Split first move to planner for better chaining

This commit is contained in:
Scott Lahteine 2017-11-30 16:40:42 -06:00
parent cff886ba12
commit 4b612f590c
2 changed files with 113 additions and 58 deletions

View File

@ -580,6 +580,7 @@ void Planner::calculate_volumetric_multipliers() {
#if PLANNER_LEVELING
/**
* rx, ry, rz - Cartesian positions in mm
* Leveled XYZ on completion
*/
void Planner::apply_leveling(float &rx, float &ry, float &rz) {
@ -622,7 +623,7 @@ void Planner::calculate_volumetric_multipliers() {
#endif
rz += (
#if ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(AUTO_BED_LEVELING_UBL) // UBL_DELTA
ubl.get_z_correction(rx, ry) * fade_scaling_factor
#elif ENABLED(MESH_BED_LEVELING)
mbl.get_z(rx, ry
@ -698,69 +699,35 @@ void Planner::calculate_volumetric_multipliers() {
#endif // PLANNER_LEVELING
/**
* Planner::_buffer_line
* Planner::_buffer_steps
*
* Add a new linear movement to the buffer in axis units.
* Add a new linear movement to the buffer (in terms of steps).
*
* Leveling and kinematics should be applied ahead of calling this.
*
* a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move
* extruder - target extruder
* target - target position in steps units
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
const long target[XYZE] = {
LROUND(a * axis_steps_per_mm[X_AXIS]),
LROUND(b * axis_steps_per_mm[Y_AXIS]),
LROUND(c * axis_steps_per_mm[Z_AXIS]),
LROUND(e * axis_steps_per_mm[E_AXIS_N])
};
// When changing extruders recalculate steps corresponding to the E position
#if ENABLED(DISTINCT_E_FACTORS)
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
last_extruder = extruder;
}
#endif
void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder) {
const int32_t da = target[X_AXIS] - position[X_AXIS],
db = target[Y_AXIS] - position[Y_AXIS],
dc = target[Z_AXIS] - position[Z_AXIS];
/*
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
SERIAL_CHAR(' ');
#if IS_KINEMATIC
SERIAL_ECHOPAIR("A:", a);
SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOPAIR(") B:", b);
#else
SERIAL_ECHOPAIR("X:", a);
SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOPAIR(") Y:", b);
#endif
SERIAL_ECHOPAIR(" (", db);
#if ENABLED(DELTA)
SERIAL_ECHOPAIR(") C:", c);
#else
SERIAL_ECHOPAIR(") Z:", c);
#endif
SERIAL_ECHOPAIR(" (", dc);
SERIAL_CHAR(')');
SERIAL_EOL();
//*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (DEBUGGING(DRYRUN))
position[E_AXIS] = target[E_AXIS];
int32_t de = target[E_AXIS] - position[E_AXIS];
/* <-- add a slash to enable
SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s);
SERIAL_ECHOPAIR(" A:", target[A_AXIS]);
SERIAL_ECHOPAIR(" (", da);
SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]);
SERIAL_ECHOPAIR(" (", db);
SERIAL_ECHOPAIR(" steps) C:", target[C_AXIS]);
SERIAL_ECHOPAIR(" (", dc);
SERIAL_ECHOPAIR(" steps) E:", target[E_AXIS]);
SERIAL_ECHOPAIR(" (", de);
SERIAL_ECHOLNPGM(" steps)");
//*/
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
@ -1067,6 +1034,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// Segment time im micro seconds
uint32_t segment_time_us = LROUND(1000000.0 / inverse_secs);
#endif
#if ENABLED(SLOWDOWN)
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
if (segment_time_us < min_segment_time_us) {
@ -1314,12 +1282,12 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
vmax_junction = min(block->nominal_speed, previous_nominal_speed);
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
// Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
float v_factor = 1;
limited = 0;
// Now limit the jerk in all axes.
const float smaller_speed_factor = vmax_junction / previous_nominal_speed;
LOOP_XYZE(axis) {
// Limit an axis. We have to differentiate: coasting, reversal of an axis, full stop.
float v_exit = previous_speed[axis] * smaller_speed_factor,
@ -1414,13 +1382,89 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
block_buffer_head = next_buffer_head;
// Update the position (only when a move was queued)
static_assert(COUNT(target) > 1, "array as function parameter should be declared as reference and with count");
COPY(position, target);
recalculate();
} // _buffer_steps()
/**
* Planner::_buffer_line
*
* Add a new linear movement to the buffer in axis units.
*
* Leveling and kinematics should be applied ahead of calling this.
*
* a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder) {
// When changing extruders recalculate steps corresponding to the E position
#if ENABLED(DISTINCT_E_FACTORS)
if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
last_extruder = extruder;
}
#endif
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
const int32_t target[XYZE] = {
LROUND(a * axis_steps_per_mm[X_AXIS]),
LROUND(b * axis_steps_per_mm[Y_AXIS]),
LROUND(c * axis_steps_per_mm[Z_AXIS]),
LROUND(e * axis_steps_per_mm[E_AXIS_N])
};
/* <-- add a slash to enable
SERIAL_ECHOPAIR(" _buffer_line FR:", fr_mm_s);
#if IS_KINEMATIC
SERIAL_ECHOPAIR(" A:", a);
SERIAL_ECHOPAIR(" (", position[A_AXIS]);
SERIAL_ECHOPAIR("->", target[A_AXIS]);
SERIAL_ECHOPAIR(") B:", b);
#else
SERIAL_ECHOPAIR(" X:", a);
SERIAL_ECHOPAIR(" (", position[X_AXIS]);
SERIAL_ECHOPAIR("->", target[X_AXIS]);
SERIAL_ECHOPAIR(") Y:", b);
#endif
SERIAL_ECHOPAIR(" (", position[Y_AXIS]);
SERIAL_ECHOPAIR("->", target[Y_AXIS]);
#if ENABLED(DELTA)
SERIAL_ECHOPAIR(") C:", c);
#else
SERIAL_ECHOPAIR(") Z:", c);
#endif
SERIAL_ECHOPAIR(" (", position[Z_AXIS]);
SERIAL_ECHOPAIR("->", target[Z_AXIS]);
SERIAL_ECHOPAIR(") E:", e);
SERIAL_ECHOPAIR(" (", position[E_AXIS]);
SERIAL_ECHOPAIR("->", target[E_AXIS]);
SERIAL_ECHOLNPGM(")");
//*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
if (DEBUGGING(DRYRUN))
position[E_AXIS] = target[E_AXIS];
// Always split the first move into one longer and one shorter move
if (!blocks_queued()) {
#define _BETWEEN(A) (position[A##_AXIS] + target[A##_AXIS]) >> 1
const int32_t between[XYZE] = { _BETWEEN(X), _BETWEEN(Y), _BETWEEN(Z), _BETWEEN(E) };
DISABLE_STEPPER_DRIVER_INTERRUPT();
_buffer_steps(between, fr_mm_s, extruder);
_buffer_steps(target, fr_mm_s, extruder);
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
else
_buffer_steps(target, fr_mm_s, extruder);
stepper.wake_up();
} // buffer_line()
} // _buffer_line()
/**
* Directly set the planner XYZ position (and stepper positions)

View File

@ -352,6 +352,17 @@ class Planner {
#endif
/**
* Planner::_buffer_steps
*
* Add a new linear movement to the buffer (in terms of steps).
*
* target - target position in steps units
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
static void _buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const uint8_t extruder);
/**
* Planner::_buffer_line
*
@ -363,7 +374,7 @@ class Planner {
* fr_mm_s - (target) speed of the move
* extruder - target extruder
*/
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder);
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);