Merge branch 'deltabot' of https://github.com/jcrocholl/Marlin into deltabot
Conflicts: Marlin/Configuration.h Marlin/Marlin_main.cpp Marlin/pins.h
This commit is contained in:
commit
373f3ecab3
@ -63,6 +63,43 @@
|
|||||||
|
|
||||||
#define POWER_SUPPLY 1
|
#define POWER_SUPPLY 1
|
||||||
|
|
||||||
|
|
||||||
|
//===========================================================================
|
||||||
|
//============================== Delta Settings =============================
|
||||||
|
//===========================================================================
|
||||||
|
// Enable DELTA kinematics
|
||||||
|
#define DELTA
|
||||||
|
|
||||||
|
// Make delta curves from many straight lines (linear interpolation).
|
||||||
|
// This is a trade-off between visible corners (not enough segments)
|
||||||
|
// and processor overload (too many expensive sqrt calls).
|
||||||
|
#define DELTA_SEGMENTS_PER_SECOND 200
|
||||||
|
|
||||||
|
// Center-to-center distance of the holes in the diagonal push rods.
|
||||||
|
#define DELTA_DIAGONAL_ROD 250.0 // mm
|
||||||
|
|
||||||
|
// Horizontal offset from middle of printer to smooth rod center.
|
||||||
|
#define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm
|
||||||
|
|
||||||
|
// Horizontal offset of the universal joints on the end effector.
|
||||||
|
#define DELTA_EFFECTOR_OFFSET 33.0 // mm
|
||||||
|
|
||||||
|
// Horizontal offset of the universal joints on the carriages.
|
||||||
|
#define DELTA_CARRIAGE_OFFSET 18.0 // mm
|
||||||
|
|
||||||
|
// Effective horizontal distance bridged by diagonal push rods.
|
||||||
|
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
|
||||||
|
|
||||||
|
// Effective X/Y positions of the three vertical towers.
|
||||||
|
#define SIN_60 0.8660254037844386
|
||||||
|
#define COS_60 0.5
|
||||||
|
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
|
||||||
|
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
|
||||||
|
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
|
||||||
|
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
|
||||||
|
#define DELTA_TOWER3_X 0.0 // back middle tower
|
||||||
|
#define DELTA_TOWER3_Y DELTA_RADIUS
|
||||||
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//=============================Thermal Settings ============================
|
//=============================Thermal Settings ============================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
@ -128,8 +165,8 @@
|
|||||||
// PID settings:
|
// PID settings:
|
||||||
// Comment the following line to disable PID and enable bang-bang.
|
// Comment the following line to disable PID and enable bang-bang.
|
||||||
#define PIDTEMP
|
#define PIDTEMP
|
||||||
#define BANG_MAX 256 // limits current to nozzle while in bang-bang mode; 256=full current
|
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
|
||||||
#define PID_MAX 256 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 256=full current
|
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
|
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
|
||||||
@ -172,9 +209,9 @@
|
|||||||
|
|
||||||
// This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
|
// This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
|
||||||
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
|
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
|
||||||
// setting this to anything other than 256 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
|
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
|
||||||
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
|
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
|
||||||
#define MAX_BED_POWER 256 // limits duty cycle to bed; 256=full current
|
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
|
||||||
|
|
||||||
#ifdef PIDTEMPBED
|
#ifdef PIDTEMPBED
|
||||||
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
|
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
|
||||||
@ -282,9 +319,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||||||
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
|
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
|
||||||
|
|
||||||
//Manual homing switch locations:
|
//Manual homing switch locations:
|
||||||
|
// For deltabots this means top and center of the cartesian print volume.
|
||||||
#define MANUAL_X_HOME_POS 0
|
#define MANUAL_X_HOME_POS 0
|
||||||
#define MANUAL_Y_HOME_POS 0
|
#define MANUAL_Y_HOME_POS 0
|
||||||
#define MANUAL_Z_HOME_POS 0
|
#define MANUAL_Z_HOME_POS 0
|
||||||
|
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||||
|
|
||||||
//// MOVEMENT SETTINGS
|
//// MOVEMENT SETTINGS
|
||||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||||
|
@ -157,6 +157,9 @@ void FlushSerialRequestResend();
|
|||||||
void ClearToSend();
|
void ClearToSend();
|
||||||
|
|
||||||
void get_coordinates();
|
void get_coordinates();
|
||||||
|
#ifdef DELTA
|
||||||
|
void calculate_delta(float cartesian[3]);
|
||||||
|
#endif
|
||||||
void prepare_move();
|
void prepare_move();
|
||||||
void kill();
|
void kill();
|
||||||
void Stop();
|
void Stop();
|
||||||
|
@ -198,6 +198,9 @@ int EtoPPressure=0;
|
|||||||
//===========================================================================
|
//===========================================================================
|
||||||
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
||||||
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
||||||
|
#ifdef DELTA
|
||||||
|
static float delta[3] = {0.0, 0.0, 0.0};
|
||||||
|
#endif
|
||||||
static float offset[3] = {0.0, 0.0, 0.0};
|
static float offset[3] = {0.0, 0.0, 0.0};
|
||||||
static bool home_all_axis = true;
|
static bool home_all_axis = true;
|
||||||
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
||||||
@ -836,6 +839,10 @@ void process_commands()
|
|||||||
feedrate = 0.0;
|
feedrate = 0.0;
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
endstops_hit_on_purpose();
|
endstops_hit_on_purpose();
|
||||||
|
|
||||||
|
current_position[X_AXIS] = destination[X_AXIS];
|
||||||
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||||
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -872,8 +879,12 @@ void process_commands()
|
|||||||
current_position[Z_AXIS]=code_value()+add_homeing[2];
|
current_position[Z_AXIS]=code_value()+add_homeing[2];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
#ifdef DELTA
|
||||||
|
calculate_delta(current_position);
|
||||||
|
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
#else
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
#endif
|
||||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||||
enable_endstops(false);
|
enable_endstops(false);
|
||||||
#endif
|
#endif
|
||||||
@ -2051,11 +2062,64 @@ void clamp_to_software_endstops(float target[3])
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#ifdef DELTA
|
||||||
|
void calculate_delta(float cartesian[3])
|
||||||
|
{
|
||||||
|
delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
||||||
|
- sq(DELTA_TOWER1_X-cartesian[X_AXIS])
|
||||||
|
- sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
|
||||||
|
) + cartesian[Z_AXIS];
|
||||||
|
delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
||||||
|
- sq(DELTA_TOWER2_X-cartesian[X_AXIS])
|
||||||
|
- sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
|
||||||
|
) + cartesian[Z_AXIS];
|
||||||
|
delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
||||||
|
- sq(DELTA_TOWER3_X-cartesian[X_AXIS])
|
||||||
|
- sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
|
||||||
|
) + cartesian[Z_AXIS];
|
||||||
|
/*
|
||||||
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
||||||
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
||||||
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
||||||
|
|
||||||
|
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
||||||
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
||||||
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||||
|
*/
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
void prepare_move()
|
void prepare_move()
|
||||||
{
|
{
|
||||||
clamp_to_software_endstops(destination);
|
clamp_to_software_endstops(destination);
|
||||||
|
|
||||||
previous_millis_cmd = millis();
|
previous_millis_cmd = millis();
|
||||||
|
#ifdef DELTA
|
||||||
|
float difference[NUM_AXIS];
|
||||||
|
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
|
difference[i] = destination[i] - current_position[i];
|
||||||
|
}
|
||||||
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
|
||||||
|
sq(difference[Y_AXIS]) +
|
||||||
|
sq(difference[Z_AXIS]));
|
||||||
|
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
||||||
|
if (cartesian_mm < 0.000001) { return; }
|
||||||
|
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
||||||
|
int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
|
||||||
|
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
||||||
|
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
||||||
|
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
||||||
|
for (int s = 1; s <= steps; s++) {
|
||||||
|
float fraction = float(s) / float(steps);
|
||||||
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
|
destination[i] = current_position[i] + difference[i] * fraction;
|
||||||
|
}
|
||||||
|
calculate_delta(destination);
|
||||||
|
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
||||||
|
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
||||||
|
active_extruder);
|
||||||
|
}
|
||||||
|
#else
|
||||||
// Do not use feedmultiply for E or Z only moves
|
// Do not use feedmultiply for E or Z only moves
|
||||||
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||||
@ -2063,6 +2127,7 @@ void prepare_move()
|
|||||||
else {
|
else {
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
||||||
}
|
}
|
||||||
|
#endif
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||||
current_position[i] = destination[i];
|
current_position[i] = destination[i];
|
||||||
}
|
}
|
||||||
@ -2306,3 +2371,4 @@ bool setTargetedHotend(int code){
|
|||||||
}
|
}
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user