diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index 09c4b7747b..1b7faa2a82 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -7284,26 +7284,26 @@ void plan_arc( ) { float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), - center_axis0 = current_position[X_AXIS] + offset[X_AXIS], - center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], + center_X = current_position[X_AXIS] + offset[X_AXIS], + center_Y = current_position[Y_AXIS] + offset[Y_AXIS], linear_travel = target[Z_AXIS] - current_position[Z_AXIS], extruder_travel = target[E_AXIS] - current_position[E_AXIS], - r_axis0 = -offset[X_AXIS], // Radius vector from center to current location - r_axis1 = -offset[Y_AXIS], - rt_axis0 = target[X_AXIS] - center_axis0, - rt_axis1 = target[Y_AXIS] - center_axis1; + r_X = -offset[X_AXIS], // Radius vector from center to current location + r_Y = -offset[Y_AXIS], + rt_X = target[X_AXIS] - center_X, + rt_Y = target[Y_AXIS] - center_Y; // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. - float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1); - if (angular_travel < 0) angular_travel += RADIANS(360); - if (clockwise) angular_travel -= RADIANS(360); + float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); + if (angular_travel < 0) angular_travel += RADIANS(360); + if (clockwise) angular_travel -= RADIANS(360); // Make a circle if the angular rotation is 0 - if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) - angular_travel += RADIANS(360); + if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) + angular_travel == RADIANS(360); float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel)); - if (mm_of_travel < 0.001) return; + if (mm_of_travel < 0.001) return; uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); if (segments == 0) segments = 1; @@ -7342,9 +7342,7 @@ void plan_arc( float sin_T = theta_per_segment; float arc_target[NUM_AXIS]; - float sin_Ti; - float cos_Ti; - float r_axisi; + float sin_Ti, cos_Ti, r_new_Y; uint16_t i; int8_t count = 0; @@ -7356,28 +7354,29 @@ void plan_arc( float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; - for (i = 1; i < segments; i++) { // Increment (segments-1) + for (i = 1; i < segments; i++) { // Iterate (segments-1) times - if (count < N_ARC_CORRECTION) { - // Apply vector rotation matrix to previous r_axis0 / 1 - r_axisi = r_axis0 * sin_T + r_axis1 * cos_T; - r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T; - r_axis1 = r_axisi; - count++; + if (++count < N_ARC_CORRECTION) { + // Apply vector rotation matrix to previous r_X / 1 + r_new_Y = r_X * sin_T + r_Y * cos_T; + r_X = r_X * cos_T - r_Y * sin_T; + r_Y = r_new_Y; } else { // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. // Compute exact location by applying transformation matrix from initial radius vector(=-offset). + // To reduce stuttering, the sin and cos could be computed at different times. + // For now, compute both at the same time. cos_Ti = cos(i * theta_per_segment); sin_Ti = sin(i * theta_per_segment); - r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; - r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; + r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; + r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; count = 0; } // Update arc_target location - arc_target[X_AXIS] = center_axis0 + r_axis0; - arc_target[Y_AXIS] = center_axis1 + r_axis1; + arc_target[X_AXIS] = center_X + r_X; + arc_target[Y_AXIS] = center_Y + r_Y; arc_target[Z_AXIS] += linear_per_segment; arc_target[E_AXIS] += extruder_per_segment;