|
|
// No leftover residual error from segment to segment
|
|
|
|
int32_t residual_error[XYZ] = { 0 };
|
2019-05-04 06:53:15 +02:00
|
|
|
#endif
|
|
|
|
|
|
|
|
const float f_corr = float(correction) / 255.0f;
|
|
|
|
|
|
|
|
LOOP_XYZ(axis) {
|
|
|
|
if (distance_mm[axis]) {
|
|
|
|
const bool reversing = TEST(dm,axis);
|
|
|
|
|
|
|
|
// When an axis changes direction, add axis backlash to the residual error
|
|
|
|
if (TEST(changed_dir, axis))
|
|
|
|
residual_error[axis] += (reversing ? -f_corr : f_corr) * distance_mm[axis] * planner.settings.axis_steps_per_mm[axis];
|
|
|
|
|
|
|
|
// Decide how much of the residual error to correct in this segment
|
|
|
|
int32_t error_correction = residual_error[axis];
|
|
|
|
#ifdef BACKLASH_SMOOTHING_MM
|
|
|
|
if (error_correction && smoothing_mm != 0) {
|
|
|
|
// Take up a portion of the residual_error in this segment, but only when
|
|
|
|
// the current segment travels in the same direction as the correction
|
|
|
|
if (reversing == (error_correction < 0)) {
|
|
|
|
if (segment_proportion == 0)
|
|
|
|
segment_proportion = MIN(1.0f, block->millimeters / smoothing_mm);
|
2019-05-21 04:34:08 +02:00
|
|
|
error_correction = CEIL(segment_proportion * error_correction);
|
2019-05-04 06:53:15 +02:00
|
|
|
}
|
|
|
|
else
|
|
|
|
error_correction = 0; // Don't take up any backlash in this segment, as it would subtract steps
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
// Making a correction reduces the residual error and modifies delta_mm
|
|
|
|
if (error_correction) {
|
|
|
|
block->steps[axis] += ABS(error_correction);
|
|
|
|
residual_error[axis] -= error_correction;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#if ENABLED(MEASURE_BACKLASH_WHEN_PROBING)
|
|
|
|
#if USES_Z_MIN_PROBE_ENDSTOP
|
|
|
|
#define TEST_PROBE_PIN (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
|
|
|
|
#else
|
|
|
|
#define TEST_PROBE_PIN (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Measure Z backlash by raising nozzle in increments until probe deactivates
|
|
|
|
void Backlash::measure_with_probe() {
|
|
|
|
if (measured_count[Z_AXIS] == 255) return;
|
|
|
|
|
|
|
|
float start_height = current_position[Z_AXIS];
|
|
|
|
while (current_position[Z_AXIS] < (start_height + BACKLASH_MEASUREMENT_LIMIT) && TEST_PROBE_PIN)
|
|
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + BACKLASH_MEASUREMENT_RESOLUTION, MMM_TO_MMS(BACKLASH_MEASUREMENT_FEEDRATE));
|
|
|
|
|
|
|
|
// The backlash from all probe points is averaged, so count the number of measurements
|
|
|
|
measured_mm[Z_AXIS] += current_position[Z_AXIS] - start_height;
|
|
|
|
measured_count[Z_AXIS]++;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // BACKLASH_COMPENSATION
|