Apply coding standards to M100, break up into functions

This commit is contained in:
Scott Lahteine 2017-04-10 19:19:22 -05:00
parent ba85faabc0
commit 03aa9a390e
3 changed files with 209 additions and 198 deletions

View File

@ -27,112 +27,140 @@
* This memory block is initialized and watched via the M100 command. * This memory block is initialized and watched via the M100 command.
* *
* M100 I Initializes the free memory block and prints vitals statistics about the area * M100 I Initializes the free memory block and prints vitals statistics about the area
*
* M100 F Identifies how much of the free memory block remains free and unused. It also * M100 F Identifies how much of the free memory block remains free and unused. It also
* detects and reports any corruption within the free memory block that may have * detects and reports any corruption within the free memory block that may have
* happened due to errant firmware. * happened due to errant firmware.
*
* M100 D Does a hex display of the free memory block along with a flag for any errant * M100 D Does a hex display of the free memory block along with a flag for any errant
* data that does not match the expected value. * data that does not match the expected value.
*
* M100 C x Corrupts x locations within the free memory block. This is useful to check the * M100 C x Corrupts x locations within the free memory block. This is useful to check the
* correctness of the M100 F and M100 D commands. * correctness of the M100 F and M100 D commands.
* *
* Initial version by Roxy-3D * Initial version by Roxy-3D
*/ */
#define M100_FREE_MEMORY_DUMPER // Comment out to remove Dump sub-command #define M100_FREE_MEMORY_DUMPER // Enable for the `M110 D` Dump sub-command
#define M100_FREE_MEMORY_CORRUPTOR // Comment out to remove Corrupt sub-command #define M100_FREE_MEMORY_CORRUPTOR // Enable for the `M100 C` Corrupt sub-command
#include "Marlin.h" #include "MarlinConfig.h"
#if ENABLED(M100_FREE_MEMORY_WATCHER) #if ENABLED(M100_FREE_MEMORY_WATCHER)
#define TEST_BYTE 0xE5
extern char* __brkval; extern char* __brkval;
extern size_t __heap_start, __heap_end, __flp; extern size_t __heap_start, __heap_end, __flp;
extern char __bss_end; extern char __bss_end;
// #include "Marlin.h"
// Utility functions used by M100 to get its work done.
//
#include "hex_print_routines.h" #include "hex_print_routines.h"
char* top_of_stack(); //
int how_many_E5s_are_here(char*); // Utility functions
int free_memory_is_corrupted(); // int not bool!!!! it will tell us how many blocks of //
// free memory it found.
void gcode_M100() {
static bool m100_not_initialized = true;
char* sp, *ptr;
int i, j, n;
//
// M100 D dumps the free memory block from __brkval to the stack pointer.
// malloc() eats memory from the start of the block and the stack grows
// up from the bottom of the block. Solid 0xE5's indicate nothing has
// used that memory yet. There should not be anything but 0xE5's within
// the block of 0xE5's. If there is, that would indicate memory corruption
// probably caused by bad pointers. Any unexpected values will be flagged in
// the right hand column to help spotting them.
//
SERIAL_ECHOPAIR("\n__brkval : 0x", hex_word((uint16_t)__brkval) );
SERIAL_ECHOPAIR("\n__bss_end : 0x", hex_word((uint16_t)&__bss_end));
//
// With out malloc() we need to be smart and use &__bss_end
//
ptr = __brkval ? __brkval : &__bss_end;
SERIAL_ECHOPAIR("\nstart of free space : 0x", hex_word((uint16_t)ptr));
sp = top_of_stack(); #define END_OF_HEAP() (__brkval ? __brkval : &__bss_end)
SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
#if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command // Location of a variable on its stack frame. Returns a value above
if (code_seen('D')) { // the stack (once the function returns to the caller).
// char* top_of_stack() {
// We want to start and end the dump on a nice 16 byte boundry even though char x;
// the values we are using are not 16 byte aligned. return &x + 1; // x is pulled on return;
// }
ptr = (char*) ((uint16_t) ptr & 0xfff0);
sp = (char*) ((uint16_t) sp | 0x000f);
n = sp - ptr; // Count the number of test bytes at the specified location.
int16_t count_test_bytes(const char * const ptr) {
for (uint16_t i = 0; i < 32000; i++)
if (ptr[i] != TEST_BYTE)
return i - 1;
return -1;
}
// Return a count of free memory blocks.
uint16_t free_memory_is_corrupted(char * const ptr, const uint16_t size) {
// Find the longest block of test bytes in the given buffer
uint16_t block_cnt = 0;
for (uint16_t i = 0; i < size; i++) {
if (ptr[i] == TEST_BYTE) {
const uint16_t j = count_test_bytes(ptr + i);
if (j > 8) {
//SERIAL_ECHOPAIR("Found ", j);
//SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)ptr + i));
i += j;
block_cnt++;
}
}
}
//if (block_cnt > 1) {
// SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
// SERIAL_ECHOLNPAIR("\nLargest free block is ", max_cnt);
//}
return block_cnt;
}
//
// M100 sub-commands
//
#if ENABLED(M100_FREE_MEMORY_DUMPER)
/**
* M100 D
* Dump the free memory block from __brkval to the stack pointer.
* malloc() eats memory from the start of the block and the stack grows
* up from the bottom of the block. Solid test bytes indicate nothing has
* used that memory yet. There should not be anything but test bytes within
* the block. If so, it may indicate memory corruption due to a bad pointer.
* Unexpected bytes are flagged in the right column.
*/
void dump_free_memory(char *ptr, char *sp) {
// //
// This is the main loop of the Dump command. // Start and end the dump on a nice 16 byte boundary
// (even though the values are not 16-byte aligned).
// //
ptr = (char*)((uint16_t)ptr & 0xFFF0); // Align to 16-byte boundary
sp = (char*)((uint16_t)sp | 0x000F); // Align sp to the 15th byte (at or above sp)
// Dump command main loop
while (ptr < sp) { while (ptr < sp) {
print_hex_word((uint16_t)ptr); // Print the address print_hex_word((uint16_t)ptr); // Print the address
SERIAL_CHAR(':'); SERIAL_CHAR(':');
for (i = 0; i < 16; i++) { // and 16 data bytes for (uint8_t i = 0; i < 16; i++) { // and 16 data bytes
if (i==8) if (i == 8) SERIAL_CHAR('-');
SERIAL_CHAR('-'); print_hex_byte(ptr[i]);
print_hex_byte(*(ptr + i));
SERIAL_CHAR(' '); SERIAL_CHAR(' ');
} }
SERIAL_CHAR('|'); // now show where non 0xE5's are SERIAL_CHAR('|'); // Point out non test bytes
for (i = 0; i < 16; i++) for (uint8_t i = 0; i < 16; i++)
SERIAL_CHAR((*(ptr + i) == (char)0xe5) ? ' ' : '?'); SERIAL_CHAR(ptr[i] == TEST_BYTE ? ' ' : '?');
SERIAL_EOL; SERIAL_EOL;
ptr += 16; ptr += 16;
idle(); idle();
} }
return;
} }
#endif #endif // M100_FREE_MEMORY_DUMPER
//
// M100 F requests the code to return the number of free bytes in the memory pool along with /**
// other vital statistics that define the memory pool. * M100 F
// * Return the number of free bytes in the memory pool,
if (code_seen('F')) { * with other vital statistics defining the pool.
int max_cnt = -1, block_cnt = 0; */
uint16_t max_addr=0; void free_memory_pool_report(const char * const ptr, const uint16_t size) {
ptr = __brkval ? __brkval : &__bss_end; int16_t max_cnt = -1;
sp = top_of_stack(); uint16_t block_cnt = 0;
n = sp - ptr; char *max_addr = NULL;
// Scan through the range looking for the biggest block of 0xE5's we can find // Find the longest block of test bytes in the buffer
for (i = 0; i < n; i++) { for (uint16_t i = 0; i < size; i++) {
if (*(ptr + i) == (char)0xe5) { char * const addr = ptr + i;
j = how_many_E5s_are_here(ptr + i); if (*addr == TEST_BYTE) {
const uint16_t j = count_test_bytes(addr);
if (j > 8) { if (j > 8) {
SERIAL_ECHOPAIR("Found ", j); SERIAL_ECHOPAIR("Found ", j);
SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i))); SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)addr));
if (j > max_cnt) { if (j > max_cnt) {
max_cnt = j; max_cnt = j;
max_addr = (uint16_t) ptr + i; max_addr = addr;
} }
i += j; i += j;
block_cnt++; block_cnt++;
@ -142,111 +170,94 @@ void gcode_M100() {
if (block_cnt > 1) { if (block_cnt > 1) {
SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area."); SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt); SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt);
SERIAL_ECHOLNPAIR(" bytes big at 0x", hex_word(max_addr)); SERIAL_ECHOLNPAIR(" bytes at 0x", hex_word((uint16_t)max_addr));
} }
SERIAL_ECHOLNPAIR("free_memory_is_corrupted() = ", free_memory_is_corrupted()); SERIAL_ECHOLNPAIR("free_memory_is_corrupted() = ", free_memory_is_corrupted(ptr, size));
return; }
}
// #if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
// M100 C x Corrupts x locations in the free memory pool and reports the locations of the corruption. /**
// This is useful to check the correctness of the M100 D and the M100 F commands. * M100 C<num>
// * Corrupt <num> locations in the free memory pool and report the corrupt addresses.
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR) * This is useful to check the correctness of the M100 D and the M100 F commands.
*/
void corrupt_free_memory(char *ptr, const uint16_t size) {
if (code_seen('C')) { if (code_seen('C')) {
int x = code_value_int(); // x gets the # of locations to corrupt within the memory pool ptr += 8;
const uint16_t near_top = top_of_stack() - ptr - 250, // -250 to avoid interrupt activity that's altered the stack.
j = near_top / (size + 1);
SERIAL_ECHOLNPGM("Corrupting free memory block.\n"); SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
ptr += 8; for (uint16_t i = 1; i <= size; i++) {
sp = top_of_stack(); char * const addr = ptr + i * j;
n = sp - ptr - 250; // -250 just to keep us from finding interrupt activity that *addr = i;
// has altered the stack. SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)addr));
j = n / (x + 1);
for (i = 1; i <= x; i++) {
*(ptr + (i * j)) = i;
SERIAL_ECHOPAIR("\nCorrupting address: 0x", hex_word((uint16_t)(ptr + i * j)));
} }
SERIAL_ECHOLNPGM("\n"); SERIAL_EOL;
return;
} }
#endif }
// #endif // M100_FREE_MEMORY_CORRUPTOR
// M100 I Initializes the free memory pool so it can be watched and prints vital
// statistics that define the free memory pool. /**
// * M100 I
if (m100_not_initialized || code_seen('I')) { // If no sub-command is specified, the first time * Init memory for the M100 tests. (Automatically applied on the first M100.)
SERIAL_ECHOLNPGM("Initializing free memory block.\n"); // this happens, it will Initialize. */
// Repeated M100 with no sub-command will not destroy the void init_free_memory(char *ptr, int16_t size) {
// state of the initialized free memory pool. SERIAL_ECHOLNPGM("Initializing free memory block.\n\n");
size -= 250; // -250 to avoid interrupt activity that's altered the stack.
if (size < 0) return;
ptr += 8; ptr += 8;
SERIAL_ECHOLNPGM("\n"); memset(ptr, TEST_BYTE, size);
n = sp - ptr - 250; // -250 just to keep us from finding interrupt activity that
// has altered the stack. SERIAL_ECHO(size);
SERIAL_ECHO(n);
SERIAL_ECHOLNPGM(" bytes of memory initialized.\n"); SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");
for (i = 0; i < n; i++)
*(ptr + i) = (char)0xe5; for (uint16_t i = 0; i < size; i++) {
for (i = 0; i < n; i++) { if (ptr[i] != TEST_BYTE) {
if (*(ptr + i) != (char)0xe5) { SERIAL_ECHOPAIR("? address : 0x", hex_word((uint16_t)ptr + i));
SERIAL_ECHOPAIR("? address : ", hex_word(ptr+i) ); SERIAL_ECHOPAIR("=", hex_byte(ptr[i]));
SERIAL_ECHOPAIR("=", hex_byte(*(ptr + i)) ); SERIAL_EOL; SERIAL_EOL;
SERIAL_ECHOLNPGM("\n");
} }
} }
}
/**
* M100: Free Memory Check
*/
void gcode_M100() {
SERIAL_ECHOPAIR("\n__brkval : 0x", hex_word((uint16_t)__brkval));
SERIAL_ECHOPAIR("\n__bss_end : 0x", hex_word((uint16_t)&__bss_end));
char *ptr = END_OF_HEAP(), *sp = top_of_stack();
SERIAL_ECHOPAIR("\nstart of free space : 0x", hex_word((uint16_t)ptr));
SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
// Always init on the first invocation of M100
static bool m100_not_initialized = true;
if (m100_not_initialized || code_seen('I')) {
m100_not_initialized = false; m100_not_initialized = false;
return; init_free_memory(ptr, sp - ptr);
} }
return;
#if ENABLED(M100_FREE_MEMORY_DUMPER)
if (code_seen('D'))
return dump_free_memory(ptr, sp);
#endif
if (code_seen('F'))
return free_memory_pool_report(ptr, sp - ptr);
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
if (code_seen('C'))
return corrupt_free_memory(ptr, code_value_int());
#endif
} }
// top_of_stack() returns the location of a variable on its stack frame. The value returned is above #endif // M100_FREE_MEMORY_WATCHER
// the stack once the function returns to the caller.
char* top_of_stack() {
char x;
return &x + 1; // x is pulled on return;
}
// how_many_E5s_are_here() is a utility function to easily find out how many 0xE5's are
// at the specified location. Having this logic as a function simplifies the search code.
//
int how_many_E5s_are_here(char* p) {
int n;
for (n = 0; n < 32000; n++) {
if (*(p + n) != (char)0xe5)
return n - 1;
}
return -1;
}
int free_memory_is_corrupted() {
char *sp, *ptr;
int block_cnt = 0, i, j, n;
ptr = __brkval ? __brkval : &__bss_end;
sp = top_of_stack();
n = sp - ptr;
// Scan through the range looking for the biggest block of 0xE5's we can find
for (i = 0; i < n; i++) {
if (*(ptr + i) == (char)0xe5) {
j = how_many_E5s_are_here(ptr + i);
if (j > 8) {
// SERIAL_ECHOPAIR("Found ", j);
// SERIAL_ECHOLNPAIR(" bytes free at 0x", hex_word((uint16_t)(ptr + i)));
i += j;
block_cnt++;
}
}
}
// if (block_cnt > 1) {
// SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
// SERIAL_ECHOLNPAIR("\nLargest free block is ", max_cnt);
// }
return block_cnt;
}
#endif