diff --git a/.travis.yml b/.travis.yml index 951e985276..33af669821 100644 --- a/.travis.yml +++ b/.travis.yml @@ -120,7 +120,7 @@ script: # Test a simple build of AUTO_BED_LEVELING_UBL # - restore_configs - - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL + - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL - build_marlin # # Test a Sled Z Probe diff --git a/Marlin/G26_Mesh_Validation_Tool.cpp b/Marlin/G26_Mesh_Validation_Tool.cpp index bd17b9d025..8d250de485 100644 --- a/Marlin/G26_Mesh_Validation_Tool.cpp +++ b/Marlin/G26_Mesh_Validation_Tool.cpp @@ -47,8 +47,8 @@ #define OOZE_AMOUNT 0.3 #define SIZE_OF_INTERSECTION_CIRCLES 5 - #define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be - // less than SIZE_OR_INTERSECTION_CIRCLES + #define SIZE_OF_CROSSHAIRS 3 // crosshairs inside the circle. This number should be + // less than SIZE_OR_INTERSECTION_CIRCLES /** * Roxy's G26 Mesh Validation Tool @@ -132,12 +132,12 @@ void line_to_destination(float ); void gcode_G28(); void sync_plan_position_e(); - void un_retract_filament(); - void retract_filament(); + void un_retract_filament(float where[XYZE]); + void retract_filament(float where[XYZE]); void look_for_lines_to_connect(); bool parse_G26_parameters(); void move_to(const float&, const float&, const float&, const float&) ; - void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez); + void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&); bool turn_on_heaters(); bool prime_nozzle(); void chirp_at_user(); @@ -154,8 +154,6 @@ float valid_trig_angle(float); mesh_index_pair find_closest_circle_to_print(float, float); - void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); - //uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */ static float extrusion_multiplier = EXTRUSION_MULTIPLIER, retraction_multiplier = RETRACTION_MULTIPLIER, @@ -269,7 +267,7 @@ #endif // TODO: Change this to use `position_is_reachable` - if (circle_x < (X_MIN_POS) || circle_x > (X_MAX_POS) || circle_y < (Y_MIN_POS) || circle_y > (Y_MAX_POS)) { + if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to print off the bed."); goto LEAVE; @@ -359,7 +357,7 @@ lcd_reset_alert_level(); lcd_setstatuspgm(PSTR("Leaving G26")); - retract_filament(); + retract_filament(destination); destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; //debug_current_and_destination((char*)"ready to do Z-Raise."); @@ -445,18 +443,12 @@ // We found two circles that need a horizontal line to connect them // Print it! // - sx = ubl.mesh_index_to_xpos[i]; - sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle - sy = ubl.mesh_index_to_ypos[j]; + sx = ubl.mesh_index_to_xpos[ i ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge + ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge - ex = ubl.mesh_index_to_xpos[i + 1]; - ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle - ey = sy; - - sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops - sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); + sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); + sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); - ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); if (ubl.g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); @@ -468,7 +460,7 @@ //debug_current_and_destination((char*)"Connecting horizontal line."); } - print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height); + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again } } @@ -482,17 +474,11 @@ // We found two circles that need a vertical line to connect them // Print it! // - sx = ubl.mesh_index_to_xpos[i]; - sy = ubl.mesh_index_to_ypos[j]; - sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle + sy = ubl.mesh_index_to_ypos[ j ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge + ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge - ex = sx; - ey = ubl.mesh_index_to_ypos[j + 1]; - ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle - - sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops + sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1); sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); - ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); if (ubl.g26_debug_flag) { @@ -504,8 +490,8 @@ SERIAL_EOL; debug_current_and_destination((char*)"Connecting vertical line."); } - print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height); - bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height); + bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again } } } @@ -533,7 +519,7 @@ destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. destination[E_AXIS] = current_position[E_AXIS]; - ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); + ubl_line_to_destination(feed_value, 0); stepper.synchronize(); set_destination_to_current(); @@ -553,7 +539,7 @@ //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move"); - ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); + ubl_line_to_destination(feed_value, 0); //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move"); @@ -562,18 +548,18 @@ } - void retract_filament() { + void retract_filament(float where[XYZE]) { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); - move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier); + move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); } } - void un_retract_filament() { + void un_retract_filament(float where[XYZE]) { if (g26_retracted) { // Only un-retract if we are retracted. - move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier); + move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier); g26_retracted = false; //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); } @@ -594,7 +580,7 @@ * segment of a 'circle'. The time this requires is very short and is easily saved by the other * cases where the optimization comes into play. */ - void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) { + void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment dy_s = current_position[Y_AXIS] - sy, dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 @@ -603,31 +589,26 @@ dy_e = current_position[Y_AXIS] - ey, dist_end = HYPOT2(dx_e, dy_e), - dx = ex - sx, - dy = ey - sy, - line_length = HYPOT(dx, dy); + line_length = HYPOT(ex - sx, ey - sy); - // If the end point of the line is closer to the nozzle, we are going to - // flip the direction of this line. We will print it from the end to the start. - // On very small lines we don't do the optimization because it just isn't worth it. - // + // If the end point of the line is closer to the nozzle, flip the direction, + // moving from the end to the start. On very small lines the optimization isn't worth it. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); - print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); - return; + return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); } - // Now decide if we should retract. + // Decide whether to retract. if (dist_start > 2.0) { - retract_filament(); + retract_filament(destination); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); } move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier; - un_retract_filament(); + un_retract_filament(destination); //if (ubl.g26_debug_flag) { // SERIAL_ECHOLNPGM(" doing printing move."); @@ -657,7 +638,7 @@ if (code_seen('B')) { bed_temp = code_value_float(); - if (bed_temp < 15.0 || bed_temp > 140.0) { + if (!WITHIN(bed_temp, 15.0, 140.0)) { SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); return UBL_ERR; } @@ -667,7 +648,7 @@ if (code_seen('L')) { layer_height = code_value_float(); - if (layer_height < 0.0 || layer_height > 2.0) { + if (!WITHIN(layer_height, 0.0, 2.0)) { SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); return UBL_ERR; } @@ -676,7 +657,7 @@ if (code_seen('Q')) { if (code_has_value()) { retraction_multiplier = code_value_float(); - if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) { + if (!WITHIN(retraction_multiplier, 0.05, 15.0)) { SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); return UBL_ERR; } @@ -689,7 +670,7 @@ if (code_seen('N')) { nozzle = code_value_float(); - if (nozzle < 0.1 || nozzle > 1.0) { + if (!WITHIN(nozzle, 0.1, 1.0)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); return UBL_ERR; } @@ -706,7 +687,7 @@ else { prime_flag++; prime_length = code_value_float(); - if (prime_length < 0.0 || prime_length > 25.0) { + if (!WITHIN(prime_length, 0.0, 25.0)) { SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); return UBL_ERR; } @@ -715,7 +696,7 @@ if (code_seen('F')) { filament_diameter = code_value_float(); - if (filament_diameter < 1.0 || filament_diameter > 4.0) { + if (!WITHIN(filament_diameter, 1.0, 4.0)) { SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); return UBL_ERR; } @@ -728,7 +709,7 @@ if (code_seen('H')) { hotend_temp = code_value_float(); - if (hotend_temp < 165.0 || hotend_temp > 280.0) { + if (!WITHIN(hotend_temp, 165.0, 280.0)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); return UBL_ERR; } @@ -744,7 +725,7 @@ if (code_seen('X')) { x_pos = code_value_float(); - if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) { + if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) { SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible."); return UBL_ERR; } @@ -753,7 +734,7 @@ if (code_seen('Y')) { y_pos = code_value_float(); - if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) { + if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) { SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible."); return UBL_ERR; } @@ -814,6 +795,7 @@ lcd_setstatuspgm(PSTR("")); lcd_quick_feedback(); #endif + return UBL_OK; } @@ -832,9 +814,8 @@ set_destination_to_current(); - un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is - // retracted(). We are here because we want to prime the nozzle. - // So let's just unretract just to be sure. + un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted(). + while (!ubl_lcd_clicked()) { chirp_at_user(); destination[E_AXIS] += 0.25; @@ -842,10 +823,7 @@ Total_Prime += 0.25; if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; #endif - ubl_line_to_destination( - destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], - planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 - ); + ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); stepper.synchronize(); // Without this synchronize, the purge is more consistent, // but because the planner has a buffer, we won't be able @@ -874,13 +852,10 @@ #endif set_destination_to_current(); destination[E_AXIS] += prime_length; - ubl_line_to_destination( - destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], - planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0 - ); + ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0); stepper.synchronize(); set_destination_to_current(); - retract_filament(); + retract_filament(destination); } return UBL_OK; diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 7254d345e8..87169cbe53 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -244,7 +244,6 @@ inline bool IsRunning() { return Running; } inline bool IsStopped() { return !Running; } bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); //put a single ASCII command at the end of the current buffer or return false when it is full -void enqueue_and_echo_command_now(const char* cmd); // enqueue now, only return when the command has been enqueued void enqueue_and_echo_commands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash void clear_command_queue(); diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index f0ec84f201..d1ae914ad6 100755 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -896,10 +896,6 @@ bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) { return false; } -void enqueue_and_echo_command_now(const char* cmd) { - while (!enqueue_and_echo_command(cmd)) idle(); -} - void setup_killpin() { #if HAS_KILL SET_INPUT_PULLUP(KILL_PIN); @@ -2237,7 +2233,7 @@ static void clean_up_after_endstop_or_probe_move() { SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]); } #endif - return current_position[Z_AXIS]; + return current_position[Z_AXIS] + zprobe_zoffset; } // @@ -2291,7 +2287,7 @@ static void clean_up_after_endstop_or_probe_move() { SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL_F(y, 3); SERIAL_PROTOCOLPGM(" Z: "); - SERIAL_PROTOCOL_F(measured_z - -zprobe_zoffset + 0.0001, 3); + SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3); SERIAL_EOL; } @@ -2569,7 +2565,7 @@ static void clean_up_after_endstop_or_probe_move() { ep = ABL_GRID_MAX_POINTS_X - 1; ip = ABL_GRID_MAX_POINTS_X - 2; } - if (y > 0 && y < ABL_TEMP_POINTS_Y - 1) + if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2)) return LINEAR_EXTRAPOLATION( bed_level_grid[ep][y - 1], bed_level_grid[ip][y - 1] @@ -2585,7 +2581,7 @@ static void clean_up_after_endstop_or_probe_move() { ep = ABL_GRID_MAX_POINTS_Y - 1; ip = ABL_GRID_MAX_POINTS_Y - 2; } - if (x > 0 && x < ABL_TEMP_POINTS_X - 1) + if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2)) return LINEAR_EXTRAPOLATION( bed_level_grid[x - 1][ep], bed_level_grid[x - 1][ip] @@ -3028,9 +3024,9 @@ bool position_is_reachable(float target[XYZ] return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS)); #else const float dz = RAW_Z_POSITION(target[Z_AXIS]); - return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001 - && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001 - && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001; + return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001) + && WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001) + && WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001); #endif } @@ -3788,13 +3784,13 @@ inline void gcode_G28() { */ inline void gcode_G29() { - static int probe_index = -1; + static int mbl_probe_index = -1; #if HAS_SOFTWARE_ENDSTOPS static bool enable_soft_endstops; #endif const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport; - if (state < 0 || state > 5) { + if (!WITHIN(state, 0, 5)) { SERIAL_PROTOCOLLNPGM("S out of range (0-5)."); return; } @@ -3813,17 +3809,17 @@ inline void gcode_G28() { case MeshStart: mbl.reset(); - probe_index = 0; + mbl_probe_index = 0; enqueue_and_echo_commands_P(PSTR("G28\nG29 S2")); break; case MeshNext: - if (probe_index < 0) { + if (mbl_probe_index < 0) { SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first."); return; } // For each G29 S2... - if (probe_index == 0) { + if (mbl_probe_index == 0) { #if HAS_SOFTWARE_ENDSTOPS // For the initial G29 S2 save software endstop state enable_soft_endstops = soft_endstops_enabled; @@ -3831,14 +3827,14 @@ inline void gcode_G28() { } else { // For G29 S2 after adjusting Z. - mbl.set_zigzag_z(probe_index - 1, current_position[Z_AXIS]); + mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]); #if HAS_SOFTWARE_ENDSTOPS soft_endstops_enabled = enable_soft_endstops; #endif } // If there's another point to sample, move there with optional lift. - if (probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { - mbl.zigzag(probe_index, px, py); + if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { + mbl.zigzag(mbl_probe_index, px, py); _mbl_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]); #if HAS_SOFTWARE_ENDSTOPS @@ -3847,7 +3843,7 @@ inline void gcode_G28() { soft_endstops_enabled = false; #endif - probe_index++; + mbl_probe_index++; } else { // One last "return to the bed" (as originally coded) at completion @@ -3857,7 +3853,7 @@ inline void gcode_G28() { // After recording the last point, activate the mbl and home SERIAL_PROTOCOLLNPGM("Mesh probing done."); - probe_index = -1; + mbl_probe_index = -1; mbl.set_has_mesh(true); mbl.set_reactivate(true); enqueue_and_echo_commands_P(PSTR("G28")); @@ -3869,7 +3865,7 @@ inline void gcode_G28() { case MeshSet: if (code_seen('X')) { px = code_value_int() - 1; - if (px < 0 || px >= MESH_NUM_X_POINTS) { + if (!WITHIN(px, 0, MESH_NUM_X_POINTS - 1)) { SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ")."); return; } @@ -3881,7 +3877,7 @@ inline void gcode_G28() { if (code_seen('Y')) { py = code_value_int() - 1; - if (py < 0 || py >= MESH_NUM_Y_POINTS) { + if (!WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) { SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ")."); return; } @@ -4412,7 +4408,7 @@ inline void gcode_G28() { if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER)) && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER)) ) { - float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset)); + float simple_z = current_position[Z_AXIS] - measured_z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Z from Probe:", simple_z); @@ -4503,11 +4499,11 @@ inline void gcode_G28() { float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1); SERIAL_PROTOCOLPGM("Bed X: "); - SERIAL_PROTOCOL(X_probe_location + 0.0001); + SERIAL_PROTOCOL(FIXFLOAT(X_probe_location)); SERIAL_PROTOCOLPGM(" Y: "); - SERIAL_PROTOCOL(Y_probe_location + 0.0001); + SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location)); SERIAL_PROTOCOLPGM(" Z: "); - SERIAL_PROTOCOLLN(measured_z - -zprobe_zoffset + 0.0001); + SERIAL_PROTOCOLLN(FIXFLOAT(measured_z)); clean_up_after_endstop_or_probe_move(); @@ -4971,7 +4967,7 @@ inline void gcode_M42() { if (!code_seen('S')) return; int pin_status = code_value_int(); - if (pin_status < 0 || pin_status > 255) return; + if (!WITHIN(pin_status, 0, 255)) return; int pin_number = code_seen('P') ? code_value_int() : LED_PIN; if (pin_number < 0) return; @@ -5115,7 +5111,7 @@ inline void gcode_M42() { if (axis_unhomed_error(true, true, true)) return; int8_t verbose_level = code_seen('V') ? code_value_byte() : 1; - if (verbose_level < 0 || verbose_level > 4) { + if (!WITHIN(verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4)."); return; } @@ -5124,7 +5120,7 @@ inline void gcode_M42() { SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test"); int8_t n_samples = code_seen('P') ? code_value_byte() : 10; - if (n_samples < 4 || n_samples > 50) { + if (!WITHIN(n_samples, 4, 50)) { SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50)."); return; } @@ -5136,7 +5132,7 @@ inline void gcode_M42() { float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER; #if DISABLED(DELTA) - if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) { + if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) { out_of_range_error(PSTR("X")); return; } @@ -5144,7 +5140,7 @@ inline void gcode_M42() { float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER; #if DISABLED(DELTA) - if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) { + if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) { out_of_range_error(PSTR("Y")); return; } @@ -6795,7 +6791,7 @@ inline void gcode_M226() { inline void gcode_M280() { if (!code_seen('P')) return; int servo_index = code_value_int(); - if (servo_index >= 0 && servo_index < NUM_SERVOS) { + if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) { if (code_seen('S')) MOVE_SERVO(servo_index, code_value_int()); else { @@ -7002,7 +6998,7 @@ inline void gcode_M303() { float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0); - if (e >= 0 && e < HOTENDS) + if (WITHIN(e, 0, HOTENDS - 1)) target_extruder = e; KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output @@ -7223,7 +7219,7 @@ void quickstop_stepper() { if (code_seen('L')) { const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); - if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { + if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } @@ -7316,7 +7312,7 @@ void quickstop_stepper() { } } else if (hasI && hasJ && hasZ) { - if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS) + if (WITHIN(px, 0, MESH_NUM_X_POINTS - 1) && WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) mbl.set_z(px, py, z); else { SERIAL_ERROR_START; @@ -7345,7 +7341,7 @@ void quickstop_stepper() { if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS); if (hasI && hasJ && hasZ) { - if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) { + if (WITHIN(px, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, ABL_GRID_MAX_POINTS_X - 1)) { bed_level_grid[px][py] = z; #if ENABLED(ABL_BILINEAR_SUBDIVISION) bed_level_virt_interpolate(); @@ -7383,7 +7379,7 @@ void quickstop_stepper() { if (axis_homed[i]) { float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0, diff = current_position[i] - LOGICAL_POSITION(base, i); - if (diff > -20 && diff < 20) { + if (WITHIN(diff, -20, 20)) { set_home_offset((AxisEnum)i, home_offset[i] - diff); } else { @@ -7457,7 +7453,7 @@ inline void gcode_M503() { if (code_seen('Z')) { float value = code_value_axis_units(Z_AXIS); - if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) { + if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) { #if ENABLED(AUTO_BED_LEVELING_BILINEAR) // Correct bilinear grid for new probe offset @@ -9905,11 +9901,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { #elif ENABLED(AUTO_BED_LEVELING_UBL) if (ubl.state.active) { -// ubl_line_to_destination(MMS_SCALED(feedrate_mm_s)); - - ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], -// (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder); - MMS_SCALED(feedrate_mm_s), active_extruder); + ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder); return false; } diff --git a/Marlin/SanityCheck.h b/Marlin/SanityCheck.h index f593ec9f17..3941e6fb27 100644 --- a/Marlin/SanityCheck.h +++ b/Marlin/SanityCheck.h @@ -540,13 +540,13 @@ static_assert(1 >= 0 * Make sure Z_SAFE_HOMING point is reachable */ #if ENABLED(Z_SAFE_HOMING) - #if Z_SAFE_HOMING_X_POINT < MIN_PROBE_X || Z_SAFE_HOMING_X_POINT > MAX_PROBE_X + #if !WITHIN(Z_SAFE_HOMING_X_POINT, MIN_PROBE_X, MAX_PROBE_X) #if HAS_BED_PROBE #error "Z_SAFE_HOMING_X_POINT can't be reached by the Z probe." #else #error "Z_SAFE_HOMING_X_POINT can't be reached by the nozzle." #endif - #elif Z_SAFE_HOMING_Y_POINT < MIN_PROBE_Y || Z_SAFE_HOMING_Y_POINT > MAX_PROBE_Y + #elif !WITHIN(Z_SAFE_HOMING_Y_POINT, MIN_PROBE_Y, MAX_PROBE_Y) #if HAS_BED_PROBE #error "Z_SAFE_HOMING_Y_POINT can't be reached by the Z probe." #else @@ -598,33 +598,33 @@ static_assert(1 >= 0 #elif ENABLED(AUTO_BED_LEVELING_UBL) #if DISABLED(EEPROM_SETTINGS) #error "AUTO_BED_LEVELING_UBL requires EEPROM_SETTINGS. Please update your configuration." - #elif UBL_MESH_NUM_X_POINTS < 3 || UBL_MESH_NUM_X_POINTS > 15 || UBL_MESH_NUM_Y_POINTS < 3 || UBL_MESH_NUM_Y_POINTS > 15 + #elif !WITHIN(UBL_MESH_NUM_X_POINTS, 3, 15) || !WITHIN(UBL_MESH_NUM_Y_POINTS, 3, 15) #error "UBL_MESH_NUM_[XY]_POINTS must be a whole number between 3 and 15." - #elif UBL_PROBE_PT_1_X < MIN_PROBE_X || UBL_PROBE_PT_1_X > MAX_PROBE_X + #elif !WITHIN(UBL_PROBE_PT_1_X, MIN_PROBE_X, MAX_PROBE_X) #error "The given UBL_PROBE_PT_1_X can't be reached by the Z probe." - #elif UBL_PROBE_PT_2_X < MIN_PROBE_X || UBL_PROBE_PT_2_X > MAX_PROBE_X + #elif !WITHIN(UBL_PROBE_PT_2_X, MIN_PROBE_X, MAX_PROBE_X) #error "The given UBL_PROBE_PT_2_X can't be reached by the Z probe." - #elif UBL_PROBE_PT_3_X < MIN_PROBE_X || UBL_PROBE_PT_3_X > MAX_PROBE_X + #elif !WITHIN(UBL_PROBE_PT_3_X, MIN_PROBE_X, MAX_PROBE_X) #error "The given UBL_PROBE_PT_3_X can't be reached by the Z probe." - #elif UBL_PROBE_PT_1_Y < MIN_PROBE_Y || UBL_PROBE_PT_1_Y > MAX_PROBE_Y + #elif !WITHIN(UBL_PROBE_PT_1_Y, MIN_PROBE_Y, MAX_PROBE_Y) #error "The given UBL_PROBE_PT_1_Y can't be reached by the Z probe." - #elif UBL_PROBE_PT_2_Y < MIN_PROBE_Y || UBL_PROBE_PT_2_Y > MAX_PROBE_Y + #elif !WITHIN(UBL_PROBE_PT_2_Y, MIN_PROBE_Y, MAX_PROBE_Y) #error "The given UBL_PROBE_PT_2_Y can't be reached by the Z probe." - #elif UBL_PROBE_PT_3_Y < MIN_PROBE_Y || UBL_PROBE_PT_3_Y > MAX_PROBE_Y + #elif !WITHIN(UBL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y) #error "The given UBL_PROBE_PT_3_Y can't be reached by the Z probe." #endif #else // AUTO_BED_LEVELING_3POINT - #if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X + #if !WITHIN(ABL_PROBE_PT_1_X, MIN_PROBE_X, MAX_PROBE_X) #error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe." - #elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X + #elif !WITHIN(ABL_PROBE_PT_2_X, MIN_PROBE_X, MAX_PROBE_X) #error "The given ABL_PROBE_PT_2_X can't be reached by the Z probe." - #elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X + #elif !WITHIN(ABL_PROBE_PT_3_X, MIN_PROBE_X, MAX_PROBE_X) #error "The given ABL_PROBE_PT_3_X can't be reached by the Z probe." - #elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y + #elif !WITHIN(ABL_PROBE_PT_1_Y, MIN_PROBE_Y, MAX_PROBE_Y) #error "The given ABL_PROBE_PT_1_Y can't be reached by the Z probe." - #elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y + #elif !WITHIN(ABL_PROBE_PT_2_Y, MIN_PROBE_Y, MAX_PROBE_Y) #error "The given ABL_PROBE_PT_2_Y can't be reached by the Z probe." - #elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y + #elif !WITHIN(ABL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y) #error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe." #endif #endif // AUTO_BED_LEVELING_3POINT @@ -862,11 +862,11 @@ static_assert(1 >= 0 /** * Endstops */ -#if DISABLED(USE_XMIN_PLUG) && DISABLED(USE_XMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _XMAX_ && Z2_USE_ENDSTOP <= _XMIN_) +#if DISABLED(USE_XMIN_PLUG) && DISABLED(USE_XMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _XMAX_, _XMIN_)) #error "You must enable USE_XMIN_PLUG or USE_XMAX_PLUG." -#elif DISABLED(USE_YMIN_PLUG) && DISABLED(USE_YMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _YMAX_ && Z2_USE_ENDSTOP <= _YMIN_) +#elif DISABLED(USE_YMIN_PLUG) && DISABLED(USE_YMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _YMAX_, _YMIN_)) #error "You must enable USE_YMIN_PLUG or USE_YMAX_PLUG." -#elif DISABLED(USE_ZMIN_PLUG) && DISABLED(USE_ZMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _ZMAX_ && Z2_USE_ENDSTOP <= _ZMIN_) +#elif DISABLED(USE_ZMIN_PLUG) && DISABLED(USE_ZMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _ZMAX_, _ZMIN_)) #error "You must enable USE_ZMIN_PLUG or USE_ZMAX_PLUG." #elif ENABLED(Z_DUAL_ENDSTOPS) #if !Z2_USE_ENDSTOP diff --git a/Marlin/UBL.h b/Marlin/UBL.h index 1d3a91b30d..ea726b4572 100644 --- a/Marlin/UBL.h +++ b/Marlin/UBL.h @@ -43,7 +43,7 @@ bool ubl_lcd_clicked(); void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); void debug_current_and_destination(char *title); - void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t); + void ubl_line_to_destination(const float&, uint8_t); void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool); vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&); float measure_business_card_thickness(const float&); @@ -169,12 +169,12 @@ static int8_t find_closest_x_index(const float &x) { const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST)); - return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1; + return WITHIN(px, 0, UBL_MESH_NUM_X_POINTS - 1) ? px : -1; } static int8_t find_closest_y_index(const float &y) { const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); - return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; + return WITHIN(py, 0, UBL_MESH_NUM_Y_POINTS - 1) ? py : -1; } /** @@ -193,22 +193,16 @@ * multiplications. */ static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { - const float delta_z = (z2 - z1), - delta_a = (a0 - a1) / (a2 - a1); - return z1 + delta_a * delta_z; + return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1); } /** - * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes - * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory - * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling - * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have - * the X index of the x0 intersection available and we don't want to perform any extra floating - * point operations. + * z_correction_for_x_on_horizontal_mesh_line is an optimization for + * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi). */ - static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) { - if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) { - SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0); + static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) { + if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) { + SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0); SERIAL_ECHOPAIR(",x1_i=", x1_i); SERIAL_ECHOPAIR(",yi=", yi); SERIAL_CHAR(')'); @@ -216,20 +210,18 @@ return NAN; } - const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), - z1 = z_values[x1_i][yi], - z2 = z_values[x1_i + 1][yi], - dz = (z2 - z1); + const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)), + z1 = z_values[x1_i][yi]; - return z1 + xratio * dz; + return z1 + xratio * (z_values[x1_i + 1][yi] - z1); } // - // See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X + // See comments above for z_correction_for_x_on_horizontal_mesh_line // - static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) { - if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) { - SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0); + static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) { + if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) { + SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0); SERIAL_ECHOPAIR(", x1_i=", xi); SERIAL_ECHOPAIR(", yi=", y1_i); SERIAL_CHAR(')'); @@ -237,12 +229,10 @@ return NAN; } - const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), - z1 = z_values[xi][y1_i], - z2 = z_values[xi][y1_i + 1], - dz = (z2 - z1); + const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)), + z1 = z_values[xi][y1_i]; - return z1 + yratio * dz; + return z1 + yratio * (z_values[xi][y1_i + 1] - z1); } /** @@ -251,14 +241,14 @@ * Z-Height at both ends. Then it does a linear interpolation of these heights based * on the Y position within the cell. */ - static float get_z_correction(const float &x0, const float &y0) { - const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), - cy = get_cell_index_y(RAW_Y_POSITION(y0)); + static float get_z_correction(const float &lx0, const float &ly0) { + const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)), + cy = get_cell_index_y(RAW_Y_POSITION(ly0)); - if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { + if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) { - SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0); - SERIAL_ECHOPAIR(", y0=", y0); + SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0); + SERIAL_ECHOPAIR(", ly0=", ly0); SERIAL_CHAR(')'); SERIAL_EOL; @@ -269,21 +259,21 @@ return 0.0; // this used to return state.z_offset } - const float z1 = calc_z0(RAW_X_POSITION(x0), + const float z1 = calc_z0(RAW_X_POSITION(lx0), mesh_index_to_xpos[cx], z_values[cx][cy], mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]), - z2 = calc_z0(RAW_X_POSITION(x0), + z2 = calc_z0(RAW_X_POSITION(lx0), mesh_index_to_xpos[cx], z_values[cx][cy + 1], mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]); - float z0 = calc_z0(RAW_Y_POSITION(y0), + float z0 = calc_z0(RAW_Y_POSITION(ly0), mesh_index_to_ypos[cy], z1, mesh_index_to_ypos[cy + 1], z2); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPAIR(" raw get_z_correction(", x0); + SERIAL_ECHOPAIR(" raw get_z_correction(", lx0); SERIAL_CHAR(',') - SERIAL_ECHO(y0); + SERIAL_ECHO(ly0); SERIAL_ECHOPGM(") = "); SERIAL_ECHO_F(z0, 6); } @@ -305,9 +295,9 @@ #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(MESH_ADJUST)) { - SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0); + SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0); SERIAL_CHAR(','); - SERIAL_ECHO(y0); + SERIAL_ECHO(ly0); SERIAL_CHAR(')'); SERIAL_EOL; } @@ -327,7 +317,7 @@ */ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) - FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { + static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) { const float rz = RAW_Z_POSITION(lz); if (last_specified_z != rz) { last_specified_z = rz; diff --git a/Marlin/UBL_Bed_Leveling.cpp b/Marlin/UBL_Bed_Leveling.cpp index a81a16bc09..e173247fe1 100644 --- a/Marlin/UBL_Bed_Leveling.cpp +++ b/Marlin/UBL_Bed_Leveling.cpp @@ -118,7 +118,7 @@ return; } - if (m < 0 || m >= j || eeprom_start <= 0) { + if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); return; } @@ -133,7 +133,7 @@ void unified_bed_leveling::store_mesh(const int16_t m) { int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values); - if (m < 0 || m >= j || eeprom_start <= 0) { + if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); SERIAL_PROTOCOL(m); SERIAL_PROTOCOLLNPGM(" mesh slots available.\n"); @@ -203,7 +203,7 @@ const float f = z_values[i][j]; if (isnan(f)) { - serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN")); + serialprintPGM(map0 ? PSTR(" . ") : PSTR("NAN")); } else { // if we don't do this, the columns won't line up nicely diff --git a/Marlin/UBL_G29.cpp b/Marlin/UBL_G29.cpp index e1835e74cb..faf1790e46 100644 --- a/Marlin/UBL_G29.cpp +++ b/Marlin/UBL_G29.cpp @@ -49,7 +49,6 @@ extern bool code_value_bool(); extern bool code_has_value(); extern float probe_pt(float x, float y, bool, int); - extern float zprobe_zoffset; extern bool set_probe_deployed(bool); #define DEPLOY_PROBE() set_probe_deployed(true) #define STOW_PROBE() set_probe_deployed(false) @@ -342,7 +341,7 @@ if (code_seen('Q')) { const int test_pattern = code_has_value() ? code_value_int() : -1; - if (test_pattern < 0 || test_pattern > 2) { + if (!WITHIN(test_pattern, 0, 2)) { SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n"); return; } @@ -375,7 +374,7 @@ /* if (code_seen('U')) { unlevel_value = code_value_int(); - //if (unlevel_value < 0 || unlevel_value > 7) { + //if (!WITHIN(unlevel_value, 0, 7)) { // SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n"); // return; //} @@ -384,7 +383,7 @@ if (code_seen('P')) { phase_value = code_value_int(); - if (phase_value < 0 || phase_value > 7) { + if (!WITHIN(phase_value, 0, 7)) { SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n"); return; } @@ -516,16 +515,23 @@ } if (code_seen('T')) { - float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset, - z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset, - z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; + const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X), + lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X), + lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X), + ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y), + ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y), + ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y); + + float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level), + z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level), + z3 = probe_pt(lx3, ly3, true /*Stow Flag*/, g29_verbose_level); // We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is) - z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); - z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); - z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); + z1 -= ubl.get_z_correction(lx1, ly1); + z2 -= ubl.get_z_correction(lx2, ly2); + z3 -= ubl.get_z_correction(lx3, ly3); do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); tilt_mesh_based_on_3pts(z1, z2, z3); @@ -560,7 +566,7 @@ const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); - if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { + if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } @@ -594,7 +600,7 @@ const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values); - if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) { + if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); goto LEAVE; @@ -754,14 +760,14 @@ rawy = ubl.mesh_index_to_ypos[location.y_index]; // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) - if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { + if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); ubl.has_control_of_lcd_panel = false; goto LEAVE; } const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); - ubl.z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; + ubl.z_values[location.x_index][location.y_index] = measured_z; } if (do_ubl_mesh_map) ubl.display_map(map_type); @@ -779,17 +785,17 @@ ); } - vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) { + vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) { float c, d, t; int i, j; vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X), (ubl_3_point_1_Y - ubl_3_point_2_Y), - (pt1 - pt2) ), + (z1 - z2) ), v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X), (ubl_3_point_3_Y - ubl_3_point_2_Y), - (pt3 - pt2) ), + (z3 - z2) ), normal = vector_3::cross(v1, v2); @@ -811,7 +817,7 @@ // All of 3 of these points should give us the same d constant // t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y; - d = t + normal.z * pt1; + d = t + normal.z * z1; c = d - t; SERIAL_ECHOPGM("d from 1st point: "); SERIAL_ECHO_F(d, 6); @@ -819,7 +825,7 @@ SERIAL_ECHO_F(c, 6); SERIAL_EOL; t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y; - d = t + normal.z * pt2; + d = t + normal.z * z2; c = d - t; SERIAL_ECHOPGM("d from 2nd point: "); SERIAL_ECHO_F(d, 6); @@ -827,7 +833,7 @@ SERIAL_ECHO_F(c, 6); SERIAL_EOL; t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y; - d = t + normal.z * pt3; + d = t + normal.z * z3; c = d - t; SERIAL_ECHOPGM("d from 3rd point: "); SERIAL_ECHO_F(d, 6); @@ -904,7 +910,7 @@ rawy = ubl.mesh_index_to_ypos[location.y_index]; // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) - if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { + if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to probe off the bed."); ubl.has_control_of_lcd_panel = false; @@ -976,21 +982,21 @@ #endif g29_verbose_level = code_seen('V') ? code_value_int() : 0; - if (g29_verbose_level < 0 || g29_verbose_level > 4) { + if (!WITHIN(g29_verbose_level, 0, 4)) { SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); return UBL_ERR; } x_flag = code_seen('X') && code_has_value(); x_pos = x_flag ? code_value_float() : current_position[X_AXIS]; - if (x_pos < LOGICAL_X_POSITION(X_MIN_POS) || x_pos > LOGICAL_X_POSITION(X_MAX_POS)) { + if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) { SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); return UBL_ERR; } y_flag = code_seen('Y') && code_has_value(); y_pos = y_flag ? code_value_float() : current_position[Y_AXIS]; - if (y_pos < LOGICAL_Y_POSITION(Y_MIN_POS) || y_pos > LOGICAL_Y_POSITION(Y_MAX_POS)) { + if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) { SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); return UBL_ERR; } @@ -1018,7 +1024,7 @@ #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (code_seen('F') && code_has_value()) { const float fh = code_value_float(); - if (fh < 0.0 || fh > 100.0) { + if (!WITHIN(fh, 0.0, 100.0)) { SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n"); return UBL_ERR; } @@ -1035,7 +1041,7 @@ } map_type = code_seen('O') && code_has_value() ? code_value_int() : 0; - if (map_type < 0 || map_type > 1) { + if (!WITHIN(map_type, 0, 1)) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } @@ -1043,7 +1049,7 @@ /* if (code_seen('M')) { // Check if a map type was specified map_type = code_has_value() ? code_value_int() : 0; - if (map_type < 0 || map_type > 1) { + if (!WITHIN(map_type, 0, 1)) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } @@ -1109,7 +1115,7 @@ const uint16_t k = E2END - ubl.eeprom_start; SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); - if (ubl.state.active) + if (ubl.state.active) SERIAL_PROTOCOLCHAR('A'); else SERIAL_PROTOCOLPGM("In"); @@ -1243,7 +1249,7 @@ int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values); - if (storage_slot < 0 || storage_slot > j || ubl.eeprom_start <= 0) { + if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } @@ -1290,7 +1296,7 @@ // Prune them from the list and ignore them till the next Phase (manual nozzle probing). if (probe_as_reference && - (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) + (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) ) continue; // Unreachable. Check if it's the closest location to the nozzle. @@ -1354,7 +1360,7 @@ rawy = ubl.mesh_index_to_ypos[location.y_index]; // TODO: Change to use `position_is_reachable` (for SCARA-compatibility) - if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check. + if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check. SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now ubl.has_control_of_lcd_panel = false; @@ -1363,6 +1369,7 @@ do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); + float new_z = ubl.z_values[location.x_index][location.y_index]; round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the @@ -1425,4 +1432,4 @@ SERIAL_ECHOLNPGM("Done Editing Mesh."); } -#endif // AUTO_BED_LEVELING_UBL +#endif // AUTO_BED_LEVELING_UBL \ No newline at end of file diff --git a/Marlin/UBL_line_to_destination.cpp b/Marlin/UBL_line_to_destination.cpp index 7c5e9f4b89..e110a4288e 100644 --- a/Marlin/UBL_line_to_destination.cpp +++ b/Marlin/UBL_line_to_destination.cpp @@ -31,7 +31,14 @@ extern float destination[XYZE]; extern void set_current_to_destination(); - extern float destination[]; + + static void debug_echo_axis(const AxisEnum axis) { + if (current_position[axis] == destination[axis]) + SERIAL_ECHOPGM("-------------"); + else + SERIAL_ECHO_F(destination[X_AXIS], 6); + } + void debug_current_and_destination(char *title) { // if the title message starts with a '!' it is so important, we are going to @@ -67,32 +74,13 @@ SERIAL_ECHOPGM(", "); SERIAL_ECHO_F(current_position[E_AXIS], 6); SERIAL_ECHOPGM(" ) destination=( "); - if (current_position[X_AXIS] == destination[X_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[X_AXIS], 6); - + debug_echo_axis(X_AXIS); SERIAL_ECHOPGM(", "); - - if (current_position[Y_AXIS] == destination[Y_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[Y_AXIS], 6); - + debug_echo_axis(Y_AXIS); SERIAL_ECHOPGM(", "); - - if (current_position[Z_AXIS] == destination[Z_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[Z_AXIS], 6); - + debug_echo_axis(Z_AXIS); SERIAL_ECHOPGM(", "); - - if (current_position[E_AXIS] == destination[E_AXIS]) - SERIAL_ECHOPGM("-------------"); - else - SERIAL_ECHO_F(destination[E_AXIS], 6); - + debug_echo_axis(E_AXIS); SERIAL_ECHOPGM(" ) "); SERIAL_ECHO(title); SERIAL_EOL; @@ -105,32 +93,37 @@ //} } - void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) { + void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) { /** * Much of the nozzle movement will be within the same cell. So we will do as little computation * as possible to determine if this is the case. If this move is within the same cell, we will * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave */ - const float x_start = current_position[X_AXIS], - y_start = current_position[Y_AXIS], - z_start = current_position[Z_AXIS], - e_start = current_position[E_AXIS]; + const float start[XYZE] = { + current_position[X_AXIS], + current_position[Y_AXIS], + current_position[Z_AXIS], + current_position[E_AXIS] + }, + end[XYZE] = { + destination[X_AXIS], + destination[Y_AXIS], + destination[Z_AXIS], + destination[E_AXIS] + }; - const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)), - cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)), - cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)), - cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end)); + const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])), + cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])), + cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])), + cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS])); if (ubl.g26_debug_flag) { - SERIAL_ECHOPGM(" ubl_line_to_destination(xe="); - SERIAL_ECHO(x_end); - SERIAL_ECHOPGM(", ye="); - SERIAL_ECHO(y_end); - SERIAL_ECHOPGM(", ze="); - SERIAL_ECHO(z_end); - SERIAL_ECHOPGM(", ee="); - SERIAL_ECHO(e_end); - SERIAL_ECHOLNPGM(")"); + SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]); + SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]); + SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]); + SERIAL_ECHOPAIR(", ee=", end[E_AXIS]); + SERIAL_CHAR(')'); + SERIAL_EOL; debug_current_and_destination((char*)"Start of ubl_line_to_destination()"); } @@ -142,12 +135,12 @@ * But we detect it and isolate it. For now, we just pass along the request. */ - if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) { + if (!WITHIN(cell_dest_xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cell_dest_yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) { // Note: There is no Z Correction in this case. We are off the grid and don't know what // a reasonable correction would be. - planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder); + planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); set_current_to_destination(); if (ubl.g26_debug_flag) @@ -167,7 +160,7 @@ * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. */ - const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), + const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio * (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]), z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * @@ -176,7 +169,7 @@ // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // are going to apply the Y-Distance into the cell to interpolate the final Z correction. - const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); + const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); float z0 = z1 + (z2 - z1) * yratio; @@ -186,20 +179,20 @@ */ /* z_optimized = z0; - z0 = ubl.get_z_correction(x_end, y_end); + z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]); if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) { debug_current_and_destination((char*)"FINAL_MOVE: z_correction()"); if (isnan(z0)) SERIAL_ECHO(" z0==NAN "); if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN "); - SERIAL_ECHOPAIR(" x_end=", x_end); - SERIAL_ECHOPAIR(" y_end=", y_end); + SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]); + SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]); SERIAL_ECHOPAIR(" z0=", z0); SERIAL_ECHOPAIR(" z_optimized=", z_optimized); SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0)); SERIAL_EOL; } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -210,7 +203,7 @@ */ if (isnan(z0)) z0 = 0.0; - planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder); + planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder); if (ubl.g26_debug_flag) debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); @@ -227,8 +220,8 @@ * blocks of code: */ - const float dx = x_end - x_start, - dy = y_end - y_start; + const float dx = end[X_AXIS] - start[X_AXIS], + dy = end[Y_AXIS] - start[Y_AXIS]; const int left_flag = dx < 0.0 ? 1 : 0, down_flag = dy < 0.0 ? 1 : 0; @@ -251,8 +244,8 @@ const bool use_x_dist = adx > ady; float on_axis_distance = use_x_dist ? dx : dy, - e_position = e_end - e_start, - z_position = z_end - z_start; + e_position = end[E_AXIS] - start[E_AXIS], + z_position = end[Z_AXIS] - start[Z_AXIS]; const float e_normalized_dist = e_position / on_axis_distance, z_normalized_dist = z_position / on_axis_distance; @@ -260,7 +253,7 @@ int current_xi = cell_start_xi, current_yi = cell_start_yi; const float m = dy / dx, - c = y_start - m * x_start; + c = start[Y_AXIS] - m * start[X_AXIS]; const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance), inf_m_flag = NEAR_ZERO(dx); @@ -281,9 +274,9 @@ * else, we know the next X is the same so we can recover and continue! * Calculate X at the next Y mesh line */ - const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m; + const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m; - float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi); + float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -305,7 +298,7 @@ } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -324,15 +317,15 @@ * happens, it might be best to remove the check and always 'schedule' the move because * the planner.buffer_line() routine will filter it if that happens. */ - if (y != y_start) { + if (y != start[Y_AXIS]) { if (!inf_normalized_flag) { - on_axis_distance = y - y_start; // we don't need to check if the extruder position - e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); @@ -345,7 +338,7 @@ // // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done. // - if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) + if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); @@ -368,7 +361,7 @@ const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]), y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line - float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); + float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -390,7 +383,7 @@ } //*/ - z0 = z0 * ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -409,15 +402,15 @@ * that happens, it might be best to remove the check and always 'schedule' the move because * the planner.buffer_line() routine will filter it if that happens. */ - if (x != x_start) { + if (x != start[X_AXIS]) { if (!inf_normalized_flag) { - on_axis_distance = x - x_start; // we don't need to check if the extruder position - e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); @@ -427,7 +420,7 @@ if (ubl.g26_debug_flag) debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); - if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) + if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); @@ -454,16 +447,16 @@ const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]), next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]), y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line - x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry - // about m being equal to 0.0 If this was the case, we would have - // detected this as a vertical line move up above and we wouldn't - // be down here doing a generic type of move. + x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line + // (No need to worry about m being zero. + // If that was the case, it was already detected + // as a vertical line move above.) if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first // // Yes! Crossing a Y Mesh Line next // - float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi); + float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -486,7 +479,7 @@ } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -498,13 +491,13 @@ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { - on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start; - e_position = e_start + on_axis_distance * e_normalized_dist; - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS]; + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); current_yi += dyi; @@ -514,7 +507,7 @@ // // Yes! Crossing a X Mesh Line next // - float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag); + float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag); /** * Debug code to use non-optimized get_z_correction() and to do a sanity check @@ -536,7 +529,7 @@ } //*/ - z0 *= ubl.fade_scaling_factor_for_z(z_end); + z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]); /** * If part of the Mesh is undefined, it will show up as NAN @@ -548,13 +541,13 @@ if (isnan(z0)) z0 = 0.0; if (!inf_normalized_flag) { - on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start; - e_position = e_start + on_axis_distance * e_normalized_dist; - z_position = z_start + on_axis_distance * z_normalized_dist; + on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS]; + e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; + z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist; } else { - e_position = e_start; - z_position = z_start; + e_position = start[E_AXIS]; + z_position = start[Z_AXIS]; } planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder); @@ -566,7 +559,7 @@ if (ubl.g26_debug_flag) debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); - if (current_position[0] != x_end || current_position[1] != y_end) + if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS]) goto FINAL_MOVE; set_current_to_destination(); diff --git a/Marlin/endstop_interrupts.h b/Marlin/endstop_interrupts.h index 495a758f1d..642f78a58b 100644 --- a/Marlin/endstop_interrupts.h +++ b/Marlin/endstop_interrupts.h @@ -35,8 +35,10 @@ * (Located in Marlin/buildroot/share/pin_interrupt_test/pin_interrupt_test.ino) */ - #ifndef _ENDSTOP_INTERRUPTS_H_ - #define _ENDSTOP_INTERRUPTS_H_ +#ifndef _ENDSTOP_INTERRUPTS_H_ +#define _ENDSTOP_INTERRUPTS_H_ + +#include "macros.h" /** * Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h) @@ -47,39 +49,37 @@ */ #if defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_AVR_MEGA) #undef digitalPinToPCICR - #define digitalPinToPCICR(p) ( (((p) >= 10) && ((p) <= 15)) || \ - (((p) >= 50) && ((p) <= 53)) || \ - (((p) >= 62) && ((p) <= 69)) ? (&PCICR) : ((uint8_t *)0) ) + #define digitalPinToPCICR(p) ( WITHIN(p, 10, 15) || \ + WITHIN(p, 50, 53) || \ + WITHIN(p, 62, 69) ? &PCICR : (uint8_t*)0 ) #undef digitalPinToPCICRbit - #define digitalPinToPCICRbit(p) ( (((p) >= 10) && ((p) <= 13)) || (((p) >= 50) && ((p) <= 53)) ? 0 : \ - ( (((p) >= 14) && ((p) <= 15)) ? 1 : \ - ( (((p) >= 62) && ((p) <= 69)) ? 2 : \ - 0 ) ) ) + #define digitalPinToPCICRbit(p) ( WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? 0 : \ + WITHIN(p, 14, 15) ? 1 : \ + WITHIN(p, 62, 69) ? 2 : \ + 0 ) #undef digitalPinToPCMSK - #define digitalPinToPCMSK(p) ( (((p) >= 10) && ((p) <= 13)) || (((p) >= 50) && ((p) <= 53)) ? (&PCMSK0) : \ - ( (((p) >= 14) && ((p) <= 15)) ? (&PCMSK1) : \ - ( (((p) >= 62) && ((p) <= 69)) ? (&PCMSK2) : \ - ((uint8_t *)0) ) ) ) + #define digitalPinToPCMSK(p) ( WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? &PCMSK0 : \ + WITHIN(p, 14, 15) ? &PCMSK1 : \ + WITHIN(p, 62, 69) ? &PCMSK2 : \ + (uint8_t *)0 ) #undef digitalPinToPCMSKbit - #define digitalPinToPCMSKbit(p) ( (((p) >= 10) && ((p) <= 13)) ? ((p) - 6) : \ - ( ((p) == 14) ? 2 : \ - ( ((p) == 15) ? 1 : \ - ( ((p) == 50) ? 3 : \ - ( ((p) == 51) ? 2 : \ - ( ((p) == 52) ? 1 : \ - ( ((p) == 53) ? 0 : \ - ( (((p) >= 62) && ((p) <= 69)) ? ((p) - 62) : \ - 0 ) ) ) ) ) ) ) ) + #define digitalPinToPCMSKbit(p) ( WITHIN(p, 10, 13) ? ((p) - 6) : \ + (p) == 14 || (p) == 51 ? 2 : \ + (p) == 15 || (p) == 52 ? 1 : \ + (p) == 50 ? 3 : \ + (p) == 53 ? 0 : \ + WITHIN(p, 62, 69) ? ((p) - 62) : \ + 0 ) #endif -volatile uint8_t e_hit = 0; // Different from 0 when the endstops shall be tested in detail. - // Must be reset to 0 by the test function when the tests are finished. +volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. + // Must be reset to 0 by the test function when finished. // Install Pin change interrupt for a pin. Can be called multiple times. void pciSetup(byte pin) { - *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin - PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt - PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group + SBI(*digitalPinToPCMSK(pin), digitalPinToPCMSKbit(pin)); // enable pin + SBI(PCIFR, digitalPinToPCICRbit(pin)); // clear any outstanding interrupt + SBI(PCICR, digitalPinToPCICRbit(pin)); // enable interrupt for the group } // This is what is really done inside the interrupts. diff --git a/Marlin/macros.h b/Marlin/macros.h index 0ab08c31b8..18c5364a16 100644 --- a/Marlin/macros.h +++ b/Marlin/macros.h @@ -75,7 +75,8 @@ #define ENABLED(b) _CAT(SWITCH_ENABLED_, b) #define DISABLED(b) (!_CAT(SWITCH_ENABLED_, b)) -#define NUMERIC(a) ((a) >= '0' && '9' >= (a)) +#define WITHIN(V,L,H) ((V) >= (L) && (V) <= (H)) +#define NUMERIC(a) WITHIN(a, '0', '9') #define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-') #define COUNT(a) (sizeof(a)/sizeof(*a)) #define ZERO(a) memset(a,0,sizeof(a)) @@ -133,9 +134,10 @@ #define MAX4(a, b, c, d) max(max(a, b), max(c, d)) #define UNEAR_ZERO(x) ((x) < 0.000001) -#define NEAR_ZERO(x) ((x) > -0.000001 && (x) < 0.000001) +#define NEAR_ZERO(x) WITHIN(x, -0.000001, 0.000001) #define NEAR(x,y) NEAR_ZERO((x)-(y)) #define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x)) +#define FIXFLOAT(f) (f + 0.00001) #endif //__MACROS_H diff --git a/Marlin/mesh_bed_leveling.h b/Marlin/mesh_bed_leveling.h index 6a683627b8..3b7de0827b 100644 --- a/Marlin/mesh_bed_leveling.h +++ b/Marlin/mesh_bed_leveling.h @@ -88,12 +88,12 @@ static int8_t probe_index_x(const float &x) { int8_t px = (x - (MESH_MIN_X) + 0.5 * (MESH_X_DIST)) * (1.0 / (MESH_X_DIST)); - return (px >= 0 && px < (MESH_NUM_X_POINTS)) ? px : -1; + return WITHIN(px, 0, MESH_NUM_X_POINTS - 1) ? px : -1; } static int8_t probe_index_y(const float &y) { int8_t py = (y - (MESH_MIN_Y) + 0.5 * (MESH_Y_DIST)) * (1.0 / (MESH_Y_DIST)); - return (py >= 0 && py < (MESH_NUM_Y_POINTS)) ? py : -1; + return WITHIN(py, 0, MESH_NUM_Y_POINTS - 1) ? py : -1; } static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) { diff --git a/Marlin/pinsDebug.h b/Marlin/pinsDebug.h index e839480757..8fe48da2a9 100644 --- a/Marlin/pinsDebug.h +++ b/Marlin/pinsDebug.h @@ -20,6 +20,8 @@ * */ +#include "macros.h" + bool endstop_monitor_flag = false; #if !defined(TIMER1B) // working with Teensyduino extension so need to re-define some things @@ -35,7 +37,7 @@ bool endstop_monitor_flag = false; #define _ANALOG_PIN_SAY(NAME) { sprintf(buffer, NAME_FORMAT, NAME); SERIAL_ECHO(buffer); pin_is_analog = true; return true; } #define ANALOG_PIN_SAY(NAME) if (pin == analogInputToDigitalPin(NAME)) _ANALOG_PIN_SAY(#NAME); -#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(5))) +#define IS_ANALOG(P) ( WITHIN(P, analogInputToDigitalPin(0), analogInputToDigitalPin(15)) || (P) <= analogInputToDigitalPin(5) ) int digitalRead_mod(int8_t pin) { // same as digitalRead except the PWM stop section has been removed uint8_t port = digitalPinToPort(pin); diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 5c71faf087..b252f95ef6 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -999,7 +999,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const unsigned long segment_time = lround(1000000.0 / inverse_mm_s); #endif #if ENABLED(SLOWDOWN) - if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2) { + if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) { if (segment_time < min_segment_time) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued)); diff --git a/Marlin/temperature.cpp b/Marlin/temperature.cpp index 139f14e60d..f3bfc7fa7b 100644 --- a/Marlin/temperature.cpp +++ b/Marlin/temperature.cpp @@ -786,11 +786,11 @@ void Temperature::manage_heater() { #if ENABLED(PIDTEMPBED) float pid_output = get_pid_output_bed(); - soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0; + soft_pwm_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0; #elif ENABLED(BED_LIMIT_SWITCHING) // Check if temperature is within the correct band - if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { + if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) { if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS) soft_pwm_bed = 0; else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS)) @@ -802,7 +802,7 @@ void Temperature::manage_heater() { } #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING // Check if temperature is within the correct range - if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) { + if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) { soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0; } else { diff --git a/Marlin/twibus.cpp b/Marlin/twibus.cpp index c5abdb2a9a..b621be9524 100644 --- a/Marlin/twibus.cpp +++ b/Marlin/twibus.cpp @@ -42,7 +42,7 @@ void TWIBus::reset() { } void TWIBus::address(const uint8_t adr) { - if (adr < 8 || adr > 127) { + if (!WITHIN(adr, 8, 127)) { SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Bad I2C address (8-127)"); } diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index a7ab032432..551d7879fe 100755 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -30,8 +30,6 @@ #include "configuration_store.h" #include "utility.h" -extern float zprobe_zoffset; - #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) #include "buzzer.h" #endif diff --git a/Marlin/ultralcd_impl_DOGM.h b/Marlin/ultralcd_impl_DOGM.h index 51bbd6cd8f..cb06db95a2 100644 --- a/Marlin/ultralcd_impl_DOGM.h +++ b/Marlin/ultralcd_impl_DOGM.h @@ -213,7 +213,7 @@ static void lcd_setFont(const char font_nr) { } void lcd_print(const char c) { - if ((c > 0) && (c <= LCD_STR_SPECIAL_MAX)) { + if (WITHIN(c, 1, LCD_STR_SPECIAL_MAX)) { u8g.setFont(FONT_SPECIAL_NAME); u8g.print(c); lcd_setFont(currentfont); @@ -222,7 +222,7 @@ void lcd_print(const char c) { } char lcd_print_and_count(const char c) { - if ((c > 0) && (c <= LCD_STR_SPECIAL_MAX)) { + if (WITHIN(c, 1, LCD_STR_SPECIAL_MAX)) { u8g.setFont(FONT_SPECIAL_NAME); u8g.print(c); lcd_setFont(currentfont); @@ -543,7 +543,7 @@ static void lcd_implementation_status_screen() { if (page.page == 0) { strcpy(xstring, ftostr4sign(current_position[X_AXIS])); strcpy(ystring, ftostr4sign(current_position[Y_AXIS])); - strcpy(zstring, ftostr52sp(current_position[Z_AXIS] + 0.00001)); + strcpy(zstring, ftostr52sp(FIXFLOAT(current_position[Z_AXIS]))); #if ENABLED(FILAMENT_LCD_DISPLAY) && DISABLED(SDSUPPORT) strcpy(wstring, ftostr12ns(filament_width_meas)); strcpy(mstring, itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM])); diff --git a/Marlin/ultralcd_impl_HD44780.h b/Marlin/ultralcd_impl_HD44780.h index d81e342442..6672e4b08c 100644 --- a/Marlin/ultralcd_impl_HD44780.h +++ b/Marlin/ultralcd_impl_HD44780.h @@ -729,7 +729,7 @@ static void lcd_implementation_status_screen() { lcd.setCursor(LCD_WIDTH - 8, 1); _draw_axis_label(Z_AXIS, PSTR(MSG_Z), blink); - lcd.print(ftostr52sp(current_position[Z_AXIS] + 0.00001)); + lcd.print(ftostr52sp(FIXFLOAT(current_position[Z_AXIS]))); #endif // LCD_HEIGHT > 2 diff --git a/Marlin/utility.cpp b/Marlin/utility.cpp index b6b4ddcac4..83e1579b27 100644 --- a/Marlin/utility.cpp +++ b/Marlin/utility.cpp @@ -134,7 +134,7 @@ void safe_delay(millis_t ms) { // Convert float to rj string with 1234, _123, -123, _-12, 12.3, _1.2, or -1.2 format char *ftostr4sign(const float& fx) { int x = fx * 10; - if (x <= -100 || x >= 1000) return itostr4sign((int)fx); + if (WITHIN(x, -99, 999)) return itostr4sign((int)fx); int xx = abs(x); conv[0] = x < 0 ? '-' : (xx >= 100 ? DIGIMOD(xx, 100) : ' '); conv[1] = DIGIMOD(xx, 10);