Firmware2/Marlin/nozzle.cpp

237 lines
6.7 KiB
C++
Raw Normal View History

#include "nozzle.h"
#include "Marlin.h"
#include "point_t.h"
/**
* @brief Stroke clean pattern
* @details Wipes the nozzle back and forth in a linear movement
*
* @param start point_t defining the starting point
* @param end point_t defining the ending point
* @param strokes number of strokes to execute
*/
void Nozzle::stroke(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &end,
__attribute__((unused)) uint8_t const &strokes
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
#if ENABLED(NOZZLE_CLEAN_GOBACK)
// Store the current coords
point_t const initial = {
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
};
#endif // NOZZLE_CLEAN_GOBACK
// Move to the starting point
do_blocking_move_to_xy(start.x, start.y);
do_blocking_move_to_z(start.z);
// Start the stroke pattern
for (uint8_t i = 0; i < (strokes >>1); i++) {
do_blocking_move_to_xy(end.x, end.y);
do_blocking_move_to_xy(start.x, start.y);
}
#if ENABLED(NOZZLE_CLEAN_GOBACK)
// Move the nozzle to the initial point
do_blocking_move_to(initial.x, initial.y, initial.z);
#endif // NOZZLE_CLEAN_GOBACK
#endif // NOZZLE_CLEAN_FEATURE
}
/**
* @brief Zig-zag clean pattern
* @details Apply a zig-zag cleanning pattern
*
* @param start point_t defining the starting point
* @param end point_t defining the ending point
* @param strokes number of strokes to execute
* @param objects number of objects to create
*/
void Nozzle::zigzag(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &end,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) uint8_t const &objects
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
float A = fabs(end.y - start.y); // [twice the] Amplitude
float P = fabs(end.x - start.x) / (objects << 1); // Period
// Don't allow impossible triangles
if (A <= 0.0f || P <= 0.0f ) return;
#if ENABLED(NOZZLE_CLEAN_GOBACK)
// Store the current coords
point_t const initial = {
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
};
#endif // NOZZLE_CLEAN_GOBACK
for (uint8_t j = 0; j < strokes; j++) {
for (uint8_t i = 0; i < (objects << 1); i++) {
float const x = start.x + i * P;
float const y = start.y + (A/P) * (P - fabs(fmod((i*P), (2*P)) - P));
do_blocking_move_to_xy(x, y);
if (i == 0) do_blocking_move_to_z(start.z);
}
for (int i = (objects << 1); i > -1; i--) {
float const x = start.x + i * P;
float const y = start.y + (A/P) * (P - fabs(fmod((i*P), (2*P)) - P));
do_blocking_move_to_xy(x, y);
}
}
#if ENABLED(NOZZLE_CLEAN_GOBACK)
// Move the nozzle to the initial point
do_blocking_move_to_z(initial.z);
do_blocking_move_to_xy(initial.x, initial.y);
#endif // NOZZLE_CLEAN_GOBACK
#endif // NOZZLE_CLEAN_FEATURE
}
/**
* @brief Circular clean pattern
* @details Apply a circular cleaning pattern
*
* @param start point_t defining the middle of circle
* @param strokes number of strokes to execute
* @param radius radius of circle
*/
void Nozzle::circle(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &middle,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) float const &radius
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
if (strokes == 0) return;
#if ENABLED(NOZZLE_CLEAN_GOBACK)
// Store the current coords
point_t const initial = {
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
};
#endif // NOZZLE_CLEAN_GOBACK
if (start.z <= current_position[Z_AXIS]) {
// Order of movement is pretty darn important here
do_blocking_move_to_xy(start.x, start.y);
do_blocking_move_to_z(start.z);
} else {
do_blocking_move_to_z(start.z);
do_blocking_move_to_xy(start.x, start.y);
}
float x, y;
for (uint8_t s = 0; s < strokes; s++) {
for (uint8_t i = 0; i < NOZZLE_CLEAN_CIRCLE_FN; i++) {
x = middle.x + sin((M_2_PI / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius;
y = middle.y + cos((M_2_PI / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius;
do_blocking_move_to_xy(x, y);
}
}
// Let's be safe
do_blocking_move_to_xy(start.x, start.y);
#if ENABLED(NOZZLE_CLEAN_GOBACK)
// Move the nozzle to the initial point
if (start.z <= initial.z) {
// As above order is important
do_blocking_move_to_z(initial.z);
do_blocking_move_to_xy(initial.x, initial.y);
} else {
do_blocking_move_to_xy(initial.x, initial.y);
do_blocking_move_to_z(initial.z);
}
#endif // NOZZLE_CLEAN_GOBACK
#endif // NOZZLE_CLEAN_FEATURE
}
/**
* @brief Clean the nozzle
* @details Starts the selected clean procedure pattern
*
* @param pattern one of the available patterns
* @param argument depends on the cleaning pattern
*/
void Nozzle::clean(
__attribute__((unused)) uint8_t const &pattern,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) float const &radius,
__attribute__((unused)) uint8_t const &objects
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
#if ENABLED(DELTA)
if (current_position[Z_AXIS] > delta_clip_start_height)
do_blocking_move_to_z(delta_clip_start_height);
#endif
switch (pattern) {
case 1:
Nozzle::zigzag(
NOZZLE_CLEAN_START_POINT,
NOZZLE_CLEAN_END_POINT, strokes, objects);
break;
case 2:
Nozzle::circle(
NOZZLE_CLEAN_START_POINT,
NOZZLE_CLEAN_CIRCLE_MIDDLE, strokes, radius);
break;
default:
Nozzle::stroke(
NOZZLE_CLEAN_START_POINT,
NOZZLE_CLEAN_END_POINT, strokes);
}
#endif // NOZZLE_CLEAN_FEATURE
}
void Nozzle::park(
__attribute__((unused)) uint8_t const &z_action
) {
#if ENABLED(NOZZLE_PARK_FEATURE)
float const z = current_position[Z_AXIS];
point_t const park = NOZZLE_PARK_POINT;
switch(z_action) {
case 1: // force Z-park height
do_blocking_move_to_z(park.z);
break;
case 2: // Raise by Z-park height
do_blocking_move_to_z(
(z + park.z > Z_MAX_POS) ? Z_MAX_POS : z + park.z);
break;
default: // Raise to Z-park height if lower
if (current_position[Z_AXIS] < park.z)
do_blocking_move_to_z(park.z);
}
do_blocking_move_to_xy(park.x, park.y);
#endif // NOZZLE_PARK_FEATURE
}