LPC1768: HAL: only initialise used HardwareSerial ports

Misc formatting
This commit is contained in:
Christopher Pepper 2018-01-15 22:00:59 +00:00
parent d178d6e921
commit 1e65562d55
3 changed files with 107 additions and 154 deletions

View File

@ -78,13 +78,17 @@ extern HalSerial usb_serial;
#if SERIAL_PORT == -1
#define MYSERIAL0 usb_serial
#elif SERIAL_PORT == 0
extern HardwareSerial Serial;
#define MYSERIAL0 Serial
#elif SERIAL_PORT == 1
extern HardwareSerial Serial1;
#define MYSERIAL0 Serial1
#elif SERIAL_PORT == 2
extern HardwareSerial Serial2;
#define MYSERIAL0 Serial2
#elif SERIAL_PORT == 3
#define MYSERIAL0 Serial3
extern HardwareSerial Serial3;
#endif
#ifdef SERIAL_PORT_2
@ -97,12 +101,16 @@ extern HalSerial usb_serial;
#if SERIAL_PORT_2 == -1
#define MYSERIAL1 usb_serial
#elif SERIAL_PORT_2 == 0
extern HardwareSerial Serial;
#define MYSERIAL1 Serial
#elif SERIAL_PORT_2 == 1
extern HardwareSerial Serial1;
#define MYSERIAL1 Serial1
#elif SERIAL_PORT_2 == 2
extern HardwareSerial Serial2;
#define MYSERIAL1 Serial2
#elif SERIAL_PORT_2 == 3
extern HardwareSerial Serial3;
#define MYSERIAL1 Serial3
#endif
#else

View File

@ -25,10 +25,15 @@
#include "../../inc/MarlinConfig.h"
#include "HardwareSerial.h"
#if SERIAL_PORT == 0 || SERIAL_PORT_2 == 0
HardwareSerial Serial = HardwareSerial(LPC_UART0);
#elif SERIAL_PORT == 1 || SERIAL_PORT_2 == 1
HardwareSerial Serial1 = HardwareSerial((LPC_UART_TypeDef *) LPC_UART1);
#elif SERIAL_PORT == 2 || SERIAL_PORT_2 == 2
HardwareSerial Serial2 = HardwareSerial(LPC_UART2);
#elif SERIAL_PORT == 3 || SERIAL_PORT_2 == 3
HardwareSerial Serial3 = HardwareSerial(LPC_UART3);
#endif
void HardwareSerial::begin(uint32_t baudrate) {
@ -37,9 +42,7 @@ void HardwareSerial::begin(uint32_t baudrate) {
UART_FIFO_CFG_Type FIFOConfig;
if (UARTx == LPC_UART0) {
/*
* Initialize UART0 pin connect
*/
// Initialize UART0 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
@ -48,11 +51,8 @@ void HardwareSerial::begin(uint32_t baudrate) {
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 3;
PINSEL_ConfigPin(&PinCfg);
}
else if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1) {
/*
* Initialize UART1 pin connect
*/
} else if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1) {
// Initialize UART1 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
@ -61,11 +61,8 @@ void HardwareSerial::begin(uint32_t baudrate) {
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 16;
PINSEL_ConfigPin(&PinCfg);
}
else if (UARTx == LPC_UART2) {
/*
* Initialize UART2 pin connect
*/
} else if (UARTx == LPC_UART2) {
// Initialize UART2 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
@ -74,11 +71,8 @@ void HardwareSerial::begin(uint32_t baudrate) {
PINSEL_ConfigPin(&PinCfg);
PinCfg.Pinnum = 11;
PINSEL_ConfigPin(&PinCfg);
}
else if (UARTx == LPC_UART3) {
/*
* Initialize UART2 pin connect
*/
} else if (UARTx == LPC_UART3) {
// Initialize UART2 pin connect
PinCfg.Funcnum = 1;
PinCfg.OpenDrain = 0;
PinCfg.Pinmode = 0;
@ -114,14 +108,10 @@ void HardwareSerial::begin(uint32_t baudrate) {
UART_IntConfig(UARTx, UART_INTCFG_RBR, ENABLE);
UART_IntConfig(UARTx, UART_INTCFG_RLS, ENABLE);
if (UARTx == LPC_UART0)
NVIC_EnableIRQ(UART0_IRQn);
else if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1)
NVIC_EnableIRQ(UART1_IRQn);
else if (UARTx == LPC_UART2)
NVIC_EnableIRQ(UART2_IRQn);
else if (UARTx == LPC_UART3)
NVIC_EnableIRQ(UART3_IRQn);
if (UARTx == LPC_UART0) NVIC_EnableIRQ(UART0_IRQn);
else if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1) NVIC_EnableIRQ(UART1_IRQn);
else if (UARTx == LPC_UART2) NVIC_EnableIRQ(UART2_IRQn);
else if (UARTx == LPC_UART3) NVIC_EnableIRQ(UART3_IRQn);
RxQueueWritePos = RxQueueReadPos = 0;
#if TX_BUFFER_SIZE > 0
@ -132,14 +122,14 @@ void HardwareSerial::begin(uint32_t baudrate) {
int HardwareSerial::peek() {
int byte = -1;
/* Temporarily lock out UART receive interrupts during this read so the UART receive
interrupt won't cause problems with the index values */
// Temporarily lock out UART receive interrupts during this read so the UART receive
// interrupt won't cause problems with the index values
UART_IntConfig(UARTx, UART_INTCFG_RBR, DISABLE);
if (RxQueueReadPos != RxQueueWritePos)
byte = RxBuffer[RxQueueReadPos];
/* Re-enable UART interrupts */
// Re-enable UART interrupts
UART_IntConfig(UARTx, UART_INTCFG_RBR, ENABLE);
return byte;
@ -148,8 +138,8 @@ int HardwareSerial::peek() {
int HardwareSerial::read() {
int byte = -1;
/* Temporarily lock out UART receive interrupts during this read so the UART receive
interrupt won't cause problems with the index values */
// Temporarily lock out UART receive interrupts during this read so the UART receive
// interrupt won't cause problems with the index values
UART_IntConfig(UARTx, UART_INTCFG_RBR, DISABLE);
if (RxQueueReadPos != RxQueueWritePos) {
@ -157,7 +147,7 @@ int HardwareSerial::read() {
RxQueueReadPos = (RxQueueReadPos + 1) % RX_BUFFER_SIZE;
}
/* Re-enable UART interrupts */
// Re-enable UART interrupts
UART_IntConfig(UARTx, UART_INTCFG_RBR, ENABLE);
return byte;
@ -168,31 +158,30 @@ size_t HardwareSerial::write(uint8_t send) {
size_t bytes = 0;
uint32_t fifolvl = 0;
/* If the Tx Buffer is full, wait for space to clear */
// If the Tx Buffer is full, wait for space to clear
if ((TxQueueWritePos+1) % TX_BUFFER_SIZE == TxQueueReadPos) flushTX();
/* Temporarily lock out UART transmit interrupts during this read so the UART transmit interrupt won't
cause problems with the index values */
// Temporarily lock out UART transmit interrupts during this read so the UART transmit interrupt won't
// cause problems with the index values
UART_IntConfig(UARTx, UART_INTCFG_THRE, DISABLE);
/* LPC17xx.h incorrectly defines FIFOLVL as a uint8_t, when it's actually a 32-bit register */
if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1)
// LPC17xx.h incorrectly defines FIFOLVL as a uint8_t, when it's actually a 32-bit register
if ((LPC_UART1_TypeDef *) UARTx == LPC_UART1) {
fifolvl = *(reinterpret_cast<volatile uint32_t *>(&((LPC_UART1_TypeDef *) UARTx)->FIFOLVL));
else
fifolvl = *(reinterpret_cast<volatile uint32_t *>(&UARTx->FIFOLVL));
} else fifolvl = *(reinterpret_cast<volatile uint32_t *>(&UARTx->FIFOLVL));
/* If the queue is empty and there's space in the FIFO, immediately send the byte */
// If the queue is empty and there's space in the FIFO, immediately send the byte
if (TxQueueWritePos == TxQueueReadPos && fifolvl < UART_TX_FIFO_SIZE) {
bytes = UART_Send(UARTx, &send, 1, BLOCKING);
}
/* Otherwiise, write the byte to the transmit buffer */
// Otherwiise, write the byte to the transmit buffer
else if ((TxQueueWritePos+1) % TX_BUFFER_SIZE != TxQueueReadPos) {
TxBuffer[TxQueueWritePos] = send;
TxQueueWritePos = (TxQueueWritePos+1) % TX_BUFFER_SIZE;
bytes++;
}
/* Re-enable the TX Interrupt */
// Re-enable the TX Interrupt
UART_IntConfig(UARTx, UART_INTCFG_THRE, ENABLE);
return bytes;
@ -203,7 +192,7 @@ size_t HardwareSerial::write(uint8_t send) {
#if TX_BUFFER_SIZE > 0
void HardwareSerial::flushTX() {
/* Wait for the tx buffer and FIFO to drain */
// Wait for the tx buffer and FIFO to drain
while (TxQueueWritePos != TxQueueReadPos && UART_CheckBusy(UARTx) == SET);
}
#endif
@ -234,65 +223,58 @@ void HardwareSerial::IRQHandler() {
uint8_t LSRValue, byte;
IIRValue = UART_GetIntId(UARTx);
IIRValue &= UART_IIR_INTID_MASK; /* check bit 1~3, interrupt identification */
IIRValue &= UART_IIR_INTID_MASK; // check bit 1~3, interrupt identification
if ( IIRValue == UART_IIR_INTID_RLS ) /* Receive Line Status */
{
// Receive Line Status
if (IIRValue == UART_IIR_INTID_RLS) {
LSRValue = UART_GetLineStatus(UARTx);
/* Receive Line Status */
if ( LSRValue & (UART_LSR_OE|UART_LSR_PE|UART_LSR_FE|UART_LSR_RXFE|UART_LSR_BI) )
{
/* There are errors or break interrupt */
/* Read LSR will clear the interrupt */
// Receive Line Status
if (LSRValue & (UART_LSR_OE | UART_LSR_PE | UART_LSR_FE | UART_LSR_RXFE | UART_LSR_BI)) {
// There are errors or break interrupt
// Read LSR will clear the interrupt
Status = LSRValue;
byte = UART_ReceiveByte(UARTx); /* Dummy read on RX to clear
interrupt, then bail out */
byte = UART_ReceiveByte(UARTx); // Dummy read on RX to clear interrupt, then bail out
return;
}
}
if ( IIRValue == UART_IIR_INTID_RDA ) /* Receive Data Available */
{
/* Clear the FIFO */
// Receive Data Available
if (IIRValue == UART_IIR_INTID_RDA) {
// Clear the FIFO
while (UART_Receive(UARTx, &byte, 1, NONE_BLOCKING)) {
if ((RxQueueWritePos+1) % RX_BUFFER_SIZE != RxQueueReadPos)
{
if ((RxQueueWritePos + 1) % RX_BUFFER_SIZE != RxQueueReadPos) {
RxBuffer[RxQueueWritePos] = byte;
RxQueueWritePos = (RxQueueWritePos + 1) % RX_BUFFER_SIZE;
}
else
} else
break;
}
}
else if ( IIRValue == UART_IIR_INTID_CTI ) /* Character timeout indicator */
{
/* Character Time-out indicator */
Status |= 0x100; /* Bit 9 as the CTI error */
// Character timeout indicator
} else if (IIRValue == UART_IIR_INTID_CTI) {
// Character Time-out indicator
Status |= 0x100; // Bit 9 as the CTI error
}
#if TX_BUFFER_SIZE > 0
if (IIRValue == UART_IIR_INTID_THRE) {
/* Disable THRE interrupt */
// Disable THRE interrupt
UART_IntConfig(UARTx, UART_INTCFG_THRE, DISABLE);
/* Wait for FIFO buffer empty */
// Wait for FIFO buffer empty
while (UART_CheckBusy(UARTx) == SET);
/* Transfer up to UART_TX_FIFO_SIZE bytes of data */
// Transfer up to UART_TX_FIFO_SIZE bytes of data
for (int i = 0; i < UART_TX_FIFO_SIZE && TxQueueWritePos != TxQueueReadPos; i++) {
/* Move a piece of data into the transmit FIFO */
if (UART_Send(UARTx, &TxBuffer[TxQueueReadPos], 1, NONE_BLOCKING))
// Move a piece of data into the transmit FIFO
if (UART_Send(UARTx, &TxBuffer[TxQueueReadPos], 1, NONE_BLOCKING)) {
TxQueueReadPos = (TxQueueReadPos+1) % TX_BUFFER_SIZE;
else
break;
} else break;
}
/* If there is no more data to send, disable the transmit interrupt - else enable it or keep it enabled */
if (TxQueueWritePos == TxQueueReadPos)
// If there is no more data to send, disable the transmit interrupt - else enable it or keep it enabled
if (TxQueueWritePos == TxQueueReadPos) {
UART_IntConfig(UARTx, UART_INTCFG_THRE, DISABLE);
else
UART_IntConfig(UARTx, UART_INTCFG_THRE, ENABLE);
} else UART_IntConfig(UARTx, UART_INTCFG_THRE, ENABLE);
}
#endif
}
@ -301,60 +283,28 @@ void HardwareSerial::IRQHandler() {
extern "C" {
#endif
/*****************************************************************************
** Function name: UART0_IRQHandler
**
** Descriptions: UART0 interrupt handler
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void UART0_IRQHandler (void)
{
void UART0_IRQHandler(void) {
#if SERIAL_PORT == 0 || SERIAL_PORT_2 == 0
Serial.IRQHandler();
#endif
}
/*****************************************************************************
** Function name: UART1_IRQHandler
**
** Descriptions: UART1 interrupt handler
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void UART1_IRQHandler (void)
{
void UART1_IRQHandler(void) {
#if SERIAL_PORT == 1 || SERIAL_PORT_2 == 1
Serial1.IRQHandler();
#endif
}
/*****************************************************************************
** Function name: UART2_IRQHandler
**
** Descriptions: UART2 interrupt handler
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void UART2_IRQHandler (void)
{
void UART2_IRQHandler(void) {
#if SERIAL_PORT == 2 || SERIAL_PORT_2 == 2
Serial2.IRQHandler();
#endif
}
/*****************************************************************************
** Function name: UART3_IRQHandler
**
** Descriptions: UART3 interrupt handler
**
** parameters: None
** Returned value: None
**
*****************************************************************************/
void UART3_IRQHandler (void)
{
void UART3_IRQHandler(void) {
#if SERIAL_PORT == 3 || SERIAL_PORT_2 == 3
Serial3.IRQHandler();
#endif
}
#ifdef __cplusplus

View File

@ -177,9 +177,4 @@ public:
};
extern HardwareSerial Serial;
extern HardwareSerial Serial1;
extern HardwareSerial Serial2;
extern HardwareSerial Serial3;
#endif // MARLIN_SRC_HAL_HAL_SERIAL_H_