Firmware2/Marlin/src/HAL/STM32/Sd2Card_sdio_stm32duino.cpp

275 lines
8.5 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../inc/MarlinConfig.h"
#if ENABLED(SDIO_SUPPORT) && !defined(STM32GENERIC)
#include <stdint.h>
#include <stdbool.h>
//#include "SdMscDriver.h"
//#include "usbd_msc_bot.h"
//#include "usbd_msc_scsi.h"
//#include "usbd_msc_composite.h"
//#include "usbd_msc_cdc_composite.h"
//#include "usbd_msc_data.h"
#if defined(STM32F103xE) || defined(STM32F103xG)
#include <stm32f1xx_hal_rcc_ex.h>
#include <stm32f1xx_hal_sd.h>
#elif defined(STM32F4xx)
#include <stm32f4xx_hal_rcc.h>
#include <stm32f4xx_hal_dma.h>
#include <stm32f4xx_hal_gpio.h>
#include <stm32f4xx_hal_sd.h>
#elif defined(STM32F7xx)
#include <stm32f7xx_hal_rcc.h>
#include <stm32f7xx_hal_dma.h>
#include <stm32f7xx_hal_gpio.h>
#include <stm32f7xx_hal_sd.h>
#else
#error "ERROR - Only STM32F103xE, STM32F103xG, STM32F4xx or STM32F7xx CPUs supported"
#endif
SD_HandleTypeDef hsd; // create SDIO structure
#define TRANSFER_CLOCK_DIV ((uint8_t)SDIO_INIT_CLK_DIV/40)
#ifndef USBD_OK
#define USBD_OK 0
#endif
void go_to_transfer_speed() {
SD_InitTypeDef Init;
/* Default SDIO peripheral configuration for SD card initialization */
Init.ClockEdge = hsd.Init.ClockEdge;
Init.ClockBypass = hsd.Init.ClockBypass;
Init.ClockPowerSave = hsd.Init.ClockPowerSave;
Init.BusWide = hsd.Init.BusWide;
Init.HardwareFlowControl = hsd.Init.HardwareFlowControl;
Init.ClockDiv = TRANSFER_CLOCK_DIV;
/* Initialize SDIO peripheral interface with default configuration */
SDIO_Init(hsd.Instance, Init);
}
void SD_LowLevel_Init(void) {
uint32_t tempreg;
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_GPIOC_CLK_ENABLE(); //enable GPIO clocks
__HAL_RCC_GPIOD_CLK_ENABLE(); //enable GPIO clocks
GPIO_InitStruct.Pin = GPIO_PIN_8 | GPIO_PIN_12; // D0 & SCK
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = 1; //GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#if defined(SDIO_D1_PIN) && defined(SDIO_D2_PIN) && defined(SDIO_D3_PIN) // define D1-D3 only if have a four bit wide SDIO bus
GPIO_InitStruct.Pin = GPIO_PIN_9 | GPIO_PIN_10 | GPIO_PIN_11; // D1-D3
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = 1; //GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
#endif
// Configure PD.02 CMD line
GPIO_InitStruct.Pin = GPIO_PIN_2;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
RCC->APB2RSTR &= ~RCC_APB2RSTR_SDIORST_Msk; // take SDIO out of reset
RCC->APB2ENR |= RCC_APB2RSTR_SDIORST_Msk; // enable SDIO clock
// Enable the DMA2 Clock
//Initialize the SDIO (with initial <400Khz Clock)
tempreg = 0; //Reset value
tempreg |= SDIO_CLKCR_CLKEN; //Clock is enabled
tempreg |= (uint32_t)0x76; //Clock Divider. Clock = 48000/(118+2) = 400Khz
//Keep the rest at 0 => HW_Flow Disabled, Rising Clock Edge, Disable CLK ByPass, Bus Width = 0, Power save Disable
SDIO->CLKCR = tempreg;
//Power up the SDIO
SDIO->POWER = 0x03;
}
void HAL_SD_MspInit(SD_HandleTypeDef *hsd) { // application specific init
UNUSED(hsd); /* Prevent unused argument(s) compilation warning */
__HAL_RCC_SDIO_CLK_ENABLE(); // turn on SDIO clock
}
constexpr uint8_t SD_RETRY_COUNT = (1
#if ENABLED(SD_CHECK_AND_RETRY)
+ 2
#endif
);
bool SDIO_Init() {
//init SDIO and get SD card info
uint8_t retryCnt = SD_RETRY_COUNT;
bool status;
hsd.Instance = SDIO;
hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET
SD_LowLevel_Init();
uint8_t retry_Cnt = retryCnt;
for (;;) {
status = (bool) HAL_SD_Init(&hsd);
if (!status) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
}
go_to_transfer_speed();
#if defined(SDIO_D1_PIN) && defined(SDIO_D2_PIN) && defined(SDIO_D3_PIN) // go to 4 bit wide mode if pins are defined
retry_Cnt = retryCnt;
for (;;) {
if (!HAL_SD_ConfigWideBusOperation(&hsd, SDIO_BUS_WIDE_4B)) break; // some cards are only 1 bit wide so a pass here is not required
if (!--retry_Cnt) break;
}
if (!retry_Cnt) { // wide bus failed, go back to one bit wide mode
hsd.State = (HAL_SD_StateTypeDef) 0; // HAL_SD_STATE_RESET
SD_LowLevel_Init();
retry_Cnt = retryCnt;
for (;;) {
status = (bool) HAL_SD_Init(&hsd);
if (!status) break;
if (!--retry_Cnt) return false; // return failing status if retries are exhausted
}
}
#endif
return true;
}
void init_SDIO_pins(void) {
GPIO_InitTypeDef GPIO_InitStruct = {0};
/**SDIO GPIO Configuration
PC8 ------> SDIO_D0
PC12 ------> SDIO_CK
PD2 ------> SDIO_CMD
*/
GPIO_InitStruct.Pin = GPIO_PIN_8;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_12;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF12_SDIO;
HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);
}
//bool SDIO_init() { return (bool) (SD_SDIO_Init() ? 1 : 0);}
//bool SDIO_Init_C() { return (bool) (SD_SDIO_Init() ? 1 : 0);}
bool SDIO_ReadBlock(uint32_t block, uint8_t *dst) {
bool status;
hsd.Instance = SDIO;
uint8_t retryCnt = SD_RETRY_COUNT;
for (;;) {
bool status = (bool) HAL_SD_ReadBlocks(&hsd, (uint8_t*)dst, block, 1, 1000); // read one 512 byte block with 500mS timeout
status |= (bool) HAL_SD_GetCardState(&hsd); // make sure all is OK
if (!status) return false; // return passing status
if (!--retryCnt) return true; // return failing status if retries are exhausted
}
/*
return (bool) ((status_read | status_card) ? 1 : 0);
if (SDIO_GetCardState() != SDIO_CARD_TRANSFER) return false;
if (blockAddress >= SdCard.LogBlockNbr) return false;
if ((0x03 & (uint32_t)data)) return false; // misaligned data
if (SdCard.CardType != CARD_SDHC_SDXC) { blockAddress *= 512U; }
if (!SDIO_CmdReadSingleBlock(blockAddress)) {
SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS);
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
return false;
}
while (!SDIO_GET_FLAG(SDIO_STA_DATAEND | SDIO_STA_TRX_ERROR_FLAGS)) {}
dma_disable(SDIO_DMA_DEV, SDIO_DMA_CHANNEL);
if (SDIO->STA & SDIO_STA_RXDAVL) {
while (SDIO->STA & SDIO_STA_RXDAVL) (void)SDIO->FIFO;
SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS | SDIO_ICR_DATA_FLAGS);
return false;
}
if (SDIO_GET_FLAG(SDIO_STA_TRX_ERROR_FLAGS)) {
SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS | SDIO_ICR_DATA_FLAGS);
return false;
}
SDIO_CLEAR_FLAG(SDIO_ICR_CMD_FLAGS | SDIO_ICR_DATA_FLAGS);
*/
return true;
}
bool SDIO_WriteBlock(uint32_t block, const uint8_t *src) {
bool status;
hsd.Instance = SDIO;
uint8_t retryCnt = SD_RETRY_COUNT;
for (;;) {
status = (bool) HAL_SD_WriteBlocks(&hsd, (uint8_t*)src, block, 1, 500); // write one 512 byte block with 500mS timeout
status |= (bool) HAL_SD_GetCardState(&hsd); // make sure all is OK
if (!status) return (bool) status; // return passing status
if (!--retryCnt) return (bool) status; // return failing status if retries are exhausted
}
}
#endif // SDIO_SUPPORT