diff --git a/Marlin/Configuration_adv.h b/Marlin/Configuration_adv.h index 2e567fd0e8..c8e30fffec 100644 --- a/Marlin/Configuration_adv.h +++ b/Marlin/Configuration_adv.h @@ -1261,4 +1261,87 @@ #define USER_GCODE_5 "G28\nM503" #endif +//=========================================================================== +//============================ I2C Encoder Settings ========================= +//=========================================================================== +/** + * I2C position encoders for closed loop control. + * Developed by Chris Barr at Aus3D. + * + * Wiki: http://wiki.aus3d.com.au/Magnetic_Encoder + * Github: https://github.com/Aus3D/MagneticEncoder + * + * Supplier: http://aus3d.com.au/magnetic-encoder-module + * Alternative Supplier: http://reliabuild3d.com/ + * + * Reilabuild encoders have been modified to improve reliability. + */ + +//#define I2C_POSITION_ENCODERS +#if ENABLED(I2C_POSITION_ENCODERS) + + #define I2CPE_ENCODER_CNT 1 // The number of encoders installed; max of 5 + // encoders supported currently. + + #define I2CPE_ENC_1_ADDR I2CPE_PRESET_ADDR_X // I2C address of the encoder. 30-200. + #define I2CPE_ENC_1_AXIS X_AXIS // Axis the encoder module is installed on. _AXIS. + #define I2CPE_ENC_1_TYPE I2CPE_ENC_TYPE_LINEAR // Type of encoder: I2CPE_ENC_TYPE_LINEAR -or- + // I2CPE_ENC_TYPE_ROTARY. + #define I2CPE_ENC_1_TICKS_UNIT 2048 // 1024 for magnetic strips with 2mm poles; 2048 for + // 1mm poles. For linear encoders this is ticks / mm, + // for rotary encoders this is ticks / revolution. + //#define I2CPE_ENC_1_TICKS_REV (16 * 200) // Only needed for rotary encoders; number of stepper + // steps per full revolution (motor steps/rev * microstepping) + //#define I2CPE_ENC_1_INVERT // Invert the direction of axis travel. + #define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_NONE // Type of error error correction. + #define I2CPE_ENC_1_EC_THRESH 0.10 // Threshold size for error (in mm) above which the + // printer will attempt to correct the error; errors + // smaller than this are ignored to minimize effects of + // measurement noise / latency (filter). + + #define I2CPE_ENC_2_ADDR I2CPE_PRESET_ADDR_Y // Same as above, but for encoder 2. + #define I2CPE_ENC_2_AXIS Y_AXIS + #define I2CPE_ENC_2_TYPE I2CPE_ENC_TYPE_LINEAR + #define I2CPE_ENC_2_TICKS_UNIT 2048 + //#define I2CPE_ENC_2_TICKS_REV (16 * 200) + //#define I2CPE_ENC_2_INVERT + #define I2CPE_ENC_2_EC_METHOD I2CPE_ECM_NONE + #define I2CPE_ENC_2_EC_THRESH 0.10 + + #define I2CPE_ENC_3_ADDR I2CPE_PRESET_ADDR_Z // Encoder 3. Add additional configuration options + #define I2CPE_ENC_3_AXIS Z_AXIS // as above, or use defaults below. + + #define I2CPE_ENC_4_ADDR I2CPE_PRESET_ADDR_E // Encoder 4. + #define I2CPE_ENC_4_AXIS E_AXIS + + #define I2CPE_ENC_5_ADDR 34 // Encoder 5. + #define I2CPE_ENC_5_AXIS E_AXIS + + // Default settings for encoders which are enabled, but without settings configured above. + #define I2CPE_DEF_TYPE I2CPE_ENC_TYPE_LINEAR + #define I2CPE_DEF_ENC_TICKS_UNIT 2048 + #define I2CPE_DEF_TICKS_REV (16 * 200) + #define I2CPE_DEF_EC_METHOD I2CPE_ECM_NONE + #define I2CPE_DEF_EC_THRESH 0.1 + + //#define I2CPE_ERR_THRESH_ABORT 100.0 // Threshold size for error (in mm) error on any given + // axis after which the printer will abort. Comment out to + // disable abort behaviour. + + #define I2CPE_TIME_TRUSTED 10000 // After an encoder fault, there must be no further fault + // for this amount of time (in ms) before the encoder + // is trusted again. + + /** + * Position is checked every time a new command is executed from the buffer but during long moves, + * this setting determines the minimum update time between checks. A value of 100 works well with + * error rolling average when attempting to correct only for skips and not for vibration. + */ + #define I2CPE_MIN_UPD_TIME_MS 100 // Minimum time in miliseconds between encoder checks. + + // Use a rolling average to identify persistant errors that indicate skips, as opposed to vibration and noise. + #define I2CPE_ERR_ROLLING_AVERAGE + +#endif + #endif // CONFIGURATION_ADV_H diff --git a/Marlin/I2CPositionEncoder.cpp b/Marlin/I2CPositionEncoder.cpp new file mode 100644 index 0000000000..146776c863 --- /dev/null +++ b/Marlin/I2CPositionEncoder.cpp @@ -0,0 +1,1101 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +//todo: add support for multiple encoders on a single axis +//todo: add z axis auto-leveling +//todo: consolidate some of the related M codes? +//todo: add endstop-replacement mode? +//todo: try faster I2C speed; tweak TWI_FREQ (400000L, or faster?); or just TWBR = ((CPU_FREQ / 400000L) - 16) / 2; +//todo: consider Marlin-optimized Wire library; i.e. MarlinWire, like MarlinSerial + + +#include "MarlinConfig.h" + +#if ENABLED(I2C_POSITION_ENCODERS) + + #include "Marlin.h" + #include "temperature.h" + #include "stepper.h" + #include "I2CPositionEncoder.h" + #include "gcode.h" + + #include + + void I2CPositionEncoder::init(uint8_t address, AxisEnum axis) { + encoderAxis = axis; + i2cAddress = address; + + initialised++; + + SERIAL_ECHOPAIR("Seetting up encoder on ", axis_codes[encoderAxis]); + SERIAL_ECHOLNPAIR(" axis, addr = ", address); + + position = get_position(); + } + + void I2CPositionEncoder::update() { + if (!initialised || !homed || !active) return; //check encoder is set up and active + + position = get_position(); + + //we don't want to stop things just because the encoder missed a message, + //so we only care about responses that indicate bad magnetic strength + + if (!passes_test(false)) { //check encoder data is good + lastErrorTime = millis(); + /* + if (trusted) { //commented out as part of the note below + trusted = false; + SERIAL_ECHOPGM("Fault detected on "); + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOLNPGM(" axis encoder. Disengaging error correction until module is trusted again."); + } + */ + return; + } + + if (!trusted) { + /** + * This is commented out because it introduces error and can cause bad print quality. + * + * This code is intended to manage situations where the encoder has reported bad magnetic strength. + * This indicates that the magnetic strip was too far away from the sensor to reliably track position. + * When this happens, this code resets the offset based on where the printer thinks it is. This has been + * shown to introduce errors in actual position which result in drifting prints and poor print quality. + * Perhaps a better method would be to disable correction on the axis with a problem, report it to the + * user via the status leds on the encoder module and prompt the user to re-home the axis at which point + * the encoder would be re-enabled. + */ + + /* + // If the magnetic strength has been good for a certain time, start trusting the module again + + if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) { + trusted = true; + + SERIAL_ECHOPGM("Untrusted encoder module on "); + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOLNPGM(" axis has been fault-free for set duration, reinstating error correction."); + + //the encoder likely lost its place when the error occured, so we'll reset and use the printer's + //idea of where it the axis is to re-initialise + double position = stepper.get_axis_position_mm(encoderAxis); + long positionInTicks = position * get_ticks_unit(); + + //shift position from previous to current position + zeroOffset -= (positionInTicks - get_position()); + + #if defined(I2CPE_DEBUG) + SERIAL_ECHOPGM("Current position is "); + SERIAL_ECHOLN(position); + + SERIAL_ECHOPGM("Position in encoder ticks is "); + SERIAL_ECHOLN(positionInTicks); + + SERIAL_ECHOPGM("New zero-offset of "); + SERIAL_ECHOLN(zeroOffset); + + SERIAL_ECHOPGM("New position reads as "); + SERIAL_ECHO(get_position()); + SERIAL_ECHOPGM("("); + SERIAL_ECHO(mm_from_count(get_position())); + SERIAL_ECHOLNPGM(")"); + #endif + } + */ + return; + } + + lastPosition = position; + unsigned long positionTime = millis(); + + //only do error correction if setup and enabled + if (ec && ecMethod != I2CPE_ECM_NONE) { + + #if defined(I2CPE_EC_THRESH_PROPORTIONAL) + unsigned long distance = abs(position - lastPosition); + unsigned long deltaTime = positionTime - lastPositionTime; + unsigned long speed = distance / deltaTime; + float threshold = constrain((speed / 50), 1, 50) * ecThreshold; + #else + float threshold = get_error_correct_threshold(); + #endif + + //check error + #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) + double sum = 0, diffSum = 0; + + errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1; + err[errIdx] = get_axis_error_steps(false); + + LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) { + sum += err[i]; + if (i) diffSum += abs(err[i-1] - err[i]); + } + + long error = (long)(sum/(I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error + + #else + long error = get_axis_error_steps(false); + #endif + + //SERIAL_ECHOPGM("Axis err*r steps: "); + //SERIAL_ECHOLN(error); + + #if defined(I2CPE_ERR_THRESH_ABORT) + if (abs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) { + //kill("Significant Error"); + SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!"); + SERIAL_ECHOLN(error); + safe_delay(5000); + } + #endif + + #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) + if (errIdx == 0) { + // in order to correct for "error" but avoid correcting for noise and non skips + // it must be > threshold and have a difference average of < 10 and be < 2000 steps + if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] && + diffSum < 10*(I2CPE_ERR_ARRAY_SIZE-1) && abs(error) < 2000) { //Check for persistent error (skip) + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOPAIR(" diffSum: ", diffSum/(I2CPE_ERR_ARRAY_SIZE-1)); + SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]); + SERIAL_ECHOLNPGM("mm; correcting!"); + thermalManager.babystepsTodo[encoderAxis] = -lround(error); + } + } + #else + if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) { + //SERIAL_ECHOLN(error); + //SERIAL_ECHOLN(position); + thermalManager.babystepsTodo[encoderAxis] = -lround(error/2); + } + #endif + + if (abs(error) > (I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) && millis() - lastErrorCountTime > I2CPE_ERR_CNT_DEBOUNCE_MS) { + SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]); + SERIAL_ECHOPAIR(" axis. error: ", (int)error); + SERIAL_ECHOLNPAIR("; diffSum: ", diffSum); + errorCount++; + lastErrorCountTime = millis(); + } + } + + lastPositionTime = positionTime; + } + + void I2CPositionEncoder::set_homed() { + if (active) { + reset(); // Reset module's offset to zero (so current position is homed / zero) + delay(10); + + zeroOffset = get_raw_count(); + homed++; + trusted++; + + #if defined(I2CPE_DEBUG) + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset); + SERIAL_ECHOLNPGM(" ticks."); + #endif + } + } + + bool I2CPositionEncoder::passes_test(bool report) { + if (H == I2CPE_MAG_SIG_GOOD) { + if (report) { + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOLNPGM(" axis encoder passes test; field strength good."); + } + return true; + } else if (H == I2CPE_MAG_SIG_MID) { + if (report) { + SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]); + SERIAL_ECHOLNPGM(" axis encoder passes test; field strength fair."); + } + return true; + } else if (H == I2CPE_MAG_SIG_BAD) { + if (report) { + SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]); + SERIAL_ECHOLNPGM(" axis magnetic strip not detected!"); + } + return false; + } + + if (report) { + SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]); + SERIAL_ECHOLNPGM(" axis encoder not detected!"); + } + return false; + } + + double I2CPositionEncoder::get_axis_error_mm(bool report) { + double target, actual, error; + + target = stepper.get_axis_position_mm(encoderAxis); + actual = mm_from_count(position); + error = actual - target; + + if (abs(error) > 10000) error = 0; // ? + + if (report) { + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOPAIR(" axis target: ", target); + SERIAL_ECHOPAIR(", actual: ", actual); + SERIAL_ECHOLNPAIR(", error : ",error); + } + + return error; + } + + long I2CPositionEncoder::get_axis_error_steps(bool report) { + if (!active) { + if (report) { + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOLNPGM(" axis encoder not active!"); + } + return 0; + } + + float stepperTicksPerUnit; + long encoderTicks = position, encoderCountInStepperTicksScaled; + //long stepperTicks = stepper.position(encoderAxis); + + // With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm + stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis]; + + //convert both 'ticks' into same units / base + encoderCountInStepperTicksScaled = lround((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit); + + long target = stepper.position(encoderAxis), + error = (encoderCountInStepperTicksScaled - target); + + //suppress discontinuities (might be caused by bad I2C readings...?) + bool suppressOutput = (abs(error - errorPrev) > 100); + + if (report) { + SERIAL_ECHO(axis_codes[encoderAxis]); + SERIAL_ECHOPAIR(" axis target: ", target); + SERIAL_ECHOPAIR(", actual: ", encoderCountInStepperTicksScaled); + SERIAL_ECHOLNPAIR(", error : ", error); + + if (suppressOutput) SERIAL_ECHOLNPGM("Discontinuity detected, suppressing error."); + } + + errorPrev = error; + + return (suppressOutput ? 0 : error); + } + + long I2CPositionEncoder::get_raw_count() { + uint8_t index = 0; + i2cLong encoderCount; + + encoderCount.val = 0x00; + + if (Wire.requestFrom((int)i2cAddress, 3) != 3) { + //houston, we have a problem... + H = I2CPE_MAG_SIG_NF; + return 0; + } + + while (Wire.available()) + encoderCount.bval[index++] = (uint8_t)Wire.read(); + + //extract the magnetic strength + H = (B00000011 & (encoderCount.bval[2] >> 6)); + + //extract sign bit; sign = (encoderCount.bval[2] & B00100000); + //set all upper bits to the sign value to overwrite H + encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF); + + if (invert) encoderCount.val *= -1; + + return encoderCount.val; + } + + bool I2CPositionEncoder::test_axis() { + //only works on XYZ cartesian machines for the time being + if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false; + + int feedrate; + float startPosition, endPosition; + float startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0}; + + startPosition = soft_endstop_min[encoderAxis] + 10; + endPosition = soft_endstop_max[encoderAxis] - 10; + + feedrate = (int)MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY); + + ec = false; + + LOOP_NA(i) { + startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); + endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); + } + + startCoord[encoderAxis] = startPosition; + endCoord[encoderAxis] = endPosition; + + stepper.synchronize(); + + planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS], + stepper.get_axis_position_mm(E_AXIS), feedrate, 0); + stepper.synchronize(); + + // if the module isn't currently trusted, wait until it is (or until it should be if things are working) + if (!trusted) { + long startWaitingTime = millis(); + while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED) + safe_delay(500); + } + + if (trusted) { // if trusted, commence test + planner.buffer_line(endCoord[X_AXIS], endCoord[Y_AXIS], endCoord[Z_AXIS], + stepper.get_axis_position_mm(E_AXIS), feedrate, 0); + stepper.synchronize(); + } + + return trusted; + } + + void I2CPositionEncoder::calibrate_steps_mm(int iter) { + if (type != I2CPE_ENC_TYPE_LINEAR) { + SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders."); + return; + } + + if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) { + SERIAL_ECHOLNPGM("Automatic steps / mm calibration not supported for this axis."); + return; + } + + float oldStepsMm, newStepsMm, + startDistance, endDistance, + travelDistance, travelledDistance, total = 0, + startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0}; + + double feedrate; + + long startCount, stopCount; + + feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY); + + bool oldec = ec; + ec = false; + + startDistance = 20; + endDistance = soft_endstop_max[encoderAxis] - 20; + travelDistance = endDistance - startDistance; + + LOOP_NA(i) { + startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); + endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i); + } + + startCoord[encoderAxis] = startDistance; + endCoord[encoderAxis] = endDistance; + + LOOP_L_N(i, iter) { + stepper.synchronize(); + + planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS], + stepper.get_axis_position_mm(E_AXIS), feedrate, 0); + stepper.synchronize(); + + delay(250); + startCount = get_position(); + + //do_blocking_move_to(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS]); + + planner.buffer_line(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS], + stepper.get_axis_position_mm(E_AXIS), feedrate, 0); + stepper.synchronize(); + + //Read encoder distance + delay(250); + stopCount = get_position(); + + travelledDistance = mm_from_count(abs(stopCount - startCount)); + + SERIAL_ECHOPAIR("Attempted to travel: ", travelDistance); + SERIAL_ECHOLNPGM("mm."); + + SERIAL_ECHOPAIR("Actually travelled: ", travelledDistance); + SERIAL_ECHOLNPGM("mm."); + + //Calculate new axis steps per unit + oldStepsMm = planner.axis_steps_per_mm[encoderAxis]; + newStepsMm = (oldStepsMm * travelDistance) / travelledDistance; + + SERIAL_ECHOLNPAIR("Old steps per mm: ", oldStepsMm); + SERIAL_ECHOLNPAIR("New steps per mm: ", newStepsMm); + + //Save new value + planner.axis_steps_per_mm[encoderAxis] = newStepsMm; + + if (iter > 1) { + total += newStepsMm; + + // swap start and end points so next loop runs from current position + float tempCoord = startCoord[encoderAxis]; + startCoord[encoderAxis] = endCoord[encoderAxis]; + endCoord[encoderAxis] = tempCoord; + } + } + + if (iter > 1) { + total /= (float)iter; + SERIAL_ECHOLNPAIR("Average steps per mm: ", total); + } + + ec = oldec; + + SERIAL_ECHOLNPGM("Calculated steps per mm has been set. Please save to EEPROM (M500) if you wish to keep these values."); + } + + void I2CPositionEncoder::reset() { + Wire.beginTransmission(i2cAddress); + Wire.write(I2CPE_RESET_COUNT); + Wire.endTransmission(); + + #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) + ZERO(err); + #endif + } + + void I2CPositionEncodersMgr::init() { + Wire.begin(); + + #if I2CPE_ENCODER_CNT > 0 + uint8_t i = 0; + + encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS); + + #if defined(I2CPE_ENC_1_TYPE) + encoders[i].set_type(I2CPE_ENC_1_TYPE); + #endif + #if defined(I2CPE_ENC_1_TICKS_UNIT) + encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT); + #endif + #if defined(I2CPE_ENC_1_TICKS_REV) + encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV); + #endif + #if defined(I2CPE_ENC_1_INVERT) + encoders[i].set_inverted(I2CPE_ENC_1_INVERT); + #endif + #if defined(I2CPE_ENC_1_EC_METHOD) + encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD); + #endif + #if defined(I2CPE_ENC_1_EC_THRESH) + encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH); + #endif + + encoders[i].set_active(encoders[i].passes_test(true)); + + #if (I2CPE_ENC_1_AXIS == E_AXIS) + encoders[i].set_homed(); + #endif + #endif + + #if I2CPE_ENCODER_CNT > 1 + i++; + + encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS); + + #if defined(I2CPE_ENC_2_TYPE) + encoders[i].set_type(I2CPE_ENC_2_TYPE); + #endif + #if defined(I2CPE_ENC_2_TICKS_UNIT) + encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT); + #endif + #if defined(I2CPE_ENC_2_TICKS_REV) + encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV); + #endif + #if defined(I2CPE_ENC_2_INVERT) + encoders[i].set_inverted(I2CPE_ENC_2_INVERT); + #endif + #if defined(I2CPE_ENC_2_EC_METHOD) + encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD); + #endif + #if defined(I2CPE_ENC_2_EC_THRESH) + encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH); + #endif + + encoders[i].set_active(encoders[i].passes_test(true)); + + #if (I2CPE_ENC_2_AXIS == E_AXIS) + encoders[i].set_homed(); + #endif + #endif + + #if I2CPE_ENCODER_CNT > 2 + i++; + + encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS); + + #if defined(I2CPE_ENC_3_TYPE) + encoders[i].set_type(I2CPE_ENC_3_TYPE); + #endif + #if defined(I2CPE_ENC_3_TICKS_UNIT) + encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT); + #endif + #if defined(I2CPE_ENC_3_TICKS_REV) + encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV); + #endif + #if defined(I2CPE_ENC_3_INVERT) + encoders[i].set_inverted(I2CPE_ENC_3_INVERT); + #endif + #if defined(I2CPE_ENC_3_EC_METHOD) + encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD); + #endif + #if defined(I2CPE_ENC_3_EC_THRESH) + encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH); + #endif + + encoders[i].set_active(encoders[i].passes_test(true)); + + #if (I2CPE_ENC_3_AXIS == E_AXIS) + encoders[i].set_homed(); + #endif + #endif + + #if I2CPE_ENCODER_CNT > 3 + i++; + + encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS); + + #if defined(I2CPE_ENC_4_TYPE) + encoders[i].set_type(I2CPE_ENC_4_TYPE); + #endif + #if defined(I2CPE_ENC_4_TICKS_UNIT) + encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT); + #endif + #if defined(I2CPE_ENC_4_TICKS_REV) + encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV); + #endif + #if defined(I2CPE_ENC_4_INVERT) + encoders[i].set_inverted(I2CPE_ENC_4_INVERT); + #endif + #if defined(I2CPE_ENC_4_EC_METHOD) + encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD); + #endif + #if defined(I2CPE_ENC_4_EC_THRESH) + encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH); + #endif + + encoders[i].set_active(encoders[i].passes_test(true)); + + #if (I2CPE_ENC_4_AXIS == E_AXIS) + encoders[i].set_homed(); + #endif + #endif + + #if I2CPE_ENCODER_CNT > 4 + i++; + + encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS); + + #if defined(I2CPE_ENC_5_TYPE) + encoders[i].set_type(I2CPE_ENC_5_TYPE); + #endif + #if defined(I2CPE_ENC_5_TICKS_UNIT) + encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT); + #endif + #if defined(I2CPE_ENC_5_TICKS_REV) + encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV); + #endif + #if defined(I2CPE_ENC_5_INVERT) + encoders[i].set_inverted(I2CPE_ENC_5_INVERT); + #endif + #if defined(I2CPE_ENC_5_EC_METHOD) + encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD); + #endif + #if defined(I2CPE_ENC_5_EC_THRESH) + encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH); + #endif + + encoders[i].set_active(encoders[i].passes_test(true)); + + #if (I2CPE_ENC_5_AXIS == E_AXIS) + encoders[i].set_homed(); + #endif + #endif + + } + + void I2CPositionEncodersMgr::report_position(uint8_t idx, bool units, bool noOffset) { + CHECK_IDX + + if (units) { + SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm()); + } else { + if (noOffset) { + long raw_count = encoders[idx].get_raw_count(); + SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); + SERIAL_ECHOPGM(" "); + + for (uint8_t j = 31; j > 0; j--) + SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j))); + + SERIAL_ECHO((bool)(0x00000001 & (raw_count))); + SERIAL_ECHOLNPAIR(" ", raw_count); + } else + SERIAL_ECHOLN(encoders[idx].get_position()); + } + } + + void I2CPositionEncodersMgr::change_module_address(uint8_t oldaddr, uint8_t newaddr) { + // First check 'new' address is not in use + Wire.beginTransmission(newaddr); + if (!Wire.endTransmission()) { + SERIAL_ECHOPAIR("?There is already a device with that address on the I2C bus! (", newaddr); + SERIAL_ECHOLNPGM(")"); + return; + } + + // Now check that we can find the module on the oldaddr address + Wire.beginTransmission(oldaddr); + if (Wire.endTransmission()) { + SERIAL_ECHOPAIR("?No module detected at this address! (", oldaddr); + SERIAL_ECHOLNPGM(")"); + return; + } + + SERIAL_ECHOPAIR("Module found at ", oldaddr); + SERIAL_ECHOLNPAIR(", changing address to ", newaddr); + + // Change the modules address + Wire.beginTransmission(oldaddr); + Wire.write(I2CPE_SET_ADDR); + Wire.write(newaddr); + Wire.endTransmission(); + + SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation.."); + + // Wait for the module to reset (can probably be improved by polling address with a timeout). + safe_delay(I2CPE_REBOOT_TIME); + + // Look for the module at the new address. + Wire.beginTransmission(newaddr); + if (Wire.endTransmission()) { + SERIAL_ECHOLNPGM("Address change failed! Check encoder module."); + return; + } + + SERIAL_ECHOLNPGM("Address change successful!"); + + // Now, if this module is configured, find which encoder instance it's supposed to correspond to + // and enable it (it will likely have failed initialisation on power-up, before the address change). + int8_t idx = idx_from_addr(newaddr); + if (idx >= 0 && !encoders[idx].get_active()) { + SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]); + SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again."); + encoders[idx].set_active(encoders[idx].passes_test(true)); + } + } + + void I2CPositionEncodersMgr::report_module_firmware(uint8_t address) { + // First check there is a module + Wire.beginTransmission(address); + if (Wire.endTransmission()) { + SERIAL_ECHOPAIR("?No module detected at this address! (", address); + SERIAL_ECHOLNPGM(")"); + return; + } + + SERIAL_ECHOPAIR("Requesting version info from module at address ", address); + SERIAL_ECHOPGM(":\n"); + + Wire.beginTransmission(address); + Wire.write(I2CPE_SET_REPORT_MODE); + Wire.write(I2CPE_REPORT_VERSION); + Wire.endTransmission(); + + // Read value + if (Wire.requestFrom((int)address, 32)) { + char c; + while (Wire.available() > 0 && (c = (char)Wire.read()) > 0) + SERIAL_ECHO(c); + SERIAL_EOL; + } + + // Set module back to normal (distance) mode + Wire.beginTransmission((int)address); + Wire.write(I2CPE_SET_REPORT_MODE); + Wire.write(I2CPE_REPORT_DISTANCE); + Wire.endTransmission(); + } + + int8_t I2CPositionEncodersMgr::parse() { + I2CPE_addr = 0; + + if (parser.seen('A')) { + if (!parser.has_value()) { + SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]"); + return I2CPE_PARSE_ERR; + }; + + I2CPE_addr = parser.value_byte(); + + if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55 + SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]"); + return I2CPE_PARSE_ERR; + } + + I2CPE_idx = idx_from_addr(I2CPE_addr); + + if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) { + SERIAL_PROTOCOLLNPGM("?No device with this address!"); + return I2CPE_PARSE_ERR; + } + } else if (parser.seenval('I')) { + if (!parser.has_value()) { + SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1); + SERIAL_ECHOLNPGM("]"); + return I2CPE_PARSE_ERR; + }; + + I2CPE_idx = parser.value_byte(); + + if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) { + SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1); + SERIAL_ECHOLNPGM("]"); + return I2CPE_PARSE_ERR; + } + + I2CPE_addr = encoders[I2CPE_idx].get_address(); + } else { + I2CPE_idx = -1; + } + + I2CPE_anyaxis = parser.seen_axis(); + + return I2CPE_PARSE_OK; + }; + + /** + * M860: Report the position(s) of position encoder module(s). + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1] + * O Include homed zero-offset in returned position. + * U Units in mm or raw step count. + * + * If A or I not specified: + * X Report on X axis encoder, if present. + * Y Report on Y axis encoder, if present. + * Z Report on Z axis encoder, if present. + * E Report on E axis encoder, if present. + * + */ + void I2CPositionEncodersMgr::M860() { + if (parse()) return; + + bool hasU = parser.seen('U'), hasO = parser.seen('O'); + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) + report_position((uint8_t)idx, hasU, hasO); + } + } else report_position((uint8_t)I2CPE_idx, hasU, hasO); + } + + /** + * M861: Report the status of position encoder modules. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1] + * + * If A or I not specified: + * X Report on X axis encoder, if present. + * Y Report on Y axis encoder, if present. + * Z Report on Z axis encoder, if present. + * E Report on E axis encoder, if present. + * + */ + void I2CPositionEncodersMgr::M861() { + if (parse()) return; + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) + report_status((uint8_t)idx); + } + } else report_status((uint8_t)I2CPE_idx); + } + + /** + * M862: Perform an axis continuity test for position encoder + * modules. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1] + * + * If A or I not specified: + * X Report on X axis encoder, if present. + * Y Report on Y axis encoder, if present. + * Z Report on Z axis encoder, if present. + * E Report on E axis encoder, if present. + * + */ + void I2CPositionEncodersMgr::M862() { + if (parse()) return; + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) + test_axis((uint8_t)idx); + } + } else test_axis((uint8_t)I2CPE_idx); + } + + /** + * M863: Perform steps-per-mm calibration for + * position encoder modules. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1] + * P Number of rePeats/iterations. + * + * If A or I not specified: + * X Report on X axis encoder, if present. + * Y Report on Y axis encoder, if present. + * Z Report on Z axis encoder, if present. + * E Report on E axis encoder, if present. + * + */ + void I2CPositionEncodersMgr::M863() { + if (parse()) return; + + int iterations = parser.seenval('P') ? constrain(parser.value_byte(), 1, 10) : 1; + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) + calibrate_steps_mm((uint8_t)idx, iterations); + } + } else calibrate_steps_mm((uint8_t)I2CPE_idx, iterations); + } + + /** + * M864: Change position encoder module I2C address. + * + * A Module current/old I2C address. If not present, + * assumes default address (030). [30, 200]. + * N Module new I2C address. [30, 200]. + * + * If N not specified: + * X Use I2CPE_PRESET_ADDR_X (030). + * Y Use I2CPE_PRESET_ADDR_Y (031). + * Z Use I2CPE_PRESET_ADDR_Z (032). + * E Use I2CPE_PRESET_ADDR_E (033). + */ + void I2CPositionEncodersMgr::M864() { + uint8_t newAddress; + + if (parse()) return; + + if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X; + + if (parser.seen('N')) { + if (!parser.has_value()) { + SERIAL_PROTOCOLLNPGM("?N seen, but no address specified! [30-200]"); + return; + }; + + newAddress = parser.value_byte(); + + if (!WITHIN(newAddress, 30, 200)) { + SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]"); + return; + } + } else if (!I2CPE_anyaxis) { + SERIAL_PROTOCOLLNPGM("?You must specify N or [XYZE]."); + return; + } else { + if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X; + else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y; + else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z; + else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E; + else return; + } + + SERIAL_ECHOPAIR("Changing module at address ", I2CPE_addr); + SERIAL_ECHOLNPAIR(" to address ", newAddress); + + change_module_address(I2CPE_addr, newAddress); + } + + /** + * M865: Check position encoder module firmware version. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1]. + * + * If A or I not specified: + * X Check X axis encoder, if present. + * Y Check Y axis encoder, if present. + * Z Check Z axis encoder, if present. + * E Check E axis encoder, if present. + */ + void I2CPositionEncodersMgr::M865() { + if (parse()) return; + + if (!I2CPE_addr) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) + report_module_firmware(encoders[idx].get_address()); + } + } else report_module_firmware(I2CPE_addr); + } + + /** + * M866: Report or reset position encoder module error + * count. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1]. + * R Reset error counter. + * + * If A or I not specified: + * X Act on X axis encoder, if present. + * Y Act on Y axis encoder, if present. + * Z Act on Z axis encoder, if present. + * E Act on E axis encoder, if present. + */ + void I2CPositionEncodersMgr::M866() { + if (parse()) return; + + bool hasR = parser.seen('R'); + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { + if (hasR) reset_error_count((uint8_t)idx, AxisEnum(i)); + else report_error_count((uint8_t)idx, AxisEnum(i)); + } + } + } else { + if (hasR) reset_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis()); + else report_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis()); + } + } + + /** + * M867: Enable/disable or toggle error correction for position encoder modules. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1]. + * S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not + * supplied, toggle. + * + * If A or I not specified: + * X Act on X axis encoder, if present. + * Y Act on Y axis encoder, if present. + * Z Act on Z axis encoder, if present. + * E Act on E axis encoder, if present. + */ + void I2CPositionEncodersMgr::M867() { + if (parse()) return; + + int8_t onoff = parser.seenval('S') ? parser.value_int() : -1; + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { + if (onoff == -1) enable_ec((uint8_t)idx, !encoders[idx].get_ec_enabled(), AxisEnum(i)); + else enable_ec((uint8_t)idx, (bool)onoff, AxisEnum(i)); + } + } + } else { + if (onoff == -1) enable_ec((uint8_t)I2CPE_idx, !encoders[I2CPE_idx].get_ec_enabled(), encoders[I2CPE_idx].get_axis()); + else enable_ec((uint8_t)I2CPE_idx, (bool)onoff, encoders[I2CPE_idx].get_axis()); + } + } + + /** + * M868: Report or set position encoder module error correction + * threshold. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1]. + * T New error correction threshold. + * + * If A not specified: + * X Act on X axis encoder, if present. + * Y Act on Y axis encoder, if present. + * Z Act on Z axis encoder, if present. + * E Act on E axis encoder, if present. + */ + void I2CPositionEncodersMgr::M868() { + if (parse()) return; + + float newThreshold = parser.seenval('T') ? parser.value_float() : -9999; + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) { + if (newThreshold != -9999) set_ec_threshold((uint8_t)idx, newThreshold, encoders[idx].get_axis()); + else get_ec_threshold((uint8_t)idx, encoders[idx].get_axis()); + } + } + } else { + if (newThreshold != -9999) set_ec_threshold((uint8_t)I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis()); + else get_ec_threshold((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis()); + } + } + + /** + * M869: Report position encoder module error. + * + * A Module I2C address. [30, 200]. + * I Module index. [0, I2CPE_ENCODER_CNT - 1]. + * + * If A not specified: + * X Act on X axis encoder, if present. + * Y Act on Y axis encoder, if present. + * Z Act on Z axis encoder, if present. + * E Act on E axis encoder, if present. + */ + void I2CPositionEncodersMgr::M869() { + if (parse()) return; + + if (I2CPE_idx < 0) { + int8_t idx; + LOOP_XYZE(i) { + if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) + report_error((uint8_t)idx); + } + } else report_error((uint8_t)I2CPE_idx); + } + +#endif diff --git a/Marlin/I2CPositionEncoder.h b/Marlin/I2CPositionEncoder.h new file mode 100644 index 0000000000..a4b7eb3adb --- /dev/null +++ b/Marlin/I2CPositionEncoder.h @@ -0,0 +1,356 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +#ifndef I2CPOSENC_H +#define I2CPOSENC_H + +#include "MarlinConfig.h" + +#if ENABLED(I2C_POSITION_ENCODERS) + + #include "enum.h" + #include "macros.h" + #include "types.h" + #include + + //=========== Advanced / Less-Common Encoder Configuration Settings ========== + + #define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold + // proportional to the current speed of the axis allows + // for very small error margin at low speeds without + // stuttering due to reading latency at high speeds + + #define I2CPE_DEBUG // enable encoder-related debug serial echos + + #define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot + // after changing address. + + #define I2CPE_MAG_SIG_GOOD 0 + #define I2CPE_MAG_SIG_MID 1 + #define I2CPE_MAG_SIG_BAD 2 + #define I2CPE_MAG_SIG_NF 255 + + #define I2CPE_REQ_REPORT 0 + #define I2CPE_RESET_COUNT 1 + #define I2CPE_SET_ADDR 2 + #define I2CPE_SET_REPORT_MODE 3 + #define I2CPE_CLEAR_EEPROM 4 + + #define I2CPE_LED_PAR_MODE 10 + #define I2CPE_LED_PAR_BRT 11 + #define I2CPE_LED_PAR_RATE 14 + + #define I2CPE_REPORT_DISTANCE 0 + #define I2CPE_REPORT_STRENGTH 1 + #define I2CPE_REPORT_VERSION 2 + + // Default I2C addresses + #define I2CPE_PRESET_ADDR_X 30 + #define I2CPE_PRESET_ADDR_Y 31 + #define I2CPE_PRESET_ADDR_Z 32 + #define I2CPE_PRESET_ADDR_E 33 + + #define I2CPE_DEF_AXIS X_AXIS + #define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X + + // Error event counter; tracks how many times there is an error exceeding a certain threshold + #define I2CPE_ERR_CNT_THRESH 3.00 + #define I2CPE_ERR_CNT_DEBOUNCE_MS 2000 + + #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) + #define I2CPE_ERR_ARRAY_SIZE 32 + #endif + + // Error Correction Methods + #define I2CPE_ECM_NONE 0 + #define I2CPE_ECM_MICROSTEP 1 + #define I2CPE_ECM_PLANNER 2 + #define I2CPE_ECM_STALLDETECT 3 + + // Encoder types + #define I2CPE_ENC_TYPE_ROTARY 0 + #define I2CPE_ENC_TYPE_LINEAR 1 + + // Parser + #define I2CPE_PARSE_ERR 1 + #define I2CPE_PARSE_OK 0 + + #define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT) + #define CHECK_IDX if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; + + extern const char axis_codes[XYZE]; + + typedef union { + volatile long val = 0; + uint8_t bval[4]; + } i2cLong; + + class I2CPositionEncoder { + private: + AxisEnum encoderAxis = I2CPE_DEF_AXIS; + + uint8_t i2cAddress = I2CPE_DEF_ADDR, + ecMethod = I2CPE_DEF_EC_METHOD, + type = I2CPE_DEF_TYPE, + H = I2CPE_MAG_SIG_NF; // Magnetic field strength + + int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT, + stepperTicks = I2CPE_DEF_TICKS_REV; + + float ecThreshold = I2CPE_DEF_EC_THRESH; + + bool homed = false, + trusted = false, + initialised = false, + active = false, + invert = false, + ec = true; + + int errorCount = 0, + errorPrev = 0; + + float axisOffset = 0; + + long axisOffsetTicks = 0, + zeroOffset = 0, + lastPosition = 0, + position; + + unsigned long lastPositionTime = 0, + lastErrorCountTime = 0, + lastErrorTime; + + //double positionMm; //calculate + + #if ENABLED(I2CPE_ERR_ROLLING_AVERAGE) + uint8_t errIdx = 0; + int err[I2CPE_ERR_ARRAY_SIZE] = {0}; + #endif + + public: + void init(uint8_t address, AxisEnum axis); + void reset(); + + void update(); + + void set_homed(); + + long get_raw_count(); + + FORCE_INLINE double mm_from_count(long count) { + if (type == I2CPE_ENC_TYPE_LINEAR) return count / encoderTicksPerUnit; + else if (type == I2CPE_ENC_TYPE_ROTARY) + return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]); + return -1; + } + + FORCE_INLINE double get_position_mm() { return mm_from_count(get_position()); } + FORCE_INLINE long get_position() { return get_raw_count() - zeroOffset - axisOffsetTicks; } + + long get_axis_error_steps(bool report); + double get_axis_error_mm(bool report); + + void calibrate_steps_mm(int iter); + + bool passes_test(bool report); + + bool test_axis(void); + + FORCE_INLINE int get_error_count(void) { return errorCount; } + FORCE_INLINE void set_error_count(int newCount) { errorCount = newCount; } + + FORCE_INLINE uint8_t get_address() { return i2cAddress; } + FORCE_INLINE void set_address(uint8_t addr) { i2cAddress = addr; } + + FORCE_INLINE bool get_active(void) { return active; } + FORCE_INLINE void set_active(bool a) { active = a; } + + FORCE_INLINE void set_inverted(bool i) { invert = i; } + + FORCE_INLINE AxisEnum get_axis() { return encoderAxis; } + + FORCE_INLINE bool get_ec_enabled() { return ec; } + FORCE_INLINE void set_ec_enabled(bool enabled) { ec = enabled; } + + FORCE_INLINE uint8_t get_ec_method() { return ecMethod; } + FORCE_INLINE void set_ec_method(byte method) { ecMethod = method; } + + FORCE_INLINE float get_ec_threshold() { return ecThreshold; } + FORCE_INLINE void set_ec_threshold(float newThreshold) { ecThreshold = newThreshold; } + + FORCE_INLINE int get_encoder_ticks_mm() { + if (type == I2CPE_ENC_TYPE_LINEAR) return encoderTicksPerUnit; + else if (type == I2CPE_ENC_TYPE_ROTARY) + return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]); + return 0; + } + + FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; } + FORCE_INLINE void set_ticks_unit(int ticks) { encoderTicksPerUnit = ticks; } + + FORCE_INLINE uint8_t get_type() { return type; } + FORCE_INLINE void set_type(byte newType) { type = newType; } + + FORCE_INLINE int get_stepper_ticks() { return stepperTicks; } + FORCE_INLINE void set_stepper_ticks(int ticks) { stepperTicks = ticks; } + + FORCE_INLINE float get_axis_offset() { return axisOffset; } + FORCE_INLINE void set_axis_offset(float newOffset) { + axisOffset = newOffset; + axisOffsetTicks = (long)(axisOffset * get_encoder_ticks_mm()); + } + + FORCE_INLINE void set_current_position(float newPositionMm) { + set_axis_offset(get_position_mm() - newPositionMm + axisOffset); + } + }; + + class I2CPositionEncodersMgr { + private: + bool I2CPE_anyaxis; + uint8_t I2CPE_addr; + int8_t I2CPE_idx; + + public: + void init(void); + + // consider only updating one endoder per call / tick if encoders become too time intensive + void update(void) { LOOP_PE(i) encoders[i].update(); } + + void homed(AxisEnum axis) { + LOOP_PE(i) + if (encoders[i].get_axis() == axis) encoders[i].set_homed(); + } + + void report_position(uint8_t idx, bool units, bool noOffset); + + void report_status(uint8_t idx) { + CHECK_IDX + SERIAL_ECHOPAIR("Encoder ",idx); + SERIAL_ECHOPGM(": "); + encoders[idx].get_raw_count(); + encoders[idx].passes_test(true); + } + + void report_error(uint8_t idx) { + CHECK_IDX + encoders[idx].get_axis_error_steps(true); + } + + void test_axis(uint8_t idx) { + CHECK_IDX + encoders[idx].test_axis(); + } + + void calibrate_steps_mm(uint8_t idx, int iterations) { + CHECK_IDX + encoders[idx].calibrate_steps_mm(iterations); + } + + void change_module_address(uint8_t oldaddr, uint8_t newaddr); + void report_module_firmware(uint8_t address); + + void report_error_count(uint8_t idx, AxisEnum axis) { + CHECK_IDX + SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]); + SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count()); + } + + void reset_error_count(uint8_t idx, AxisEnum axis) { + CHECK_IDX + encoders[idx].set_error_count(0); + SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]); + SERIAL_ECHOLNPGM(" axis has been reset."); + } + + void enable_ec(uint8_t idx, bool enabled, AxisEnum axis) { + CHECK_IDX + encoders[idx].set_ec_enabled(enabled); + SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]); + SERIAL_ECHOPGM(" axis is "); + serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis")); + SERIAL_ECHOLNPGM("abled."); + } + + void set_ec_threshold(uint8_t idx, float newThreshold, AxisEnum axis) { + CHECK_IDX + encoders[idx].set_ec_threshold(newThreshold); + SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]); + SERIAL_ECHOPAIR_F(" axis set to ", newThreshold); + SERIAL_ECHOLNPGM("mm."); + } + + void get_ec_threshold(uint8_t idx, AxisEnum axis) { + CHECK_IDX + float threshold = encoders[idx].get_ec_threshold(); + SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]); + SERIAL_ECHOPAIR_F(" axis is ", threshold); + SERIAL_ECHOLNPGM("mm."); + } + + int8_t idx_from_axis(AxisEnum axis) { + LOOP_PE(i) + if (encoders[i].get_axis() == axis) return i; + + return -1; + } + + int8_t idx_from_addr(uint8_t addr) { + LOOP_PE(i) + if (encoders[i].get_address() == addr) return i; + + return -1; + } + + int8_t parse(); + + void M860(); + void M861(); + void M862(); + void M863(); + void M864(); + void M865(); + void M866(); + void M867(); + void M868(); + void M869(); + + I2CPositionEncoder encoders[I2CPE_ENCODER_CNT]; + }; + + extern I2CPositionEncodersMgr I2CPEM; + + FORCE_INLINE void gcode_M860() { I2CPEM.M860(); } + FORCE_INLINE void gcode_M861() { I2CPEM.M861(); } + FORCE_INLINE void gcode_M862() { I2CPEM.M862(); } + FORCE_INLINE void gcode_M863() { I2CPEM.M863(); } + FORCE_INLINE void gcode_M864() { I2CPEM.M864(); } + FORCE_INLINE void gcode_M865() { I2CPEM.M865(); } + FORCE_INLINE void gcode_M866() { I2CPEM.M866(); } + FORCE_INLINE void gcode_M867() { I2CPEM.M867(); } + FORCE_INLINE void gcode_M868() { I2CPEM.M868(); } + FORCE_INLINE void gcode_M869() { I2CPEM.M869(); } + +#endif //I2C_POSITION_ENCODERS +#endif //I2CPOSENC_H + + diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 6e6ded87c2..1e0ef1554a 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -200,6 +200,16 @@ * M666 - Set delta endstop adjustment. (Requires DELTA) * M605 - Set dual x-carriage movement mode: "M605 S [X] [R]". (Requires DUAL_X_CARRIAGE) * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.) + * M860 - Report the position of position encoder modules. + * M861 - Report the status of position encoder modules. + * M862 - Perform an axis continuity test for position encoder modules. + * M863 - Perform steps-per-mm calibration for position encoder modules. + * M864 - Change position encoder module I2C address. + * M865 - Check position encoder module firmware version. + * M866 - Report or reset position encoder module error count. + * M867 - Enable/disable or toggle error correction for position encoder modules. + * M868 - Report or set position encoder module error correction threshold. + * M869 - Report position encoder module error. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE) * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130) * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots) @@ -286,6 +296,10 @@ #include "twibus.h" #endif +#if ENABLED(I2C_POSITION_ENCODERS) + #include "I2CPositionEncoder.h" +#endif + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #include "endstop_interrupts.h" #endif @@ -662,6 +676,12 @@ static bool send_ok[BUFSIZE]; #define host_keepalive() NOOP #endif +#if ENABLED(I2C_POSITION_ENCODERS) + I2CPositionEncodersMgr I2CPEM; + uint8_t blockBufferIndexRef = 0; + millis_t lastUpdateMillis; +#endif + FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); } FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); } @@ -1493,6 +1513,10 @@ static void set_axis_is_at_home(const AxisEnum axis) { SERIAL_EOL; } #endif + + #if ENABLED(I2C_POSITION_ENCODERS) + I2CPEM.homed(axis); + #endif } /** @@ -5609,6 +5633,11 @@ inline void gcode_G92() { #if HAS_POSITION_SHIFT position_shift[i] += v - p; // Offset the coordinate space update_software_endstops((AxisEnum)i); + + #if ENABLED(I2C_POSITION_ENCODERS) + I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum) i)].set_axis_offset(position_shift[i]); + #endif + #endif } #endif @@ -10904,6 +10933,50 @@ void process_next_command() { break; #endif + #if ENABLED(I2C_POSITION_ENCODERS) + + case 860: // M860 Report encoder module position + gcode_M860(); + break; + + case 861: // M861 Report encoder module status + gcode_M861(); + break; + + case 862: // M862 Perform axis test + gcode_M862(); + break; + + case 863: // M863 Calibrate steps/mm + gcode_M863(); + break; + + case 864: // M864 Change module address + gcode_M864(); + break; + + case 865: // M865 Check module firmware version + gcode_M865(); + break; + + case 866: // M866 Report axis error count + gcode_M866(); + break; + + case 867: // M867 Toggle error correction + gcode_M867(); + break; + + case 868: // M868 Set error correction threshold + gcode_M868(); + break; + + case 869: // M869 Report axis error + gcode_M869(); + break; + + #endif // I2C_POSITION_ENCODERS + case 999: // M999: Restart after being Stopped gcode_M999(); break; @@ -12200,7 +12273,7 @@ void disable_all_steppers() { const bool has_days = (elapsed.value > 60*60*24L); (void)elapsed.toDigital(timestamp, has_days); SERIAL_ECHO(timestamp); - SERIAL_ECHO(": "); + SERIAL_ECHOPGM(": "); SERIAL_ECHO(axisID); SERIAL_ECHOLNPGM(" driver overtemperature warning!"); } @@ -12495,6 +12568,16 @@ void idle( #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) buzzer.tick(); #endif + + #if ENABLED(I2C_POSITION_ENCODERS) + if (planner.blocks_queued() && + ( (blockBufferIndexRef != planner.block_buffer_head) || + ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) { + blockBufferIndexRef = planner.block_buffer_head; + I2CPEM.update(); + lastUpdateMillis = millis(); + } + #endif } /** @@ -12739,6 +12822,10 @@ void setup() { set_bltouch_deployed(false); #endif + #if ENABLED(I2C_POSITION_ENCODERS) + I2CPEM.init(); + #endif + #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0 i2c.onReceive(i2c_on_receive); i2c.onRequest(i2c_on_request); diff --git a/Marlin/SanityCheck.h b/Marlin/SanityCheck.h index 440144cf8f..7260c0e5b2 100644 --- a/Marlin/SanityCheck.h +++ b/Marlin/SanityCheck.h @@ -270,11 +270,24 @@ #endif #endif +/** + * I2C Position Encoders + */ +#if ENABLED(I2C_POSITION_ENCODERS) + #if DISABLED(BABYSTEPPING) + #error "I2C_POSITION_ENCODERS requires BABYSTEPPING." + #endif + + #if I2CPE_ENCODER_CNT > 5 || I2CPE_ENCODER_CNT < 1 + #error "I2CPE_ENCODER_CNT must be between 1 and 5." + #endif +#endif + /** * Babystepping */ #if ENABLED(BABYSTEPPING) - #if DISABLED(ULTRA_LCD) + #if DISABLED(ULTRA_LCD) && DISABLED(I2C_POSITION_ENCODERS) #error "BABYSTEPPING requires an LCD controller." #elif ENABLED(SCARA) #error "BABYSTEPPING is not implemented for SCARA yet." diff --git a/Marlin/enum.h b/Marlin/enum.h index 999164187f..764e154cd0 100644 --- a/Marlin/enum.h +++ b/Marlin/enum.h @@ -34,23 +34,29 @@ * between X_AXIS and X Head movement, like CoreXY bots */ enum AxisEnum { - NO_AXIS = -1, - X_AXIS = 0, - A_AXIS = 0, - Y_AXIS = 1, - B_AXIS = 1, - Z_AXIS = 2, - C_AXIS = 2, - E_AXIS = 3, - X_HEAD = 4, - Y_HEAD = 5, - Z_HEAD = 6, - ALL_AXES = 100 + NO_AXIS = -1, + X_AXIS = 0, + A_AXIS = 0, + Y_AXIS = 1, + B_AXIS = 1, + Z_AXIS = 2, + C_AXIS = 2, + E_AXIS = 3, + X_HEAD = 4, + Y_HEAD = 5, + Z_HEAD = 6, + ALL_AXES = 100 }; -#define LOOP_XYZ(VAR) for (uint8_t VAR=X_AXIS; VAR<=Z_AXIS; VAR++) -#define LOOP_XYZE(VAR) for (uint8_t VAR=X_AXIS; VAR<=E_AXIS; VAR++) -#define LOOP_XYZE_N(VAR) for (uint8_t VAR=X_AXIS; VAR> 3], (L - 'A') & 0x7) + #else // Code is found in the string. If not found, value_ptr is unchanged. @@ -139,6 +145,12 @@ public: return b; } + static volatile bool seen_any() { + return *command_args == '\0'; + } + + #define SEEN_TEST(L) !!strchr(command_args, L) + #endif // FASTER_GCODE_PARSER // Populate all fields by parsing a single line of GCode @@ -148,6 +160,13 @@ public: // Code value pointer was set FORCE_INLINE static bool has_value() { return value_ptr != NULL; } + // Seen and has value + FORCE_INLINE static bool seenval(const char c) { return seen(c) && has_value(); } + + static volatile bool seen_axis() { + return SEEN_TEST('X') || SEEN_TEST('Y') || SEEN_TEST('Z') || SEEN_TEST('E'); + } + // Float removes 'E' to prevent scientific notation interpretation inline static float value_float() { if (value_ptr) { diff --git a/Marlin/macros.h b/Marlin/macros.h index 0fb057441d..f1575cad12 100644 --- a/Marlin/macros.h +++ b/Marlin/macros.h @@ -108,6 +108,8 @@ #define HYPOT2(x,y) (sq(x)+sq(y)) #define HYPOT(x,y) sqrt(HYPOT2(x,y)) +#define SIGN(a) ((a>0)-(a<0)) + // Macros to contrain values #define NOLESS(v,n) do{ if (v < n) v = n; }while(0) #define NOMORE(v,n) do{ if (v > n) v = n; }while(0)