Use ABC and XYZ for "3"
This commit is contained in:
parent
4cd1ad8f28
commit
2f223b8c79
@ -266,13 +266,13 @@ extern bool volumetric_enabled;
|
|||||||
extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
||||||
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
|
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
|
||||||
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
|
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
|
||||||
extern bool axis_known_position[3]; // axis[n].is_known
|
extern bool axis_known_position[XYZ]; // axis[n].is_known
|
||||||
extern bool axis_homed[3]; // axis[n].is_homed
|
extern bool axis_homed[XYZ]; // axis[n].is_homed
|
||||||
extern volatile bool wait_for_heatup;
|
extern volatile bool wait_for_heatup;
|
||||||
|
|
||||||
extern float current_position[NUM_AXIS];
|
extern float current_position[NUM_AXIS];
|
||||||
extern float position_shift[3];
|
extern float position_shift[XYZ];
|
||||||
extern float home_offset[3];
|
extern float home_offset[XYZ];
|
||||||
|
|
||||||
// Software Endstops
|
// Software Endstops
|
||||||
void update_software_endstops(AxisEnum axis);
|
void update_software_endstops(AxisEnum axis);
|
||||||
@ -303,25 +303,25 @@ float code_value_temp_abs();
|
|||||||
float code_value_temp_diff();
|
float code_value_temp_diff();
|
||||||
|
|
||||||
#if ENABLED(DELTA)
|
#if ENABLED(DELTA)
|
||||||
extern float delta[3];
|
extern float delta[ABC];
|
||||||
extern float endstop_adj[3]; // axis[n].endstop_adj
|
extern float endstop_adj[ABC]; // axis[n].endstop_adj
|
||||||
extern float delta_radius;
|
extern float delta_radius;
|
||||||
extern float delta_diagonal_rod;
|
extern float delta_diagonal_rod;
|
||||||
extern float delta_segments_per_second;
|
extern float delta_segments_per_second;
|
||||||
extern float delta_diagonal_rod_trim_tower_1;
|
extern float delta_diagonal_rod_trim_tower_1;
|
||||||
extern float delta_diagonal_rod_trim_tower_2;
|
extern float delta_diagonal_rod_trim_tower_2;
|
||||||
extern float delta_diagonal_rod_trim_tower_3;
|
extern float delta_diagonal_rod_trim_tower_3;
|
||||||
void inverse_kinematics(const float cartesian[3]);
|
void inverse_kinematics(const float cartesian[XYZ]);
|
||||||
void recalc_delta_settings(float radius, float diagonal_rod);
|
void recalc_delta_settings(float radius, float diagonal_rod);
|
||||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||||
extern int delta_grid_spacing[2];
|
extern int delta_grid_spacing[2];
|
||||||
void adjust_delta(float cartesian[3]);
|
void adjust_delta(float cartesian[XYZ]);
|
||||||
#endif
|
#endif
|
||||||
#elif ENABLED(SCARA)
|
#elif ENABLED(SCARA)
|
||||||
extern float delta[3];
|
extern float delta[ABC];
|
||||||
extern float axis_scaling[3]; // Build size scaling
|
extern float axis_scaling[ABC]; // Build size scaling
|
||||||
void inverse_kinematics(const float cartesian[3]);
|
void inverse_kinematics(const float cartesian[XYZ]);
|
||||||
void forward_kinematics_SCARA(float f_scara[3]);
|
void forward_kinematics_SCARA(float f_scara[ABC]);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||||
|
@ -286,8 +286,8 @@ uint8_t marlin_debug_flags = DEBUG_NONE;
|
|||||||
|
|
||||||
float current_position[NUM_AXIS] = { 0.0 };
|
float current_position[NUM_AXIS] = { 0.0 };
|
||||||
static float destination[NUM_AXIS] = { 0.0 };
|
static float destination[NUM_AXIS] = { 0.0 };
|
||||||
bool axis_known_position[3] = { false };
|
bool axis_known_position[XYZ] = { false };
|
||||||
bool axis_homed[3] = { false };
|
bool axis_homed[XYZ] = { false };
|
||||||
|
|
||||||
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
||||||
|
|
||||||
@ -327,11 +327,11 @@ float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DI
|
|||||||
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
|
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
|
||||||
|
|
||||||
// The distance that XYZ has been offset by G92. Reset by G28.
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
||||||
float position_shift[3] = { 0 };
|
float position_shift[XYZ] = { 0 };
|
||||||
|
|
||||||
// This offset is added to the configured home position.
|
// This offset is added to the configured home position.
|
||||||
// Set by M206, M428, or menu item. Saved to EEPROM.
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
||||||
float home_offset[3] = { 0 };
|
float home_offset[XYZ] = { 0 };
|
||||||
|
|
||||||
// Software Endstops are based on the configured limits.
|
// Software Endstops are based on the configured limits.
|
||||||
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
|
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
|
||||||
@ -462,11 +462,11 @@ static uint8_t target_extruder;
|
|||||||
#define TOWER_2 Y_AXIS
|
#define TOWER_2 Y_AXIS
|
||||||
#define TOWER_3 Z_AXIS
|
#define TOWER_3 Z_AXIS
|
||||||
|
|
||||||
float delta[3];
|
float delta[ABC];
|
||||||
float cartesian_position[3] = { 0 };
|
float cartesian_position[XYZ] = { 0 };
|
||||||
#define SIN_60 0.8660254037844386
|
#define SIN_60 0.8660254037844386
|
||||||
#define COS_60 0.5
|
#define COS_60 0.5
|
||||||
float endstop_adj[3] = { 0 };
|
float endstop_adj[ABC] = { 0 };
|
||||||
// these are the default values, can be overriden with M665
|
// these are the default values, can be overriden with M665
|
||||||
float delta_radius = DELTA_RADIUS;
|
float delta_radius = DELTA_RADIUS;
|
||||||
float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
|
float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
|
||||||
@ -495,8 +495,8 @@ static uint8_t target_extruder;
|
|||||||
|
|
||||||
#if ENABLED(SCARA)
|
#if ENABLED(SCARA)
|
||||||
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
|
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
|
||||||
float delta[3];
|
float delta[ABC];
|
||||||
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
float axis_scaling[ABC] = { 1, 1, 1 }; // Build size scaling, default to 1
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
@ -1415,7 +1415,7 @@ DEFINE_PGM_READ_ANY(float, float);
|
|||||||
DEFINE_PGM_READ_ANY(signed char, byte);
|
DEFINE_PGM_READ_ANY(signed char, byte);
|
||||||
|
|
||||||
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
||||||
static const PROGMEM type array##_P[3] = \
|
static const PROGMEM type array##_P[XYZ] = \
|
||||||
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
||||||
static inline type array(int axis) \
|
static inline type array(int axis) \
|
||||||
{ return pgm_read_any(&array##_P[axis]); }
|
{ return pgm_read_any(&array##_P[axis]); }
|
||||||
@ -1555,7 +1555,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
|||||||
|
|
||||||
if (axis == X_AXIS || axis == Y_AXIS) {
|
if (axis == X_AXIS || axis == Y_AXIS) {
|
||||||
|
|
||||||
float homeposition[3];
|
float homeposition[XYZ];
|
||||||
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
||||||
|
|
||||||
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
||||||
@ -7802,9 +7802,9 @@ void ok_to_send() {
|
|||||||
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
|
||||||
}
|
}
|
||||||
|
|
||||||
void inverse_kinematics(const float in_cartesian[3]) {
|
void inverse_kinematics(const float in_cartesian[XYZ]) {
|
||||||
|
|
||||||
const float cartesian[3] = {
|
const float cartesian[XYZ] = {
|
||||||
RAW_X_POSITION(in_cartesian[X_AXIS]),
|
RAW_X_POSITION(in_cartesian[X_AXIS]),
|
||||||
RAW_Y_POSITION(in_cartesian[Y_AXIS]),
|
RAW_Y_POSITION(in_cartesian[Y_AXIS]),
|
||||||
RAW_Z_POSITION(in_cartesian[Z_AXIS])
|
RAW_Z_POSITION(in_cartesian[Z_AXIS])
|
||||||
@ -7834,7 +7834,7 @@ void ok_to_send() {
|
|||||||
}
|
}
|
||||||
|
|
||||||
float delta_safe_distance_from_top() {
|
float delta_safe_distance_from_top() {
|
||||||
float cartesian[3] = {
|
float cartesian[XYZ] = {
|
||||||
LOGICAL_X_POSITION(0),
|
LOGICAL_X_POSITION(0),
|
||||||
LOGICAL_Y_POSITION(0),
|
LOGICAL_Y_POSITION(0),
|
||||||
LOGICAL_Z_POSITION(0)
|
LOGICAL_Z_POSITION(0)
|
||||||
@ -7915,20 +7915,20 @@ void ok_to_send() {
|
|||||||
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
|
cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
|
||||||
};
|
};
|
||||||
|
|
||||||
void forward_kinematics_DELTA(float point[3]) {
|
void forward_kinematics_DELTA(float point[ABC]) {
|
||||||
forward_kinematics_DELTA(point[X_AXIS], point[Y_AXIS], point[Z_AXIS]);
|
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
|
||||||
}
|
}
|
||||||
|
|
||||||
void set_cartesian_from_steppers() {
|
void set_cartesian_from_steppers() {
|
||||||
forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS),
|
forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
|
||||||
stepper.get_axis_position_mm(Y_AXIS),
|
stepper.get_axis_position_mm(B_AXIS),
|
||||||
stepper.get_axis_position_mm(Z_AXIS));
|
stepper.get_axis_position_mm(C_AXIS));
|
||||||
}
|
}
|
||||||
|
|
||||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||||
|
|
||||||
// Adjust print surface height by linear interpolation over the bed_level array.
|
// Adjust print surface height by linear interpolation over the bed_level array.
|
||||||
void adjust_delta(float cartesian[3]) {
|
void adjust_delta(float cartesian[XYZ]) {
|
||||||
if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
|
if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
|
||||||
|
|
||||||
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
||||||
@ -8401,8 +8401,8 @@ void prepare_move_to_destination() {
|
|||||||
|
|
||||||
#if ENABLED(SCARA)
|
#if ENABLED(SCARA)
|
||||||
|
|
||||||
void forward_kinematics_SCARA(float f_scara[3]) {
|
void forward_kinematics_SCARA(float f_scara[ABC]) {
|
||||||
// Perform forward kinematics, and place results in delta[3]
|
// Perform forward kinematics, and place results in delta[]
|
||||||
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
||||||
|
|
||||||
float x_sin, x_cos, y_sin, y_cos;
|
float x_sin, x_cos, y_sin, y_cos;
|
||||||
@ -8427,9 +8427,9 @@ void prepare_move_to_destination() {
|
|||||||
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
||||||
}
|
}
|
||||||
|
|
||||||
void inverse_kinematics(const float cartesian[3]) {
|
void inverse_kinematics(const float cartesian[XYZ]) {
|
||||||
// Inverse kinematics.
|
// Inverse kinematics.
|
||||||
// Perform SCARA IK and place results in delta[3].
|
// Perform SCARA IK and place results in delta[].
|
||||||
// The maths and first version were done by QHARLEY.
|
// The maths and first version were done by QHARLEY.
|
||||||
// Integrated, tweaked by Joachim Cerny in June 2014.
|
// Integrated, tweaked by Joachim Cerny in June 2014.
|
||||||
|
|
||||||
|
@ -968,7 +968,7 @@ void Planner::check_axes_activity() {
|
|||||||
float junction_deviation = 0.1;
|
float junction_deviation = 0.1;
|
||||||
|
|
||||||
// Compute path unit vector
|
// Compute path unit vector
|
||||||
double unit_vec[3];
|
double unit_vec[XYZ];
|
||||||
|
|
||||||
unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
|
unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
|
||||||
unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
|
unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
|
||||||
|
@ -122,7 +122,7 @@ unsigned short Stepper::acc_step_rate; // needed for deceleration start point
|
|||||||
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
|
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
|
||||||
unsigned short Stepper::OCR1A_nominal;
|
unsigned short Stepper::OCR1A_nominal;
|
||||||
|
|
||||||
volatile long Stepper::endstops_trigsteps[3];
|
volatile long Stepper::endstops_trigsteps[XYZ];
|
||||||
|
|
||||||
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
|
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
|
||||||
#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
|
#define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
|
||||||
|
@ -128,7 +128,7 @@ class Stepper {
|
|||||||
static uint8_t step_loops, step_loops_nominal;
|
static uint8_t step_loops, step_loops_nominal;
|
||||||
static unsigned short OCR1A_nominal;
|
static unsigned short OCR1A_nominal;
|
||||||
|
|
||||||
static volatile long endstops_trigsteps[3];
|
static volatile long endstops_trigsteps[XYZ];
|
||||||
static volatile long endstops_stepsTotal, endstops_stepsDone;
|
static volatile long endstops_stepsTotal, endstops_stepsDone;
|
||||||
|
|
||||||
#if HAS_MOTOR_CURRENT_PWM
|
#if HAS_MOTOR_CURRENT_PWM
|
||||||
|
@ -95,7 +95,7 @@ unsigned char Temperature::soft_pwm_bed;
|
|||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(BABYSTEPPING)
|
#if ENABLED(BABYSTEPPING)
|
||||||
volatile int Temperature::babystepsTodo[3] = { 0 };
|
volatile int Temperature::babystepsTodo[XYZ] = { 0 };
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
|
||||||
|
Loading…
Reference in New Issue
Block a user