Firmware2/Marlin/G26_Mesh_Validation_Tool.cpp

1002 lines
40 KiB
C++
Raw Normal View History

2017-03-18 16:14:31 +01:00
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Marlin Firmware -- G26 - Mesh Validation Tool
*/
#define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
#define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
#define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
#define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
#define LAYER_HEIGHT 0.2
#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
#define BED_TEMP 60.0
#define HOTEND_TEMP 205.0
#define OOOOZE_AMOUNT 0.3
#include "Marlin.h"
#include "Configuration.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "UBL.h"
#include "ultralcd.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define SIZE_OF_INTERSECTION_CIRCLES 5
#define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
// less than SIZE_OR_INTERSECTION_CIRCLES
/**
* Roxy's G26 Mesh Validation Tool
*
* G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'cicle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state.
*
* R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* undrawn cicle is still done. But the distance to the location for each circle has a
* random number of the size specified added to it. Specifying R50 will give an interesting
* deviation from the normal behaviour on a 10 x 10 Mesh.
*
* X # X coordinate Specify the starting location of the drawing activity.
*
* Y # Y coordinate Specify the starting location of the drawing activity.
*/
extern int UBL_has_control_of_LCD_Panel;
extern float feedrate;
//extern bool relative_mode;
extern Planner planner;
//#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
//#endif
extern float destination[];
extern void set_destination_to_current();
extern void set_current_to_destination();
extern float code_value_float();
extern bool code_value_bool();
extern bool code_has_value();
extern void lcd_init();
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
bool prepare_move_to_destination_cartesian();
void line_to_destination();
void line_to_destination(float );
void gcode_G28();
void sync_plan_position_e();
void un_retract_filament();
void retract_filament();
void look_for_lines_to_connect();
bool parse_G26_parameters();
void move_to(const float&, const float&, const float&, const float&) ;
void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
bool turn_on_heaters();
bool prime_nozzle();
void chirp_at_user();
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], Continue_with_closest = 0;
float G26_E_AXIS_feedrate = 0.020,
Random_Deviation = 0.0,
Layer_Height = LAYER_HEIGHT;
bool retracted = false; // We keep track of the state of the nozzle to know if it
// is currently retracted or not. This allows us to be
// less careful because mis-matched retractions and un-retractions
// won't leave us in a bad state.
#if ENABLED(ULTRA_LCD)
void lcd_setstatus(const char* message, bool persist);
#endif
float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(float, float);
void debug_current_and_destination(char *title);
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
static float E_Pos_Delta,
Extrusion_Multiplier = EXTRUSION_MULTIPLIER,
Retraction_Multiplier = RETRACTION_MULTIPLIER,
Nozzle = NOZZLE,
Filament = FILAMENT,
Prime_Length = PRIME_LENGTH,
X_Pos, Y_Pos,
bed_temp = BED_TEMP,
hotend_temp = HOTEND_TEMP,
Ooooze_Amount = OOOOZE_AMOUNT;
int8_t Prime_Flag = 0;
bool Keep_Heaters_On = false,
G26_Debug_flag = false;
/**
* These support functions allow the use of large bit arrays of flags that take very
* little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
* in the future.
*/
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit UBL's Mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*/
void gcode_G26() {
float circle_x, circle_y, x, y, xe, ye, tmp,
start_angle, end_angle;
int i, xi, yi, lcd_init_counter = 0;
mesh_index_pair location;
if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
gcode_G28();
if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
stepper.synchronize();
set_current_to_destination();
}
if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
goto LEAVE; // has gone wrong.
axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
//relative_mode = false; // planner and stepper motors!
current_position[E_AXIS] = 0.0;
sync_plan_position_e();
if (Prime_Flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
// Clear all of the flags we need
ZERO(circle_flags);
ZERO(horizontal_mesh_line_flags);
ZERO(vertical_mesh_line_flags);
//
// Move nozzle to the specified height for the first layer
//
set_destination_to_current();
destination[Z_AXIS] = Layer_Height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], Ooooze_Amount);
UBL_has_control_of_LCD_Panel = 1; // Take control of the LCD Panel!
debug_current_and_destination((char *)"Starting G26 Mesh Validation Pattern.");
do {
if (G29_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch click
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Mesh Validation Stopped.", true);
lcd_quick_feedback();
#endif
goto LEAVE;
}
if (Continue_with_closest)
location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
else
location = find_closest_circle_to_print(X_Pos, Y_Pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
circle_x = blm.map_x_index_to_bed_location(location.x_index);
circle_y = blm.map_y_index_to_bed_location(location.y_index);
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA
if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
goto LEAVE;
}
#endif
if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
goto LEAVE;
}
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index;
if (G26_Debug_flag) {
SERIAL_ECHOPGM(" Doing circle at: (xi=");
SERIAL_ECHO(xi);
SERIAL_ECHOPGM(", yi=");
SERIAL_ECHO(yi);
SERIAL_ECHOLNPGM(")");
}
start_angle = 0.0; // assume it is going to be a full circle
end_angle = 360.0;
if (xi == 0) { // Check for bottom edge
start_angle = -90.0;
end_angle = 90.0;
if (yi == 0) // it is an edge, check for the two left corners
start_angle = 0.0;
else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
end_angle = 0.0;
}
else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
start_angle = 90.0;
end_angle = 270.0;
if (yi == 0) // it is an edge, check for the two right corners
end_angle = 180.0;
else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
start_angle = 180.0;
}
else if (yi == 0) {
start_angle = 0.0; // only do the top side of the cirlce
end_angle = 180.0;
}
else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
start_angle = 180.0; // only do the bottom side of the cirlce
end_angle = 360.0;
}
/**
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
* the CPU load and make the arc drawing faster and more smooth
*/
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
int tmp_div_30;
for (i = 0; i <= 360 / 30; i++) {
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
}
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
y = circle_y + sin_table[tmp_div_30];
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
ye = circle_y + sin_table[tmp_div_30 + 1];
#ifdef DELTA
if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
continue; // the 'circle' is on the bed. If
#else // not, we need to skip
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
if (G26_Debug_flag) {
char ccc, *cptr, seg_msg[50], seg_num[10];
strcpy(seg_msg, " segment: ");
strcpy(seg_num, " \n");
cptr = (char *) "01234567890ABCDEF????????";
ccc = cptr[tmp_div_30];
seg_num[1] = ccc;
strcat(seg_msg, seg_num);
debug_current_and_destination(seg_msg);
}
print_line_from_here_to_there(x, y, Layer_Height, xe, ye, Layer_Height);
}
lcd_init_counter++;
if (lcd_init_counter > 10) {
lcd_init_counter = 0;
lcd_init(); // Some people's LCD Displays are locking up. This might help them
}
debug_current_and_destination((char *)"Looking for lines to connect.");
look_for_lines_to_connect();
debug_current_and_destination((char *)"Done with line connect.");
}
debug_current_and_destination((char *)"Done with current circle.");
}
while (location.x_index >= 0 && location.y_index >= 0) ;
LEAVE:
retract_filament();
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
debug_current_and_destination((char *)"ready to do Z-Raise.");
move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
debug_current_and_destination((char *)"done doing Z-Raise.");
destination[X_AXIS] = X_Pos; // Move back to the starting position
destination[Y_AXIS] = Y_Pos;
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
debug_current_and_destination((char *)"done doing X/Y move.");
UBL_has_control_of_LCD_Panel = 0; // Give back control of the LCD Panel!
if (!Keep_Heaters_On) {
#if HAS_TEMP_BED
thermalManager.setTargetBed(0.0);
#endif
thermalManager.setTargetHotend(0.0, 0);
}
lcd_init(); // Some people's LCD Displays are locking up. This might help them
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
mesh_index_pair find_closest_circle_to_print( float X, float Y) {
float f, mx, my, dx, dy, closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!is_bit_set(circle_flags, i, j)) {
mx = blm.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
my = blm.map_y_index_to_bed_location(j);
dx = X - mx; // Get the distance to this intersection
dy = Y - my;
f = HYPOT(dx, dy);
dx = X_Pos - mx; // It is possible that we are being called with the values
dy = Y_Pos - my; // to let us find the closest circle to the start position.
f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
// we are going to add in a small
// weighting to the distance calculation to help it choose
// a better place to continue.
if (Random_Deviation > 1.0)
f += random(0.0, Random_Deviation); // Add in the specified amount of Random Noise to our search
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance= closest;
}
}
}
}
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
void look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = blm.map_x_index_to_bed_location(i);
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
sy = blm.map_y_index_to_bed_location(j);
ex = blm.map_x_index_to_bed_location(i + 1);
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
ey = sy;
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (G26_Debug_flag) {
SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
SERIAL_ECHO(sx);
SERIAL_ECHOPGM(", sy=");
SERIAL_ECHO(sy);
SERIAL_ECHOPGM(") -> (ex=");
SERIAL_ECHO(ex);
SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")");
debug_current_and_destination((char *)"Connecting horizontal line.");
}
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sx = blm.map_x_index_to_bed_location(i);
sy = blm.map_y_index_to_bed_location(j);
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
ex = sx;
ey = blm.map_y_index_to_bed_location(j + 1);
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (G26_Debug_flag) {
SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
SERIAL_ECHO(sx);
SERIAL_ECHOPGM(", sy=");
SERIAL_ECHO(sy);
SERIAL_ECHOPGM(") -> (ex=");
SERIAL_ECHO(ex);
SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")");
debug_current_and_destination((char *)"Connecting vertical line.");
}
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
}
}
}
}
}
void debug_current_and_destination(char *title) {
float dx, dy, de, xy_dist, fpmm;
// if the title message starts with a '!' it is so important, we are going to
// ignore the status of the G26_Debug_Flag
if (*title != '!' && !G26_Debug_flag) return;
dx = current_position[X_AXIS] - destination[X_AXIS];
dy = current_position[Y_AXIS] - destination[Y_AXIS];
de = destination[E_AXIS] - current_position[E_AXIS];
if (de == 0.0) return;
xy_dist = HYPOT(dx, dy);
if (xy_dist == 0.0) {
return;
//SERIAL_ECHOPGM(" FPMM=");
//fpmm = de;
//SERIAL_PROTOCOL_F(fpmm, 6);
}
else {
SERIAL_ECHOPGM(" fpmm=");
fpmm = de / xy_dist;
SERIAL_PROTOCOL_F(fpmm, 6);
}
SERIAL_ECHOPGM(" current=( ");
SERIAL_PROTOCOL_F(current_position[X_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[Y_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[E_AXIS], 6);
SERIAL_ECHOPGM(" ) destination=( ");
if (current_position[X_AXIS] == destination[X_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[X_AXIS], 6);
SERIAL_ECHOPGM(", ");
if (current_position[Y_AXIS] == destination[Y_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[Y_AXIS], 6);
SERIAL_ECHOPGM(", ");
if (current_position[Z_AXIS] == destination[Z_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[Z_AXIS], 6);
SERIAL_ECHOPGM(", ");
if (current_position[E_AXIS] == destination[E_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[E_AXIS], 6);
SERIAL_ECHOPGM(" ) ");
SERIAL_ECHO(title);
SERIAL_EOL;
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
//if (been_to_2_6) {
//while ((digitalRead(66) & 0x01) != 0)
// idle();
//}
}
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_XY_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
if (G26_Debug_flag) {
SERIAL_ECHOPAIR("in move_to() has_XY_component:", (int)has_XY_component);
SERIAL_EOL;
}
if (z != last_z) {
if (G26_Debug_flag) {
SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
SERIAL_EOL;
}
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
stepper.synchronize();
set_destination_to_current();
if (G26_Debug_flag)
debug_current_and_destination((char *)" in move_to() done with Z move");
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract()
feed_value = has_XY_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (G26_Debug_flag) {
SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
SERIAL_EOL;
}
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta;
if (G26_Debug_flag)
debug_current_and_destination((char *)" in move_to() doing last move");
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
if (G26_Debug_flag)
debug_current_and_destination((char *)" in move_to() after last move");
stepper.synchronize();
set_destination_to_current();
}
void retract_filament() {
if (!retracted) { // Only retract if we are not already retracted!
retracted = true;
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * Retraction_Multiplier);
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
}
}
void un_retract_filament() {
if (retracted) { // Only un-retract if we are retracted.
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * Retraction_Multiplier);
retracted = false;
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;
dx_s = current_position[X_AXIS] - sx; // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy;
dist_start = HYPOT2(dx_s, dy_s); // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex; // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey;
dist_end = HYPOT2(dx_e, dy_e);
dx = ex - sx;
dy = ey - sy;
Line_Length = HYPOT(dx, dy);
// If the end point of the line is closer to the nozzle, we are going to
// flip the direction of this line. We will print it from the end to the start.
// On very small lines we don't do the optimization because it just isn't worth it.
//
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
if (G26_Debug_flag)
SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
return;
}
// Now decide if we should retract.
if (dist_start > 2.0) {
retract_filament();
if (G26_Debug_flag)
SERIAL_ECHOLNPGM(" filament retracted.");
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
E_Pos_Delta = Line_Length * G26_E_AXIS_feedrate * Extrusion_Multiplier;
un_retract_filament();
if (G26_Debug_flag) {
SERIAL_ECHOLNPGM(" doing printing move.");
debug_current_and_destination((char *)"doing final move_to() inside print_line_from_here_to_there()");
}
move_to(ex, ey, ez, E_Pos_Delta); // Get to the ending point with an appropriate amount of extrusion
}
/**
* This function used to be inline code in G26. But there are so many
* parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine.
*/
bool parse_G26_parameters() {
Extrusion_Multiplier = EXTRUSION_MULTIPLIER;
Retraction_Multiplier = RETRACTION_MULTIPLIER;
Nozzle = NOZZLE;
Filament = FILAMENT;
Layer_Height = LAYER_HEIGHT;
Prime_Length = PRIME_LENGTH;
bed_temp = BED_TEMP;
hotend_temp = HOTEND_TEMP;
Ooooze_Amount = OOOOZE_AMOUNT;
Prime_Flag = 0;
Keep_Heaters_On = false;
if (code_seen('B')) {
bed_temp = code_value_float();
if (bed_temp < 15.0 || bed_temp > 140.0) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('C')) Continue_with_closest++;
if (code_seen('L')) {
Layer_Height = code_value_float();
if (Layer_Height<0.0 || Layer_Height>2.0) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
}
if (code_seen('Q')) {
if (code_has_value()) {
Retraction_Multiplier = code_value_float();
if (Retraction_Multiplier<.05 || Retraction_Multiplier>15.0) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return UBL_ERR;
}
}
if (code_seen('N')) {
Nozzle = code_value_float();
if (Nozzle < 0.1 || Nozzle > 1.0) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
}
if (code_seen('K')) Keep_Heaters_On++;
if (code_seen('O') && code_has_value())
Ooooze_Amount = code_value_float();
if (code_seen('P')) {
if (!code_has_value())
Prime_Flag = -1;
else {
Prime_Flag++;
Prime_Length = code_value_float();
if (Prime_Length < 0.0 || Prime_Length > 25.0) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
}
}
if (code_seen('F')) {
Filament = code_value_float();
if (Filament < 1.0 || Filament > 4.0) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
}
Extrusion_Multiplier *= sq(1.75) / sq(Filament); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
Extrusion_Multiplier *= Filament * sq(Nozzle) / sq(0.3); // Scale up by nozzle size
if (code_seen('H')) {
hotend_temp = code_value_float();
if (hotend_temp < 165.0 || hotend_temp > 280.0) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('R')) {
randomSeed(millis());
Random_Deviation = code_has_value() ? code_value_float() : 50.0;
}
X_Pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS];
if (code_seen('X')) {
X_Pos = code_value_float();
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
return UBL_ERR;
}
}
else
if (code_seen('Y')) {
Y_Pos = code_value_float();
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
return UBL_ERR;
}
}
/**
* We save the question of what to do with the Unified Bed Leveling System's Activation until the very
* end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
* alter the system's status. We wait until we know everything is correct before altering the state
* of the system.
*/
blm.state.active = !code_seen('D');
return UBL_OK;
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool turn_on_heaters() {
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (bed_temp > 25) {
lcd_setstatus("G26 Heating Bed.", true);
lcd_quick_feedback();
#endif
UBL_has_control_of_LCD_Panel++;
thermalManager.setTargetBed(bed_temp);
while (abs(thermalManager.degBed() - bed_temp) > 3) {
if (G29_lcd_clicked()) {
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch
lcd_setstatus("Leaving G26", true); // Now we do it right.
return UBL_ERR;
}
idle();
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatus("G26 Heating Nozzle.", true);
lcd_quick_feedback();
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
if (G29_lcd_clicked()) {
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch
lcd_setstatus("Leaving G26", true); // Now we do it right.
return UBL_ERR;
}
idle();
}
#if ENABLED(ULTRA_LCD)
lcd_setstatus("", true);
lcd_quick_feedback();
#endif
return UBL_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
float Total_Prime = 0.0;
if (Prime_Flag == -1) { // The user wants to control how much filament gets purged
lcd_setstatus("User Controled Prime", true);
chirp_at_user();
set_destination_to_current();
un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
// retracted(). We are here because we want to prime the nozzle.
// So let's just unretract just to be sure.
UBL_has_control_of_LCD_Panel++;
while (!G29_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
UBL_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_to_current();
idle();
}
strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
// So... We cheat to get a message up.
while (G29_lcd_clicked()) idle(); // Debounce the switch
#if ENABLED(ULTRA_LCD)
UBL_has_control_of_LCD_Panel = 0;
lcd_setstatus("Done Priming", true); // Now we do it right.
lcd_quick_feedback();
#endif
}
else {
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Fixed Length Prime.", true);
lcd_quick_feedback();
#endif
set_destination_to_current();
destination[E_AXIS] += Prime_Length;
UBL_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
);
stepper.synchronize();
set_destination_to_current();
retract_filament();
}
return UBL_OK;
}
#endif // AUTO_BED_LEVELING_UBL